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Abstract

A novel order parameter @ for spin glasses is defined based on topological criteria and with a clear physical
interpretation. @ is first investigated for well known magnetic systems and then applied to the Edwards—Anderson +J
model on a square lattice, comparing its properties with the usual ¢ order parameter. Finite size scaling procedures are
performed. Results and analyses based on @ confirm a zero temperature phase transition and allow to identify the low
temperature phase. The advantages of @ are brought out and its physical meaning is established.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Despite over three decades of intensive work, the nature of the low temperature phase of two-dimensional
Edwards—Anderson (EA) [1] model for spin glasses remains controversial. It is agreed that a phase transition
occurs at zero temperature for a Gaussian distribution of bonds (GD) [2-5]. Similarly, for a symmetric £J
distribution or bimodal distribution (BD) of bonds, very convincing numerical evidence has been found that
there is no transition at finite temperature [5—11]. In most of these references, the authors do not use an order
parameter for characterizing the phase transition. On the other hand, data arising from other contributions,
which are based on the behavior of a standard overlapping order parameter, support the existence of a finite
critical temperature [12—14].

In this context, the main purposes of this paper are the following: (a) to show that the disagreement pointed
out in previous paragraph is related to the non-zero overlap of site-order parameters obtained for quite
distinct energy valleys; (b) to overcome this situation by proposing here a novel order parameter @, which is
quite drastic to characterize phases but still is general enough to coincide with usual descriptions
of ferromagnetic (F) and antiferromagnetic (AF) systems; (c) to apply @ to do a scaling analysis for
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two-dimensional EA systems including Binder cumulant [15]; (d) to confirm the assumption of the zero-
temperature phase transition for two-dimensional BD, thus reinforcing this result obtained by previously
quoted authors; and (e) to give a physical meaning to this finding by using the grounds on which @ is
based on.

The present work is organized as it follows. In Section 2, we introduce the model and define a novel order
parameter, @, very useful for spin glasses and other frustrated systems. Results of the simulation are presented
in Section 3. Finally, our conclusions are drawn in Section 4.

2. Model and basic definitions

Let us begin by very briefly introducing the system under study. Ising spin s; occupies ith site of a two
dimensional (square for simplicity) lattice. The interaction with the spin at site j is mediated by exchange
interaction J;. In the absence of magnetic field (which is the case for the scope of the present paper) the
Hamiltonian of such system can then be written as

H=Y Jyss, (D
)

where interactions {J;} are restricted to nearest neighbor couplings. In the F Ising model, J; = —J VY(i, ).
For the EA model, we will consider half of the bonds F, while the other half will be described by AF
bonds of the same magnitude, namely, J; = +J (J>0). A sample is one of the possible random dis-
tributions of these mixed bonds. For simplicity spins take values s; = &1, which can be equally denoted by
their signs.

Now, let us consider a configuration o defined by a collection of ordered spin orientations {s7}.
The usual EA order parameter ¢ is built up by means of overlaps between two configurations o and f§ and

takes the form

1 N
Gy =7 25 - 2
i

where N (= L x L) is the total number of spins.

For models in which the ground state is non degenerate after breaking ergodicity, such as the pure F case,
the distribution of g, values for the ground manifold (7" = 0) is trivial and it is given by delta functions at
4,5 = 1.0 and ¢,5 = —1.0. This also happens in general for all systems with non-degenerate ground level. But
this also applies to GD, where local fields have all different values at different sites, leading to a true minimum
energy for just one pair of opposite ground states. However, for the BD the local field assumes a few discrete
values only, which necessarily means highly degenerate ground manifolds leading to |g,5/<1.0, for a large
number of possible pairs of ground states. This distribution will have two broad symmetric maxima but it will
not vanish in the intermediate region [13].

On the other hand, a more detailed description based on a topological picture of the ground state of BD was
presented [16,17]. This framework allows us to define a state function with a clear physical meaning, which is a
good candidate to be a new order parameter for a phase transition. In fact, it has been reported an important
feature of the ground state, namely, at 7' = 0 there exist clusters of solidary spins (CSS) preserving the
magnetic memory of the system (solidary spins maintain their relative orientation for all states of the ground
manifold) [18]. The main idea of this work is to characterize the nature of the low temperature phase through
the CSS.

