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INTRODUCTION

Many marine mammals undergo clear differences
in foraging behaviour during their life as a result of
changes in their physiology, foraging skill, energy
requirements at different stages, or differences in
experience when a learning period is required for the
successful use of a particular foraging tactic (Heit -
haus & Dill 2008). In eared seals, the capacity to
exploit demersal prey is linked to body size, as it is a
major determinant of the ability to dive deeper and
longer, and to handle large prey (Costa et al. 2004,
Drago et al. 2009a, Weise et al. 2010). As a conse-

quence, opportunistic foragers may increase the con-
sumption of benthic prey as they grow (Drago et al.
2009a, Weise et al. 2010), although such ontogenetic
dietary change does not always occur and some spe-
cies forage epipelagically throughout their life (Orr et
al. 2011). Most fur seals in the genus Arctocephalus
indeed are pelagic foragers (Majluf 1989, Acuña &
Francis 1995, Reid et al. 2006, Aurioles-Gamboa &
Camacho-Ríos 2007, Franco-Trecu et al. 2012, Páez
Rosas et al. 2012, Makhado et al. 2013, Franco-Trecu
et al. 2014, Lalas & Webster 2014), probably because
their small body size limits oxygen stores and hence
reduces time underwater and the chance of captur-
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ing demersal prey (Gentry et al. 1986, Kooyman
1989, Costa 1991, Costa et al. 2004). The exceptions
are the 2 fur seal subspecies with the largest body
size within the genus: A. pusillus pusillus and A. p.
doriferus (Arnould 2008), which exploit prey mainly
associated with the bottom (Stewardson 2001, Page
et al. 2005). In addition, the foraging habitat can also
be a key component of the foraging behaviour. For
instance, benthic prey remain outside the scope of
seal species that forage beyond the continental shelf
(Lewis et al. 2006, Hückstädt et al. 2007).

The South American fur seal Arctocephalus aus-
tralis (Zimmermann, 1783) breeds from Uruguay to
Peru (Vaz-Ferreira 1982). In the south-western At -
lantic Ocean, the species forages both on the conti-
nental shelf and beyond (Pinedo 1986, 1998, Thomp-
son et al. 2003, Laptikhovsky 2009, Dassis et al.
2012), and relies primarily on small pelagic fishes,
squids and invertebrates (Strange 1983, 1992, Naya
et al. 2002, Oliveira et al. 2008, Franco-Trecu et al.
2012, Baylis et al. 2014, Vales et al. 2014). However,
nothing has been published from Patagonia, where
ca. 20000 ind. congregate on a few islands (Svendsen
et al. 2013, Crespo et al. 2015) to take advantage of
the high marine productivity of the region (Acha et
al. 2004, Rivas et al. 2006, Lutz et al. 2010). Further-
more, the San Matías Gulf in northern Patagonia has
been proposed as a potential foraging area during
the post-breeding season for South American fur
seals moving between Uruguayan and Patagonian
breeding colonies (Svendsen et al. 2013). Regarding
dietary ontogeny of this species, information is scarce
but indicates a nursing period that lasts be tween 8
and 12 mo (Vaz-Ferreira & Ponce de León 1984,
1987), where pups do not incorporate solid foods, and
nutritional needs are fully covered by maternal milk
(Ponce de León 1984). After an abrupt weaning, the
first phase of nutritional independence is charac-
terised by early predation on squid and fish (Gerpe et
al. 2009). For this species, ontogenetic dietary
changes in subsequent age classes have not been
investigated, but the use of neritic habitats suggests
that consumption of demersal prey may increase
with age and body size (Drago et al. 2009a, Weise et
al. 2010).

Combining traditional dietary methods (i.e. stom-
ach content or scat analyses) with stable nitrogen and
carbon isotope (δ15N and δ13C) analysis provides
improved resolution in the interpretation of trophic
interactions (Post 2002). Whereas the former allow a
precise taxonomic description of the prey consumed
(Hobson & Wassenaar 1999), the latter can reveal
summarised trophic information over a broader time

and space window (Martin et al. 2011). Stable nitro-
gen-15 and carbon-13 isotope analysis is based on a
predictable relation between the isotopic composi-
tion of a consumer and its prey (DeNiro & Epstein
1978, 1981). For aquatic organisms, δ15N values can
provide data on trophic level (Minagawa & Wada
1984, Post 2002) and feeding area (Chouvelon et al.
2012) while δ13C values can reveal information on
feeding locations, including the relative use of ben-
thic vs. pelagic and coastal vs. oceanic prey (Hobson
et al. 1994, France 1995). This general pattern was
found to be true for the northern Patagonia marine
ecosystem, where benthic prey are more enriched in
both 15N and 13C than pelagic ones (Forero et al.
2004, Drago et al. 2009a,b). Further, this approach
has proved to be a reliable tool for evaluating ontoge-
netic dietary shifts in many eared seals species (Hob-
son & Sease 1998, Newsome et al. 2006, Drago et al.
2009a, Orr et al. 2011, Kernaléguen et al. 2012).
Thus, some of the most important events in the life of
mammals (e.g. nursing, weaning and feeding) are
reflected in the isotopic composition of its tissues. For
instance, during lactation δ15N values in crease
because mothers catabolise their body tissues to syn-
thesise milk, placing sucking pups one trophic level
higher than lactating females; at the same time, δ13C
values decrease because pinniped milk is ex tremely
rich in 13C-depleted lipids compared to the piscivo-
rous diet of weaned animals (Hobson & Sease 1998,
Newsome et al. 2006). In turn, weaning was identi-
fied in vibrissae of subantarctic fur seals Arcto-
cephalus tropicalis and southern elephant seals
Mirounga leonina as a sudden drop in δ15N values
(Kernaléguen et al. 2012, Walters et al. 2014).

