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ABSTRACT

Context. Magnetic fields in accretion disks play an important role in the rich dynamics of these systems. A dynamo theory describing
the generation of these magnetic field is in general very complex and requires many assumptions in order to be of practical use. In
this respect, a theory with as few assumptions as possible is desirable.
Aims. To investigate the generation of magnetic fields in accretion disks around magnetized central objects, a large-scale dynamo
model is employed that includes feedback effects on the mass motion due to the Lorentz force. The dynamo model was developed
from the fundamental magnetohydrodynamics equations with a minimum of hypothesis, and was tested in the case of the Sun and
other stars. It is applied to accretion disks for the first time.
Methods. The magnetic field in the disk, generated by the mentioned dynamo theory, was matched to that of the central object,
considered dipolar, and to that of a magnetosphere described with the Grad–Shafranov equation. The relation between axial current
and magnetic flux required in the Grad–Shafranov equation was not imposed, but was self-consistently determined along with the full
solution.
Results. The model is able to reproduce the patterns of magnetic field lines obtained in several works, such as closed magnetic
lines near the central object and open lines for larger radii. The maximum value of the field is located near the internal radius of the
accretion disk, where the currents in the disk force the concentration of field lines of the central object in the magnetosphere around
this region. By varying the values of stellar mass, stellar magnetic field, mass accretion rate, and internal radius of the disk, it is found
that the stellar magnetic field is the most important parameter in the determination of the disk magnetic field. The stellar mass is of
secondary importance. It affects the azimuthal component of the disk magnetic field. The internal radius of the disk affects the disk
zonal magnetic field and is likewise less important.
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1. Introduction

A fundamental problem in accretion disks is the generation of
structured, large-scale magnetic fields, which are a key element
in the rich dynamics observed in these systems, including the
generation of jets and outflows. A mechanism that is thought to
be responsible for the generation and sustenance of these mag-
netic fields is an internal disk dynamo. On the one hand, dynamo
theories involve mechanisms, such as the α effect, that have to
be modeled and parameterized, which also holds for the (turbu-
lent in general) diffusivity coefficients required in the model. On
the other hand, due to the huge number of degrees of freedom
involved, magnetohydrodynamics (MHD) numerical approaches
are limited to simulating only the large scales, requiring the mod-
eling of the effects of smaller scales.

In recent years, different numerical dynamo simulations
made it possible to quantitatively study the generation of mag-
netic fields in accretion disks. Stepanovs et al. (2014) solved
an axisymmetric α2−Ω dynamo using the code PLUTO. They
showed that this type of dynamo can generate a large-scale mag-
netic field and a jet, even with a low magnetization, which allows
using a hydrodynamic model to describe the disk. Furthermore,
with a time-dependent α, it is possible to reproduce the observed
episodic ejections (Burrows et al. 1996).

Hogg & Reynolds (2018) studied the influence of the disk
thickness on the large-scale magnetic dynamo. They solved ideal

MHD equations in conservative form with a pseudo-Keplerian
potential, allowing for a flux through the surface of the disk.
Their results showed that in thick disks with ratios H

r ∼ 0.4, the
dynamo is less effective than in thin disks with ratios H

r ∼ 0.01.
The reason is that in the disks with higher ratios, the fluctuations
in Bφ are more rapid, disorganized, and chaotic than in disks
with lower ratios, indicating stronger turbulent fluctuations and
consequently stronger dissipation.

On the other hand, Latif & Schleicher (2016) studied a mag-
netic field generated by a small-scale dynamo, and amplified it
by an α−Ω dynamo. They considered a classic, primordial disk
around a 10 M� star, with external radius re ∼ 1000 AU, and
found that amplification is more effective if r < 10 AU, obtain-
ing magnetic fields in the range 10−2−102 G. Moreover, the mag-
netic field was coherent up to r ∼ 100 AU, which corresponds
to the region that contributes more to the generated jet. The
results about the distribution of the magnetic field were studied
by Li & Cao (2016), who imposed an external magnetic field to
search for a relation between this field and the field in the inner
region of the disk. They used a model based on an iterative solu-
tion of the integro-differential form of the induction equation,
and found that the external field helps to generate a large-scale
magnetic field in the disk. Furthermore, even if the external field
has a moderate intensity, it can result in a high-intensity field
near the internal radius of the disk, and it can induce an incli-
nation of the magnetic lines to the surface of the disk, which
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helps to launch outflows. As this result shows, the external mag-
netic field seems to be crucial for the topology of the magnetic
field inside the disk, independently of the involved amplification
mechanism.