Let us consider a particular sample of any given size N. We denote by I',, any of the n CSS of the sample (x
runs from 1 to n). Calculations begin recognizing all of the CSS of each sample belonging to a set of 2000
randomly generated samples of each size. This process is closely related to finding the so-called ““diluted
lattice” that prevails after removing all frustrated bonds [19], so the algorithms designed for that purpose can
also be used here.

Let us first pick any arbitrary ground state configuration denoted by an asterisk (%) fixing one of the
possible relative orientations of the CSS, thus becoming a reference configuration. Then a local overlap
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corresponding to the configuration « in the xth cluster, of size N, can be defined as

= S ®
K jerc
where the sum runs over all spins in the cluster I', only. Thus, |¢%| = | indicates a fully ordered cluster;
otherwise |¢}|<1. The magnetic order of the sample is characterized by the set of overlaps, namely, {¢;}.
Under the occurrence of a phase transition, the new set {¢}} will determine uniquely the ergodic component of
the reached phase. This fact is a required characteristic for a well behaved order parameter [20].
We are now ready to define the new order parameter introduced in this paper. It is given by

¢ot=zlflc|¢)i|s (4)

where f,. = N,./Ny, being N; = ZZ:]NK’ (N;<N). From the definition it flows that for 7> T, the average
value of @,, namely, @, should be 0. Similarly, for 7'< T it should hold that 0<®<1, being ® =1 for T =0
only. It is important to emphasize that @, is a state function, which is an advantage over g,; defined in Eq. (2)
as an overlap between two configurations of the system.

The calculation of the new order parameter @, requires the previous determination of the set of CSS for
each considered sample. This procedure which was performed by using the numerical scheme introduced in
Ref. [21], is a computational limitation for going to larger system sizes. Once the ground manifold of each
sample is completely characterized after this procedure, the numerical calculations converge very quickly by
flipping the spins not present in the largest CSS only. The second run on each sample takes much less time
than the first one that is needed to find all CSS.

In the F Ising model there is a unique cluster of N solidary parallel spins at 7= 0. As it can be trivially
demonstrated, Eq. (4) leads to the magnetization per spin, which is the natural order parameter of such
system. Similarly, for the AF case we get the well-known order parameter defined as the magnetization
difference between the two possible interpenetrating sublattices. Finally, for GD, there also exists an unique
CSS in the ground state and the phase transition occurring in the system is completely described by the new
order parameter, Eq. (4), as well. So the new parameter retains all the properties of the well-known non-
degenerate systems.

Finally, the reduced fourth-order cumulant, introduced by Binder [15], can be calculated as

[(m*)]
3A[m2)*

where m is a given order parameter, and {(...) and [...] mean the spin configuration (thermal) average and the
bond configuration (sample) average, respectively. In general, the structure of the distribution of m affects the
behavior of the fourth-order Binder cumulant. Thus, for a trivial distribution, both |m| — +1 and U; — 2, as
T goes to zero. On the other hand, if the distribution is nontrivial, |m| tends to a value m° lower than 1, while
U, tends to a value U lower than % upon decreasing temperature.

)

L=1-

3. Results

Distribution functions for ¢,; and ®,, were obtained for BD by using a standard simulated-tempering
procedure’ [22,23] along with the well known Glauber’s dynamics [24]. For illustration purposes, we perform
calculations on 1000 samples of size 64 (8 x 8) at different temperatures ranging from 77=0.2 to T = 1.0.
(throughout this paper, kg/J = 1 without any loss of generality). The results corresponding to 7 = 0.31,
T =0.53 and T = 0.69 are presented in Fig. 1. As it is shown in part (a), the distribution of the new order
parameter, R(®,), exhibits a drastic behavior as 7T decreases. In part (b) it is shown how the corresponding
curves for r(|q,4|) have a broad maximum over the plotted range and r(0) >0. These undesired characteristics
for this order parameter remain even at low temperatures.

Tt must be emphasized that it is not necessary a simulated-tempering scheme for calculating the new order parameter, ®.
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Fig. 2. Cumulant U.(T) plotted versus T for various lattice sizes as indicated. The inset zooms the area indicated by a dashed frame.