This study aims to evaluate the ontogenetic dietary
changes in South American fur seals in northern and
central Patagonia through stable isotope analysis.
However, because female fur seals are infrequently
found stranded in the study area, the present study is
focused only on males. Two different ap proaches
were used: (1) a population-level (cross-sectional) ap-
proach using bone tissue of individuals of different
age categories; and (2) an individual-level (longitudi-
nal) approach using vibrissae that were serially sam-
pled all along their length from yearling, juvenile,
subadult and adult fur seals. Further, comparison of
the isotopic values of bones and vibrissae can poten-
tially reveal dietary information over multiple tempo-
ral scales. Bone collagen is a slow turnover tissue
which in marine mammals is expected to integrate
stable isotope ratios over several years (Riofrío-Lazo
& Aurioles-Gamboa 2013) and acts as a long-term in-
tegrator of isotopic fluctuations (Schoe ninger & De -
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Niro 1984, Lee-Thorp et al. 1989, Hirons et al. 2001a).
On the other hand, otariid vibrissae are synthesised
rapidly from the proximal end inside the bulb. Since
keratin is metabolically inert and is not resorbed fol-
lowing synthesis, the biochemical composition of vib-
rissae reflects the diet at the time of their growth
(Hobson 1999, Cherel et al. 2009); besides, otariid
vibrissae grow continuously at a constant rate and are
not shed (Hirons et al. 2001b). Therefore, by compar-
ing the isotopic values along the length of vibrissa
with those of potential prey, shifts in resources and
foraging habitat can be interpreted for the temporal
span depicted by the growth of the vibrissa (Hirons et
al. 2001b). In brief, while the use of stable isotope
 ratios in bone samples is an adequate method to
 assess potential dietary changes of a predator at a
population level over long time scales (Schoeninger
& DeNiro 1984, Lee-Thorp et al. 1989, Hirons et al.
2001a), vibrissae allow the reconstruc tion of the
trophic history of an individual with a monthly resolu-
tion for several consecutive years (Hirons et al. 2001b,
Cherel et al. 2009, Kernaléguen et al. 2012).

MATERIALS AND METHODS

Sampling

Sixty-one skulls of male South American fur seals
found dead and stranded along the Atlan tic coast of
northern and central Patagonia (approximately
bounded by 41° and 46° S) from 1980 to 2013, were
sampled from the collection of the Centro Nacional
Patagónico (Puerto Madryn, Argentina). In order not
to damage the skulls, a small fragment of maxillo-
turbinal bone from the nasal cavity was used for
 isotopic analysis (Drago et al. 2009b). Bone samples
were stored dry until analysis. In addition, 9 dead
stran ded individuals of male South American fur
seals (2 yearlings, 2 juveniles, 1 subadult and 4
adults) were collected from 2007 to 2011, in northern
and central Patagonia. From each individual, the
largest vibrissa was chosen and extracted from its
root (Stegall et al. 2008). Tissue debris coming from
the vibrissae follicle were removed with a scalpel
blade (Lewis et al. 2006). Vibrissae were hand-
washed with running water, dried at room tempera-
ture and stored dry until analysis.

Potential prey of South American fur seals were
identified from stomach content (Crespo et al. 2008)
and scats (n = 487) collected on central Patagonia
(Arce and Rasa islands) during the period 1999 to
2009 (E. A. Crespo unpubl. data). According to these

surveys, the most important prey were Argentine
shortfin squid Illex argentinus, Argentine anchovy En -
graulis anchoita, Argentine hake Merluccius hubbsi
and Patagonian squid Loligo gahi. Secondary prey
were banded cusk-eel Raneya brasiliensis, Argentine
red shrimp Pleoticus muelleri, lobster krill Munida
gregaria morph subrugosa and Notothenioid rock-
cods Patagonotothen spp., among others. Accor -
dingly, these prey species were sampled from Janu-
ary 2006 to April 2010 from this region for isotopic
analysis. White dorsal muscle was sampled for fish,
muscle for shrimp, and mantle for squid; whereas in
the case of lobster krill due to its small size the whole
body was sampled. All samples were stored in a
freezer at −20°C until analysis. Some of these isotopic
values for potential prey targeted by South American
fur seals have already been published in a previous
work (Drago et al. 2009a,b). No living animals were
manipulated during this study, as fur seals were
found dead on beaches and prey samples were
obtained from fishery discards.

Age determination

Individual ages were estimated from counts of
growth layer groups (GLGs; Scheffer 1950) in the
dentine and/or in the cementum of teeth. Three dif-
ferent techniques were used for age determination:
direct counting of external rings on canine root, thin
ground sections of undecalcified teeth, and decalci-
fied and stained thin sections made with a freezing
microtome. The technique employed depended on
the availability of teeth from each individual (can -
ines, incisors or post-canines) and it was as sumed
that one GLG is deposited per year (Schiavini et al.
1992, Crespo et al. 1994, Molina-Schiller & Pinedo
2004). Teeth were read 3 times by at least 2 readers.
Subsequent readings by the same reader were
spaced by at least 1 wk. When readings were coinci-
dental, that age was assigned to the individual.
Whenever counting differed by less than 10% of the
average of the 3 reads, the mean of the readings was
taken as the age of the specimen (Calzada et al.
1994). Where counts exceeded this arbitrary limit,
teeth were re-examined or another tooth was pre-
pared.

