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LETTER TO TH E EDITOR

Inhibition of glucuronidation in pancreatic cancer improves
gemcitabine anticancer activity

Dear Editor,

Pancreatic ductal adenocarcinoma (PDAC) treatment
is focused on two regimens. The polychemotherapy,
FOLFIRINOX (folinic acid, fluorouracil, irinotecan, oxali-
platin), is used in patients with good health conditions
[1], while gemcitabine, as monotherapy, in patients with
poor health conditions [2–4]. Gemcitabine resistance-
associated pathways have been targeted to sensitize cancer
cells, but the results were disappointing. Using a transcrip-
tomic bioinformatics analysis combined with biological
validation, we showed that glucuronidation was associ-
ated with the gemcitabine resistance in PDAC, and its
inhibition could switch tumors from resistant to sensitive.
To unravel the biological drivers of gemcitabine

response in PDAC, we determined the transcriptomic
dissimilarity between two preclinical models with defined
gemcitabine sensitivity (Supplementary Figure S1A). Hier-
archical clustering was applied to the expression matrix
of 90 patient-derived xenografts (PDXs) and 38 patient-
derived primary cell cultures (PDCs). Seven patients
with high transcriptomic similarity (HTS) between both
preclinical models were detected (Figure 1A). This was
confirmed by Spearman’s correlation, where HTS samples
displayed a higher coefficient than the low transcriptomic
similarity (LTS) group (0.48 ± 0.11 vs 0.13 ± 0.18, P <

0.001, Figure 1B). Next, we defined a transcriptomic
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component that captured the biological mechanisms
associated with gemcitabine response in the HTS group
using independent component analysis (ICA). The
selected component had to meet two conditions: (1) be
able to capture PDC gemcitabine response and (2) have a
homologous component into PDX biological latent spaces.
ICA2 component displayed a high correlation with gem-
citabine response in PDCs measured by the area under
the curve (AUC, r = −0.93, P = 0.003, Figure 1C). Then,
we determined the ICA2 inter-model stability into PDX
biological components. ICA4 component extracted from
the HTS-PDXs showed a high correlation with ICA2 (r =
0.93, P = 0.003, Figure 1D). The PDC-selected component
was refined, reducing the gene number in intervals of 1
standard deviation until we achieved a higher correlation
coefficient in the remaining 31 PDC samples (r = −0.43,
P = 0.010, Figure 1E). This resulted in a reduced ICA2
component with 99 high contributive genes (GemCore).
The GemCore score was validated in an independent
cohort of 13 PDX samples (r=−0.63, P= 0.010, Figure 1E),
14 patient-derived organoids (PDOs, r = −0.70, P = 0.003,
Figure 1E), and 11 commercial cell lines (CCL, r = −0.61,
P = 0.027, Figure 1E).
Additionally, GemCore was validated in two external