In Fig. 2, U(T), built up from R(®,) distribution, is presented for different lattice sizes ranging from
N =16 to 144 and each point was calculated by averaging over a set of 2000 samples. With the help of the
inset, it is observed that the curves do not intersect each other as a direct indication of the absence of a phase
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transition for finite temperature, at least for the sizes considered here. Eventually we are not free from finite
size considerations yet as it has been recently proposed that at least samples with L = 50 should be reached
when conventional parameters are used [25]. However, using a more drastic parameter like the one proposed
here, a faster convergence towards large L values is expected. It is clear that all curves go to % as T — 0, which
reinforces the robustness of Eq. (4). On the other hand, this property is not followed by cumulants obtained
from other overlapping order parameters. This is the case of Fig. 7 in Ref. [13], where it is possible to think
that the reported crossing of the cumulants of ¢ arises from the dependence of U4 on size. In this contribution,
the authors reported a critical temperature different from zero, 7, =~ 0.23.

Finite-size scaling [15] predicts that all curves in a figure such as Fig. 2, should collapse onto a single one
when using (T — T,)L'"" as independent variable, being 7', the critical temperature for the transition and v an
appropriate critical exponent. Upon choosing 7. = 0 and the exponent v is taken as v = 2.63 &+ 0.20, the
standard universal behavior for U, (T) is obtained as shown in Fig. 3. This is an independent confirmation of
previously reported results [6,26-28].

The following two parameters were also measured as each sample was solved exactly: (a) The mean fraction
of spins, P = [N,]/N, belonging to any CSS; and (b) The fraction of spins in the largest CSS p = [N/]/N,
where N, is the number of spins in the largest CSS. Fig. 4(a) shows that while P remains rather constant, p
clearly decreases with size and the stabilizing role of the largest CSS is lost. The average number of CSS [n] as
function of size was also measured, finding that [n] grows linearly with N, as it is shown in Fig. 4(b). For
N >49, say (when small size effects do not play an important role), the following approximate law is obtained
[n] ~ 0.03N + 0.60.

The size dependence of a possible spin-glass phase can be described in the following terms. For small sizes
(N <49 say) most of solidary spins are grouped in one large cluster stabilizing a spin-glass phase. As size
grows, the number of CSS increases linearly with N (or quadratically with L), while the relative size of the
largest CSS diminishes. This can be visualized as if the original lattice would break into portions of relatively
smaller sizes, none of them large enough to stabilize a spin-glass phase. This is the reason for the numeric
result of Fig. 2, showing no intersection of curves for different sizes.

If the same procedure used here for the symmetric case is applied to different concentrations of F and AF
bonds, a stable phase is found in the extremes of high and low concentrations of F bonds in correspondence
with results already reported in the literature [29,30]. As the relative concentration of F bonds varies the
behavior of P and [n] is very similar to that shown in Fig. 4. However, p tends to be constant for very
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Fig. 3. Scaling plot of U, against (T — T.)L"", with T. = 0 and v = 2.63 % 0.20.
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Fig. 4. (a) P and p and (b) the growing of [n] as a function of the lattice size, respectively.

asymmetric distributions of £J bonds. The last statement indicates the presence of an infinite CSS in the
thermodynamical limit, which is associated to a stable phase. These results are not shown graphically in the
present paper.

4. Conclusions

A new order parameter @ has been introduced and applied to the study of magnetic systems. It proves to be
particularly essential for characterizing degenerate systems such as Ising-like models with bimodal
distribution. Parameter @ is well behaved, having all desired properties for a drastic order parameter. This
behavior is based on the properties of CSS. When this order parameter is used for systems with BD, properties
similar to order parameters for non-degenerate systems are found. Then, the characterization of magnetic
phases after using the scaling techniques of cumulants becomes unambiguous. In this way it was shown that
the two-dimensional Edwards—Anderson model exhibits a phase transition at 7. = 0, with a critical exponent
v =2.63 +0.20.

The identification of all CSS for each sample is the bottleneck in the present computational scheme. This
procedure is very time consuming for large lattice sizes. The extra time needed for finding all CSS is well paid
by the better precision achieved in the characterization of the phase, and the elimination of overlaps in the new
order parameter, thus making the identification of the ergodic valley reliable.

The characteristics of this new order parameter make it also useful for other frustrated systems, where large
overlaps occur due to the complex energy valley. The extension of the use of the parameter @ to other kind of
problems is clearly foreseen. For instance, it can be the key element (i) to describe the phase diagram for the
asymmetric distribution problem around the critical concentration of ferromagnetic (or antiferromagnetic)
bonds of ~ 0.1 and (ii) to study the critical behavior of 3D Ising spin glasses. This task requires serious
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improvements in the numerical techniques used in order to get access to large lattice sizes. Work along this line
is in progress.
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