Once the age was determined, individuals were
categorised as yearling (from 1 to 1.9 yr), juvenile
(from 2 to 4.9 yr), subadult (from 5 to 7.9 yr) and adult
(from 8 to 19 yr) based on literature (Vaz-Ferreira &
Ponce de León 1984, Batallés et al. 1990, Borella et al.
2013).
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Stable isotope analysis

Maxillo-turbinal bone and prey samples were
dried in a stove at 60°C for 36 to 48 h and ground to a
fine powder with a mortar and pestle. Lipids were
extracted with a chloroform/methanol (2:1) solution
(Bligh & Dyer 1959). Since bone samples contain a
high concentration of inorganic carbon that may add
undesirable variability to δ13C (Lorrain et al. 2003),
they were treated by soaking for 24 h in 0.5N hydro -
chloric acid (HCl) to decarbonise them (Newsome et
al. 2006). Given that HCl treatment may affect δ15N
(Bunn et al. 1995), each sample was divided into 2
subsamples: one was used for 13C analysis after de -
carbonising and the other one was used for 15N ana -
lysis without decarbonising.

Vibrissae were washed in a chloroform/methanol
(2:1) solution and cleaned in distilled water for 5 min in
an ultrasonic bath to eliminate any surface conta mi -
nants (Newsome et al. 2010a). The entire vibrissae,
from the newest part synthesised within the vibrissae
follicle to the tip, were measured, dried in a stove at
60°C for 36 h and cut into 3 mm long consecutive sec-
tionsstartingfromtheproximalend(Chereletal.2009).

Approximately 1 mg of dried bone, 0.30 mg of prey
tissues, and an average weight of 0.35 mg of the entire
lengthofeach3mmvibrissasectionwereweighedinto
tin cups. Weighed samples were combusted at 900°C,
and analysed in a continuous flow isotope ratio mass
spectrometer. Most samples were analysed at the
 Centres Científic i Tecnològics of the University of
Barcelona (CCiT-UB), where international isotope se -
c ondary standards given by the International Atomic
Energy Agency (IAEA) were used for calibration at a
precision of 0.3‰ for nitrogen and 0.2‰ for carbon.
However, a few bone  samples were analysed at the
Instituto de Geo cronología y Geología Isotópica
(INGEIS-CONICET/ UBA), where international iso-
topesecondarystandardsgivenbyIAEAwereusedfor
calibration at a precision of 0.2‰ for both nitrogen and
carbon. Hence, to test for possible biases between
these 2 laboratories, 5 bone samples were analysed in
both. Stable isotope abundance is expressed in stan-
dard δ notation relative to carbonate Pee Dee Belem-
nite and atmospheric nitrogen. Carbon to nitrogen
(C:N)massratiowasusedasproxyfordataquality (e.g.
adequate lipid extraction; Newsome et al. 2010b).

Data analysis

Before performing any statistical tests, the ade-
quacy of their assumptions were verified by means of

a modified Shapiro-Wilks test for normality and by
checking plots of standardised residual vs. fitted val-
ues for homoscedasticity.

Bones

Bone samples were collected during the past 4
decades (1980−2013). To discard any temporal trend
that may interfere with the interpretation of the onto-
genetic series, the relationship between isotopic val-
ues (δ15N and δ13C) and the stranding year was tested
for the age categories best represented in the sample
(i.e. subadult and adult male fur seals) by Pearson
correlation analysis.

Except for yearling male fur seals, which are ex -
pected to be influenced by the persistence of the
sucking signal (Newsome et al. 2006), the relation-
ship between isotopic values (δ15N and δ13C) and age
was investigated for individuals of older age cate-
gories by Spearman rank correlation analysis.

The relative contributions of potential prey to the
diet of subadult and adult male fur seals were calcu-
lated using the Bayesian mixing model SIAR (Stable
Isotope Analysis in R; Parnell et al. 2008). Through
application of trophic discrimination factors (TDFs) to
consumer isotopic values, the isotopic composition of
fur seal tissues were compared directly to those of its
diet. Stable isotope values of prey and those of fur
seals corrected by the corresponding TDFs were
plotted previously to the selection of the potential
prey to run mixing models (Phillips et al. 2014). Esti-
mated TDFs from diet to bone reported for adult
males of the species were used (δ15N = +5.1‰; δ13C =
+3.6‰; Vales et al. 2014). Maximum errors measured
from the internal laboratory standards (0.3 for δ15N
and 0.2 for δ13C) were used to set the uncertainty
(standard deviation) of the TDFs. Juveniles were
excluded from the mixing model analysis due to the
uncertainty in the TDFs, which is expected to change
between fast growing (e.g. juvenile) and non-grow-
ing (e.g. adult) animals (Martínez del Rio et al. 2009).

Vibrissae

Fur seal vibrissae isotopic values were compared to
those of main prey. Since no TDFs from diet to vib-
rissa are available for South American fur seals, cor-
rection was made by averaging δ15N and δ13C diet
vibrissa TDFs experimentally determined for captive
seals and sea otters (Hobson et al. 1996, Newsome et
al. 2010a), thus resulting in the averaged TDFs from
diet to vibrissa of +3.15 ± 0.5‰ for δ15N and +2.7 ±
0.7‰ for δ13C used in this study. Mixing model SIAR
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were run to estimate the relative contribu-
tion of potential prey to the diet of subadult
and adult male fur seals.

It is known that some eared seals species
show consistent annual isotopic oscillations
(δ15N and δ13C) along the length of their
 vibrissae, revealing changes in prey items
and/or foraging areas (Hirons et al. 2001b,
Cherel et al. 2009, Kernaléguen et al. 2012).
Thus, to explore any periodicity in the iso-
topic oscillations of vibrissa in subadult and
adult male South American fur seals, the
Ïnon-parametric spectral method Fourier analysis and
autocorrelation functions were used; cross-correlation
analysis was used to test whether δ15N and δ13C oscil-
lated synchronously. Vibrissae of yearling and juve-
nile in dividuals were excluded from these analyses,
since they are likely to be influenced by the sucking
signal and weaning (Kernaléguen et al. 2012).