cohorts of patients: (1) a subset of 80 patients treated with
gemcitabine as an adjuvant from the cancer genome atlas
(TCGA) and (2) 305 patients from the study byNicolle et al.
[5] where 170 patients were treated with adjuvant gemc-
itabine and 135 without a reported treatment. GemCore+
discriminated the higher survival of patients in the
gemcitabine-treated group in the TCGA (Log-rank test P=
0.035 Supplementary Figure S1B) and Nicolle et al. cohorts
(Log-rank test P = 0.002, Supplementary Figure S1C). The
median overall survival (OS) of the TCGA GemCore+
patients was 24.6 months [95% confidence interval (CI)
= 21.7 months-not reached], while in the Nicolle et al.
cohort the median OS was not reached (95% CI = 50.6
months-not reached) for the GemCore+ patients treated
with gemcitabine. The median disease-free survival (DFS)
of the GemCore+ patients who received gemcitabine
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in the Nicolle et al. cohort (38.6 months, 95% CI = 19.3
months-not reached) was higher than the other groups
(P = 0.001, Figure 1F). Cox proportional hazard model for
overall survival showed a strong interaction between the
GemCore stratification and gemcitabine treatment. TCGA
GemCore- patients displayed a hazard ratio (HR) of 2 (95%
CI = 1.10-3.90, P = 0.035, Supplementary Figure S1D), and
in the Nicolle et al. cohort GemCore+ patients treated
with gemcitabine showed a HR for OS of 0.45 (95% CI =
0.27-0.73, P = 0.001, Supplementary Figure S1E) and for
DFS of 0.5 (95% CI = 0.32-0.79, P = 0.003, Figure 1G). In
contrast with previous reports [5–7], GemCore+ patients
were detected in both classical and basal-like subtypes and
were distributed across the pancreatic adenocarcinoma
molecular gradient (PAMG) in TCGA (Supplementary
Figure S1F-G) and Nicolle et al. cohorts (Supplementary
Figure S1H-I). No association was found between the gem-
citabine response and the mutational profile of KRAS and
TP53 (Supplementary Table S1). To identify the biological
mechanisms associated with the gemcitabine response, we
analyzed the pathways related to the gemcitabine-resistant
phenotype. Pathway enrichment analysis on the GemCore
revealed a significant role of detoxification pathways
(Figure 1H-I) as determinants of gemcitabine response.
Among them, glucuronidation was the only pathway with
potential targets able to be modulated (Supplementary
Table S2).
UGT1A expression and enzymatic activity were mea-

sured in 14 PDCs by immunofluorescent and fluoromet-
ric assays, respectively. PDCs showed high intra- and

inter-heterogeneity in the percentage of positive cells for
the UGT1A family, ranging from 90% to not detectable
(Supplementary Figure S2A). UGT1A enzymatic activity
was correlated positively with the percentage of posi-
tive cells (r = 0.82, P < 0.001, Supplementary Figure
S2B) and the gemcitabine response (r = 0.76, P < 0.001,
Supplementary Figure S2C), suggesting an association
between the UGT1A family and the PDC resistant pro-
file. The association between UGT1A and gemcitabine
resistance was evaluated in vitro using two specific UDP-
glucuronosyltransferase (UGT) inhibitors, demethylzey-
lasteral [8] (T-96) and hecogenin [9]. Fifteen PDCs were
assessed in a cotreatment setting with two non-cytotoxic
concentrations for each UGT inhibitor (Supplementary
Figure S2D). T-96 and hecogenin displayed a strong sensi-
tization effect on gemcitabine at the highest concentration
of the inhibitors (25 and 12.5 μmol/L, respectively), and
this effect was negatively correlated with the PDC UGT
activity for both T-96 (r = −0.80, P < 0.001, Supplemen-
tary Figure S3A) and hecogenin (r = −0.76, P < 0.001,
Supplementary Figure S3B). Because T-96 and hecogenin
are not used in the clinics, and their UGT inhibition effect
is isoform-dependent, we studied the effect of diclofenac,
an unspecific pan-UGT inhibitor broadly utilized clini-
cally [10]. Diclofenac’s sensitization effect on gemcitabine
was assessed in a subset of six (3 resistant and 3 sensi-
tive) PDCs.Diclofenac improved the gemcitabine cytotoxic
activity in the resistant PDCs (P= 0.011) but not in the sen-
sitive ones (Figure 1J, Supplementary Figure S3C). These in
vitro observations were validated in PDXs, where the UGT