RESULTS

Bones

Stable isotope values of fur seal bone from the 2
laboratories did not differ significantly (Paired Wil -
coxon test, δ15N: mean difference = −0.15, p = 0.109;
δ13C: mean difference = 0.27, p = 0.507; N = 5). Fur-
ther, no temporal trend was found in the last 3 de -

cades between fur seals older than 5 yr      (subadult and
adults) and the stranding year (Pearson correlation;
δ15N: r = 0.02, p = 0.886; δ13C: r = −0.05, p = 0.762; N
= 43). Thus, bone samples were pooled and consid-
ered suitable for exploring potential ontogenetic
dietary changes.

The δ15N and δ13C values of skull bone ranged from
+16.5 to +23.8‰ (mean = +20.4‰, SD = 1.4) and from
−16.2 to −12.3 ‰ (mean = −13.7‰, SD = 0.7), respec-
tively. Carbon to nitrogen (C:N) mass ratio ranged
from 2.7 to 3.1 (mean = 2.8, SD = 0.1; Table 1). The
stable isotope values of skull bone of each individual
are shown in Fig. 1. The δ15N values of yearlings were
extremely variable due to the isotopic signature of tis-
sues from the youngest individuals. When yearlings
where excluded from the ana lysis, both δ15N and δ13C
increased significantly with age (Spearman rank cor-
relation; δ15N: rs = 0.36, p = 0.01; δ13C: rs = 0.37, p =

0.01; N = 49). However, consider-
ing the low correlation coeffi-
cients and the similarity between
the isotopic values of subadult
and adult fur seals (Table 1), the
main change in diet seem to
 occur between  juvenile and
subadult fur seals.

When subadult and adult
males were plotted in the isotopic
landscape of northern and cen-
tral Patagonia, after correcting
the δ15N and δ13C values for
diet-to-bone discrimination, they
were located well within a poly-
gon formed by Argentine short -
fin squid, ancho vy, Patagonian
squid, juvenile hakes, red shrimp
and lobster krill (Fig. 2). Con-
versely, benthic fish re mained
outside the isotopic niche ex-
ploited by all age categories of
fur seals. Regarding juvenile fur
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Category Age range N δ13C (‰) δ15N (‰) C:N 
(yr) mass ratio

Yearling 1−1.9 12 −14.4 ± 0.8 20.5 ± 2.4 2.9 ± 0.1
Juvenile 2−4.9 6 −14.6 ± 0.9 19.3 ± 1.3 2.9 ± 0.1
Subadult 5−7.9 11 −13.7 ± 0.6 20.4 ± 1.0 2.8 ± 0.1
Adult 8−19 32 −13.4 ± 0.4 20.6 ± 1.0 2.8 ± 0.1

Table 1. Stable isotope values of δ13C, δ15N and the C:N mass ratio
(mean ± SD) of the skull bone of the 4 age categories of male South
American fur seals Arctocephalus australis from northern and central 

Patagonia

Fig. 1. Stable isotope values of (a) δ15N and (b) δ13C of skull bones of male Arcto-
cephalus australis (n = 61) divided by age categories
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seals, most of them lay outside the
mixing polygon, thus revealing the
consumption of unsampled prey,
or alternatively the TDF estimated
for adult fur seals is not well-suited
for this age class. Prey other than
benthic fishes were used to run the
SIAR model, though red shrimp
and lobster krill were grouped as
decapod crustaceans, due to their
similar isotopic signal and taxo-
nomic affinity (see Table 2). Mix-
ing models reveal ed that the an-
chovy and the 2 species of squid
contributed almost evenly to the
diet of subadult individuals. For
their part, adult male fur seals had
a more even diet, with Argentine
shortfin squid standings as the ma-
jor prey and a higher consumption
of crustaceans (Fig. 3).

250

Species Common name Ecological n δ13C (‰) δ15N (‰) C:N mass 
group ratio

Engraulis anchoitaa Argentine anchovy SPF 5 −17.9 ± 0.2 15.7 ± 0.8 3.1 ± 0.0
Merluccius hubbsi (<30 cm) Argentine hake SPF 4 −16.8 ± 0.2 16.6 ± 0.1 3.1 ± 0.0
Raneya brasiliensisa Banded cusk eel DBF 5 −15.3 ± 0.6 18.8 ± 0.5 3.0 ± 0.0
Patagonotothen spp. Notothenioid rockcods DBF 4 −15.9 ± 0.3 18.6 ± 0.2 3.1 ± 0.1
Illex argentinusa Argentine shortfin squid DPC 5 −17.0 ± 0.6 13.7 ± 0.8 3.0 ± 0.0
Loligo gahia Patagonian squid DPC 4 −17.6 ± 0.4 15.7 ± 0.6 3.0 ± 0.0
Pleoticus muelleri Argentine red shrimp DBCr 5 −15.9 ± 0.4 16.7 ± 0.3 2.9 ± 0.0
Munida gregaria morph subrugosa Lobster krill BCr 5 −15.7 ± 0.8 16.8 ± 0.3 3.3 ± 0.1
aStable isotope values taken from Drago et al. (2009a)

Table 2. Stable isotope values of δ13C, δ15N and the C:N mass ratio (mean ± SD) of the potential prey of Arctocephalus australis.
Sample size (n); ecological groups: small pelagic fish (SPF), demersal benthic fish (DBF), demersal pelagic cephalopod (DPC), 

and demersal benthic and benthic crustacean (DBCr and BCr, respectively)

Fig. 2. Isotopic landscape of the main prey (black dots, mean; whiskers, SD) of
male Arctocephalus australis and the stable isotope values (δ15N and δ13C) of bone
samples from juvenile, subadult and adult male fur seals after the corresponding 

trophic discrimination factors were applied

Fig. 3. Bayesian mixing model SIAR (Stable Isotope Analysis in R) analysis outcome based on bone samples showing the esti-
mated contribution of prey in the diet of (a) subadult and (b) adult male Arctocephalus australis. The mean contribution of each
prey is shown above each box-plot. Median 50%, 75% and 95% credibility intervals (respectively dark grey, mid grey and 

light grey boxes) of the posterior probability distributions of proportions in diet are shown
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Vibrissae

A total of 338 sections of vibris-
sae of South American fur seals
were analysed. The length of vib-
rissae varied from 72 to 141 mm
(24 to 47 sections, respectively).
Nitrogen and carbon stable iso-
tope values of vibrissae ran ged
from +12.3 to +20.6 ‰ (mean =
+18.1‰, SD = 1.4) and from −17.7
to −13.1‰ (mean = −14.8‰, SD =
0.8), respectively. Four missing
data values and 3 cases where
the C:N mass ratio was higher
than the expected values from
pure keratin (Newsome et al.
2010b) were replaced by aver-
aged values interpolated from
adjacent points. Mean carbon to
nitrogen (C:N) mass ratio ranged
from 2.9 to 3.0 (Table 3). After
correcting fur seal isotope values
to those of its potential prey
through diet to vibrissae TDFs,
subadult and adult fur seals lay
with in a polygon conformed by
Argentine shortfin squid, an-
chovy, Patagonian squid, juvenile
hakes, red shrimp and lobster
krill; whereas benthic fish show -
ed little contribution to the diet of
fur seals. In one case a vibrissa
section was extremely 13C-deple -
ted, escaping from the landscape
(Aa86; Fig. 4). Mixing models
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Sample Category Age Vibrissa No. of δ13C (‰) δ15N (‰) C:N mass 
ID (yr) length vibrissa ratio

(mm) sections

Aa69 Yearling 1.9 123 41 −15.4 ± 0.7 18.5 ± 1.8 2.9 ± 0.0
Aa70 Yearling 1.9 72 24 −15.8 ± 0.7 17.8 ± 2.1 2.9 ± 0.0
Aa71 Juvenile 3 93 31 −15.5 ± 0.7 17.0 ± 2.8 2.9 ± 0.1
Aa72 Juvenile 3 120 40 −15.2 ± 0.7 17.0 ± 0.6 2.9 ± 0.0
Aa84 Subadult 7 141 47 −14.4 ± 0.4 18.7 ± 0.5 2.9 ± 0.0
Aa58 Adult 13 108 36 −14.7 ± 0.3 18.4 ± 0.6 2.9 ± 0.0
Aa81 Adult 13 129 43 −13.8 ± 0.4 18.6 ± 0.7 2.9 ± 0.1
Aa85 Adult 13 132 44 −14.1 ± 0.2 18.9 ± 0.6 3.0 ± 0.0
Aa86 Adult 11 108 36 −14.2 ± 0.6 18.3 ± 0.7 2.9 ± 0.0

Table 3. Stable isotope values of δ13C, δ15N and the C:N mass ratio (mean ± SD) of 
vibrissae of yearling, juvenile, subadult and adult male Arctocephalus australis

Fig. 4. Isotopic landscape of the main prey (black dots, mean; whiskers, SD) of
male Arctocephalus australis and stable isotope values (δ15N and δ13C) of vibrissa
samples (3 mm long consecutive sections) from 1 subadult and 4 adult 

males after the corresponding trophic discrimination factors were applied

Fig. 5. Bayesian mixing model SIAR (Stable Isotope Analysis in R) analysis outcome based on vibrissa samples showing the
estimated contribution of prey in the diet of (a) 1 subadult and (b) 4 adult male Arctocephalus  australis. The mean contribution
of each prey is shown above each box-plot. Median 50%, 75% and 95% credibility intervals (respectively dark grey, light grey 

and white boxes) of the posterior probability distributions of proportions in diet are shown
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based on the isotopic values of vibrissae revealed that
this subadult fur seal (Aa84) had almost equal contri-
butions in its diet of small pelagic fishes and squids,
and a relatively low contribution of crustaceans. The
diet of adult fur seals showed a great contribution of
Argentine shortfin squid and an increased consump-
tion of crustaceans (Fig. 5).