F IGURE 1 Derivation and validation of a gemcitabine-response component. (A). PDX and PDC agglomerative hierarchical clustering of
transcriptomic data unravel 7 patients with high transcriptomic similarity (HTS, PDAC028T, PDAC031T, PDAC054T, PDAC083T, PDAC087T,
PDAC089T and PDAC091T). (B) Boxplot of Spearman correlation coefficients shows a high correlation between PDXs and the corresponding
PDCs in the HTS patients (0.48 ± 0.11) compared with the low transcriptomic similarity group (LTS, n = 31), which displayed a coefficient of
0.13 ± 0.18 (P < 0.001). (C) Identification of ICA2 component as gemcitabine-response component by independent component analysis on the
7 HTS PDCs and Spearman correlation with the AUC as selection parameter (r = −0.93, P = 0.003). (D) ICA2 sample contribution correlates
positively with the ICA4 component extracted from the 7 HTS PDXs (r = 0.93, P = 0.003). (E) Scatterplots representing the correlation
between the projected ICA2 and the response to gemcitabine measured by AUC, with Spearman test in an independent cohort of 31 PDCs (r =
−0.43, P = 0.010), 13 PDXs (r = −0.63, P = 0.010), 14 PDOs (r = −0.70, P = 0.003) and 11 CCLs (r = −0.61, P = 0.027). (F) Nicole et al., cohort
(n = 305) showed a significant patient stratification following the GemCore signature for disease-free survival (DFS). GemCore+ patients
treated with gemcitabine showed a median DSF (38.6 months, 95% CI = 19.93-Not reached) higher than other groups (G) Nicolle et al. cohort
GemCore+ patients treated with gemcitabine showed a DFS hazard ratio of 0.5 (95% CI = 0.32-0.79, P = 0.003). (H) GemCore pathway
enrichment analysis shows an association between drug detoxification mechanisms, such as glucuronidation (FDR < 0.001), phase II
conjugation of compounds (FDR < 0.001), and biological oxidations (FDR < 0.001) with gemcitabine resistance. (I) GemCore String
enrichment analysis shows significant protein-protein interactions (PPI) between the UGT proteins (J) The IC50 after the treatment with
diclofenac, observing a significant reduction in the IC50 in the resistant PDCs at 25 μmol/L. (K) UGT1A expression measured by
immunofluorescence in a set of PDX samples distributed along the gemcitabine response profile, displaying a range from 85% to no detectable
number of cells. Scale bar: 200 μm. (L) Spearman correlation of UGT activity and percentage of resistance in a set of fifteen PDXs (r = 0.79,
P < 0.001). (M) Tumor growth curves for six PDXs (3 resistant and 3 sensitive) treated with vehicle, gemcitabine, diclofenac, or diclofenac plus
gemcitabine. Resistant PDXs (PDAC076T, PDAC082T, and PDAC085T) treated with diclofenac and gemcitabine show a significant reduction
in tumor volume compared with gemcitabine alone. (N) Box plot of UGT activity levels in resistant PDXs at the end time-point. *P < 0.05;
**P < 0.01; ***P < 0.001. Results are shown as means ± SD. Differences between two groups are calculated by the Mann-Whitney test.
Multi-group comparison is calculated by the Kruskal-Wallis test following Dunn’s test
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activity was correlated with the percentage of positive cells
(r = 0.96; P < 0.001, Figure 1K, Supplementary Figure
S4) and response to gemcitabine (Figure 1L). We observed
a reduction in tumor volume in the resistant PDXs co-
treated with gemcitabine and diclofenac compared with
gemcitabine alone (P < 0.001 at the endpoint, Figure 1M).
The tumor volume reduction was associated with a
decrease in theUGTenzymatic activity in the gemcitabine-
resistant PDXs (Figure 1N).These in vitro and in vivo
results demonstrated that UGT activity was associated
with gemcitabine resistance in PDAC, promoting faster
elimination of gemcitabine. Additionally, UGT inactiva-
tion switches PDAC gemcitabine response from resistant
to sensitive. However, we cannot discard that the observed
effect could be influenced by the diclofenac activity on
cyclooxygenase-1 and -2, which are the main targets of this
drug.
In conclusion, we found that glucuronidation was one

of the main mechanisms involved in gemcitabine resis-
tance in PDAC. Moreover, we proposed the combination
of diclofenac and gemcitabine as a transferable clinical
strategy to increase the gemcitabine anticancer activity in
resistant PDAC.
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