The 2 yearlings (Aa69, Aa70) and 1 juvenile (Aa71)
showed similar δ15N and δ13C oscillation patterns
along their vibrissae. While δ15N exhibited high val-
ues at a very early age, followed by a sudden drop
and recuperation up to the range of diet isotopic
 values; δ13C mirrored this pattern, but showed low
values at a very early age (Fig. 6a). The simultaneous
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Fig. 6. Stable isotope values of δ15N and δ13C along the vibrissae of 2 yearling and 2 juvenile male Arctocephalus australis. Vib-
rissae are represented from tip (the oldest part of the vibrissa on the left) to base (the newest part of the vibrissa on the right).
Isotopic corrected values (δ15N and δ13C) of fur seals’ main prey are showed with a horizontal dotted line. For a better under-
standing of the time integrated by vibrissae, ages prior to the age of death are roughly indicated for each individual at the bot-
tom of each figure. (a) Overlapped isotopic values from 3 fur seals displaying a similar pattern (Aa69, Aa70 and Aa71). See
‘Discussion’ for an interpretation of nursing period, weaning and independent foraging. (b) Isotopic values from fur seal Aa72
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drop in δ15N and δ13C does not fit with the consump-
tion of prey reported here. On the other hand,
another juvenile fur seal (Aa72) displayed a different
pattern of isotopic oscillation along the length of its
vibrissa (Fig. 6b). For subadult and adult males,
Fourier analysis and autocorrelation functions
revealed that in a few cases there were consistent
periodic fluctuations for both δ15N and δ13C values
(Aa81 and Aa85), whereas synchronic oscillations
between δ15N and δ13C were detected in 3 of 5 cases
(Aa58, Aa81 and Aa84). However, only 1 adult male
(Aa81) showed both periodic fluctuations (every 16
sections) and synchronicity in its isotopic oscillations
(Table 4). For this individual, vibrissa recorded 2.7
oscillations; assuming an annual periodicity (see
‘Discussion’) it is possible to estimate a growth rate
for the vibrissa of 0.13 mm d−1, wherein each 3 mm
section integrated the isotopic signal of 22.8 d. Nev-
ertheless, all subadult and adult indivi duals ranged
mostly within the range of isotopic values of the main
prey (Fig. 7).

DISCUSSION

The isotopic landscape of the marine
ecosystem of northern Patagonia has been
described by Drago et al. (2009a,b) and
indicates that potential pelagic prey (e.g.
anchovy and squid) are depleted in both
15N and 13C as compared with potential
benthic prey (e.g. banded cusk eel). The
potential prey species in cluded in this
study followed the same pattern, with
pelagic feeders (e.g. juvenile hake) highly
depleted in 15N and 13C as compared with
benthic ones (e.g. rockcod). Decapod crus-
taceans (red shrimp and lobster krill) for-
age benthically in the region (Vinuesa &
Varisco 2007, Roux et al. 2009) and are
also 13C and 15N-enriched as compared
with pelagic small schooling fishes and
squids, but highly 15N-depleted when
compared with demersal fishes. Therefore,
variations in δ15N and δ13C values of bone
and vibrissa after weaning are expected to
mainly reflect shifts along the
benthic−pelagic gradient (Forero et al.
2004, Drago et al. 2009a,b), whereas
changes in trophic level are obscured by
the general higher δ15N values of demersal
prey as compared with pelagic ones.

Bone and vibrissa samples from South
American fur seals revealed a similar pat-
tern, as the collagen synthesised by year-

lings, and the keratin synthesised in the proximal
end of the vibrissa of yearlings and one juvenile,
were always 15N-enriched and 13C-depleted as com-
pared with those from older age classes. Such enrich-
ment in 15N and depletion in 13C has been previously
reported in other pinnipeds (Hobson & Sease 1998,
Newsome et al. 2006, Drago et al. 2009a, Orr et al.
2011, Kernaléguen et al. 2012, Walters et al. 2014)
and is caused by stable isotope discrimination from
the female to the pup during nursing (Newsome et al.
2006). The sucking signal may persist some time after
weaning in bone tissue due to a low turnover rate
(Newsome et al. 2006, Drago et al. 2009a). A 10 to
12 mo period was estimated for a complete turnover
of the sucking signal in the bone collagen of Califor-
nia sea lions Zalophus californianus after weaning
(Newsome et al. 2006). If this were the case for South
American fur seals (both species have similar nursing
periods; Vaz-Ferreira & Ponce de León 1984, 1987,
Newsome et al. 2006), the sucking signal should last
in bone up to an age of approx. 18 to 24 mo, with fur
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Sample Iso- Perio- Auto- Lag between Cross-
ID topic dicity correlation δ15N and δ13C auto-

ratios (no. of coefficient values (no. correlation 
sections) of sections) coefficient

Aa 84 δ15N 1 0.660*
2 0.370*

−1   0.36*
16 0.244*

0 0.48*
31 0.220*

1 0.39*
32 0.180*

9 −0.40*
δ13C 1 0.718*

2 0.417*

Aa 58 δ15N 1 0.351*
7 0.351*

14 0.442* 0 0.52*

δ13C 1 0.528*
2 0.341*

Aa 81 δ15N 16 0.400*

δ13C 1 0.645* 0 0.64*
2 0.362* 1 0.47*
16 0.238*

Aa 85 δ15N 1 0.454*
10 0.264 3 −0.38*
11 0.272* 4 −0.40*

δ13C 1 0.416* 8 0.43*
10 0.364*

Aa 86 δ15N 1 0.397*
27 0.202 – –

δ13C – –

Table 4. Autocorrelation and cross-correlation analyses to evaluate peri-
odicity and synchronicity in vibrissa δ15N and δ13C values of 1 subadult 

and 4 adult male Arctocephalus australis. *p < 0.05
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seals older than 2 yr showing exclusively the isotopic
signal of independent foraging. However, some fur
seals around 2 yr old had relatively high δ15N values,
suggesting a longer nursing period or a low bone
turnover for this species. In any case, the bone and
vibrissa proteins synthesised by most juveniles were
depleted in both 15N and in 13C as compared with
those from subadult and adult males. Most likely
juvenile fur seals feed on squid and fish (Gerpe et al.
2009), and the inconsistency between bone isotopic
values of juveniles and the consumption of local prey
reported here is likely to be caused by the lack of an

adequate trophic discrimination factor for juveniles,
which is expected to change between fast-growing
and non-growing animals (Martínez del Rio et al.
2009).

Previous research had already revealed a sudden
drop in the δ15N values following weaning in vibris-
sae of some pinniped species (Kernaléguen et al.
2012, Walters et al. 2014). In turn, a sharp accumula-
tion of heavy metals (mainly cadmium and mercury)
from sucking to weaned pups in South American fur
seals suggested a rapid transition from lactation to
predation on squid and fish (Gerpe et al. 2009).
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Fig. 7. Stable isotope values of δ15N and δ13C along the vibrissa length of 1 subadult and 4 adult male South American fur seals
Arctocephalus australis from northern and central Patagonia. Vibrissae are represen ted from tip (the oldest part) on the left to
base (the newest part) on the right. Corrected isotopic values (δ15N and δ13C) of main prey are shown by a horizontal dotted
line. For a better understanding of the integrated time by vibrissae, ages prior to the age of death were roughly indicated for 

each individual at the bottom of each figure

(Continued on next page)
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Except for one juvenile, the results reported here are
consistent with a sudden dietary change at weaning,
indicating an abrupt shift from milk to a solid diet.
However, the stable isotope ratios of vibrissae syn-
thesised immediately after weaning are inconsistent
with the consumption of local prey, as they are too
low. In this sense, Aguilar et al. (2014) have sug-
gested that fasting in marine mammals deprived
from access to freshwater is associated with a
decrease in the δ15N values of proteins. In addition,
different trophic discrimination factors may apply for
fast-growing animals (Martínez del Rio et al. 2009).
On the other hand, the sharp drop of the δ15N
recorded in the tissues of fur seals after weaning
might reveal migration to distant foraging grounds.
On the whole, the decrease of δ15N values associated
with weaning is likely to be affected by a combina-
tion of multiple factors and further research is
needed to clarify the reason for such a drop.

In any case, stable isotope values in bone and vib-
rissa suggested an age-related shift in diet after
weaning, with juvenile fur seals feeding on more
pelagic and possibly lower trophic level prey than
subsequent age categories. In turn, subadult and
adult males, similar in body size, did not differ in diet,
suggesting that body mass plays some role in the
ontogenetic dietary changes of fur seals, probably

allowing larger individuals to feed on pelagic prey of
larger size.

The SIAR model for both bone and vibrissa samples
indicated that the Argentine shortfin squid is the
most relevant prey for subadult and adult male fur
seals, as this species not only had the highest mean
feasible contribution to the diet in all cases, but also
the credibility interval excluded the probability of no
contribution to the diet. Conversely, the credibility
intervals of other prey included a zero contribution,
thus indicating there is a chance that some of the
other potential prey species were not actually con-
sumed. For subadult and adult male fur seals, the
contribution of Argentine shortfin squid and juvenile
hake was very similar. In contrast, the relevance
exhibited by the anchovy and the Patagonian squid
was slightly higher in the diet of subadults versus
adults, whereas the consumption of decapod crusta -
ceans was slightly higher in adults compared to
subadults. However, the contribution of Patagonian
squid to fur seal diet may be overestimated by the
model, as it has a quite similar isotopic signal to that
of the anchovy and the occurrence of Patagonian
squid beaks in scats is rather low (E. A. Crespo un -
publ. data). If this is the case, the anchovy would
have a larger contribution to the diet than that shown
by the present model. Conversely, the model attrib-
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Fig. 7 (continued)
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utes a greater importance to decapod crustaceans in
the diet than observed in scat analysis (E. A. Crespo
unpubl. data). In this sense, minor differences ob -
served between the isotopic results, and studies
based on scats and stomach contents, may be attrib-
utable to the biases inherent in each methodology
(see Vales et al. 2014). In addition, it is relevant to
consider spatio-temporal variations in isotopic signa-
tures of sampled prey. For instance, isotopic values of
juvenile hakes (<30 cm) collected for this study in
April 2010 at a latitude of 45° S varied greatly com-
pared to those of juvenile hakes collected in Febru-
ary 2006 at a latitude of 47°10’ S by Drago et al.
(2009a). As isotopic values of prey from both studies
(i.e. Drago et al. 2009a and this study) were used to
reconstruct the isotopic landscape of the marine eco-
system from northern and central Patagonia, such
differences in the isotopic values of any prey should
affect the SIAR analysis. 

In any case, for northern and central Patagonia,
evidence from stable isotope analysis of bone and
vibrissa samples (this study) is coincident with the
results obtained in stomach contents and scat analy-
ses (Crespo et al. 2008, E. A. Crespo unpubl. data),
indicating that Argentine shortfin squid, anchovy
and hake are the most relevant prey in the diet of fur
seals, with a marginal contribution of benthic fish.
Similarly, the diet ary importance of small pelagic fish
and squid was already recognised for Uruguayan fur
seals inhabiting the Río de la Plata and adjoining
areas (Naya et al. 2002, Franco-Trecu et al. 2012,
Vales et al. 2014). On the other hand, isotopic results
from the present study pointed out to decapod crus-
taceans as prey with some relevance in the diet. Both
red shrimp and lobster krill are available at shallow
depths (Boschi et al. 1992) and they are the most
abundant species in the bottoms of San Jorge Gulf
(Vinuesa 2005), adjacent to the fur seal rookeries
from Rasa and Arce islands. Despite the fact that lob-
ster krill has a lower energy density than red shrimp,
pelagic fish and squid (Ciancio et al. 2007), its small
size, its considerable composition of proteins and
lipids, and its ability to form large agglomerations,
turn it into a preferred prey for many predators (Vin-
uesa & Varisco 2007 and references therein), in -
cluding South American fur seals, as described off
the Falkland (Malvinas) Islands (Strange 1983, 1992)
and southern Chile (Rodríguez & Bahamonde 1986;
Vallejos 2010 quoted in Seguel et al. 2013).

These observations reinforce the idea that South
American fur seals are trophic generalists (Naya et
al. 2002), but capture primarily pelagic prey. In the
case of male fur seals from northern and central

Patagonia, pelagic squid and small pelagic fishes
constitute the bulk of the diet, but decapod crusta -
ceans may also contribute to adult fur seal diet. In
contrast to other species of eared seals, in which con-
sumption of benthic prey increases with age as a con-
sequence of improved diving skills (Drago et al.
2009a, Weise et al. 2010) or juveniles rapidly attain
the skills needed to consume adult prey types (Orr et
al. 2011), South American fur seals remain as pelagic
foragers throughout life and the diet of juveniles is
different from that of subadults and adults.

Some eared seal species show consistent isotopic
oscillations (δ15N and δ13C) along the length of the
vibrissae and are interpreted as annual movements
between isotopically distinct foraging areas (Hirons
et al. 2001b, Cherel et al. 2009, Kernaléguen et al.
2012). However, only one adult male South American
fur seal showed consistent periodic oscillations and
synchronicity in the δ15N and δ13C values of its vib-
rissa. Periodicity (every 16 sections) is well within the
range reported for adult male Antarctic fur seals
Arcto cephalus gazella breeding at Crozet Islands
(from 13 to 20 sections), interpreted as an annual pat-
tern (Cherel et al. 2009). Consequently, given that
the same methodology was employed in both studies
(i.e. 3 mm vibrissa sections) and the taxonomic simi-
larity of these species, it is reliable to assume an
annual periodicity in the isotopic values of this South
American fur seal vibrissa. Furthermore, the growth
rate of the vibrissa of this individual (0.13 mm d–1) is
also similar to that found in male subantarctic fur
seals (0.13 ± 0.02 mm d–1; Cherel et al. 2009). Never-
theless, be yond this individual, vibrissae oscillation
patterns in the remaining subadult and adult fur
seals were more variable, in some cases with no
 periodicity and/or synchronicity in the δ15N and δ13C
values.

The isotopic values of vibrissae from all subadult
and adult fur seals analysed in this study ranged well
within the isotopic values of potential prey from
northern and central Patagonia. In addition, the co -
incidence of δ15N and δ13C values in tissues that span
different periods (e.g. vibrissae and bones) can be
interpreted as a local use of food resources through-
out the year without movement of fur seals to other
foraging areas. Therefore, vibrissae isotopic oscilla-
tions may represent changes in prey consumption at
the same area (i.e. northern and central Patagonia)
instead of migrations to elsewhere; perhaps respond-
ing to changes in prey availability (Naya et al. 2002).
In this sense, the Argentine shortfin squid and the
anchovy, two of the main prey for fur seals, are
known to fluctuate spatio-temporally in the area
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(Brunetti et al. 1998, Hansen 2000). However, South
American fur seals might migrate along the south-
western Atlantic Ocean but such migration cannot be
traced using nitrogen-15 and carbon-13 stable iso-
topes due to the relative homogeneity of the isotopic
landscape throughout the continental shelf (McMa-
hon et al. 2013). In this regard, mean (±SD) stable
isotope values of bone samples from subadult and
adult male fur seals from northern and central Patag-
onia (δ15N: +20.6‰ ± 1.0, δ13C: −13.5 ‰ ± 0.5; this
study) are almost identical to those of adult male fur
seals breeding at Uruguayan colonies (δ15N: +20.6‰
± 0.6, δ13C: −13.6‰ ± 0.8; Vales et al. 2014). The
hypothesis of movement of individuals among breed-
ing colonies is supported by evidence of mitochondr-
ial DNA analysis of fur seals from Patagonia, Mar del
Plata and Uruguay pointing to a single Atlantic pop-
ulation maintained by an ancient gene flow (Crespo
et al. 2015). Therefore, it is possible that resident fur
seals from northern and central Patagonia feed
throughout the year in the region; whereas fur seals
from adjacent colonies (e.g. Uruguay and the Falk-
land [Malvi nas] Islands) exploit the abundant food
resources of the region during the non-breeding sea-
son (Svendsen et al. 2013). Nevertheless, further
research contemplating the use of satellite-tracking
devices is needed in order to shed some light on the
pelagic dispersion of fur seals at sea.

Finally, the present study reveals a potential over-
lap in the use of resources between male fur seals
from all ages and fisheries in northern and central
Patagonia. Prey that constitute the bulk of the diet for
fur seals are subjected to intensive (e.g. hake and
Argentine shortfin squid), moderate (red shrimp) or
almost non-existent (anchovy) fishing activities in the
region (Brunetti et al. 1998, Bertuche et al. 2000,
Hansen 2000, Bertolotti et al. 2001). It should also be
considered that fishing and marine mammal hunting
have dramatically modified the structure of marine
ecosystems off Patagonia during the last centuries
(Saporiti et al. 2014). Squid and anchovy populations
may have increased due to 18th–20th century har-
vest of fur seal and sea lion, and hake depletion dur-
ing the mid-1990s (Koen Alonso & Yodzis 2005). In
turn, the increased availability of anchovies by pre-
dation release may explain the population expansion
of the Magellanic penguin Spheniscus magellanicus
during the 20th century (Boersma et al. 1990). Hence,
the increase in the fur seal and sea lion populations
during the last decades in the region, as a result of
legal protection (Dans et al. 2004, Crespo et al. 2015),
is expected to result in a reduced abundance of squid
and anchovy in the ecosystem, which may result in a

decrease in food availability for the penguin popula-
tion and an increased conflict with the fishing indus-
try. Nevertheless, these issues should be addressed
in future investigations to assess the relevance of
such potential competition for resources and its
implications for the conservation status of these
 species.
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