We study the results obtained using a large-scale model
of an axisymmetric dynamo with feedback effects developed
in Sraibman & Minotti (2016, 2019), which realistically repro-
duces the magnetic dynamics of the Sun (Sraibman & Minotti
2019) and other stars (Buccino et al. 2020), including cycle
times, magnetic field amplitudes, and phases. We also include
a magnetosphere described by the Grad–Shafranov equation, in
which the function relating the axial current to the magnetic flux
is not prescribed, but determined self-consistently by matching
conditions between disk and magnetosphere.

In Sect. 2 we recall the main aspects of the dynamo model. In
Sects. 3 and 4 we present the most important aspects of disk, the
magnetosphere and the main parameters selected for this work.
In Sect. 5 we present the main results, which are discussed fur-
ther in Sect. 6.

2. Dynamo model

We include here a short description of the model developed
in Sraibman & Minotti (2016) and Sraibman & Minotti (2019),
which corresponds to the evolution equation of the large-scale
magnetic field, including feedback effects by the Lorentz force
on the mass flow. The large-scale equations are obtained by aver-
aging the original MHD evolution equations on local (running)
volumes of linear scale λ. An axially symmetric system is finally
obtained by further averaging on the azimuthal angle φ about
the rotation axis z. In spherical coordinates r, θ, φ, the large-
scale magnetic field B is determined by its azimuthal component
Bφ(r, θ, t) and that of the vector potential of the zonal magnetic
field Aφ(r, θ, t),

B = ∇ ×
(
Aφ eφ

)
+ Bφ eφ. (1)

The evolution equations obtained after averaging on running vol-
umes of linear scale λ, and azimuthal angle are

∂Aφ

∂t
= UrBθ − UθBr + η

(
∇2Aφ −

Aφ

r2 sin2 θ

)
+ αBφ + S φ, (2)

and

∂Bφ
∂t

=
[
∇ × (U × B − η∇ × B) + ∇ × S

]
· eφ, (3)

where η is a prescribed small-scale magnetic diffusivity, α is
the function corresponding to the α effect, and U is the axisym-
metric large-scale velocity. This velocity includes a meridional
velocity component Um and an azimuthal component Uφ =
Ω (r, θ) r sin θ, where Ω (r, θ) is the local large-scale angular
velocity. In these equations, S corresponds to the electromo-
tive tensor and diffusivity tensor effects, which are obtained
through the formalism in Minotti (2000), and are given in terms
of expressions of U and B, reproduced in the appendix. A mod-
ification U(1)

m to the base meridional flow U(0)
m is generated by

the magnetic field through the Lorentz force. The corresponding
equation for this term is

ρU(1)
m · ∇

(
Ωr2 sin2 θ

)
=

1
µ0

[
∇ ×

(
Aφ eφ

)]
· ∇

(
r sin θBφ

)
, (4)

together with the meridional mass flow conservation, written in
terms of a stream function ψ(1),

ρU(1)
m =

1
r sin θ

∇ψ(1)
× eφ. (5)

The α function is obtained self-consistently and is related to the
radial cylindrical component of the mean vorticity, ωs,

α =
λ2κ

12s
ωs, (6)

with 0 < κ 5 1 an adjustable parameter of the model, and s
the distance to the rotation axis z. The main contribution to ωs
comes from the differential rotation of the disk,

ω(0)
s = −

∂U(0)
φ

∂z
= sin θ

[
sin θ

∂Ω

∂θ
− r cos θ

∂Ω

∂r

]
, (7)

and the correction due to the velocity modification by the mag-
netic field is given by (cylindrical coordinates are used to facili-
tate the notation)

∂ω(1)
s

∂t
+ U(0)

s

∂ω(1)
s

∂s
+
ω(1)

s

s

 + U(0)
z
∂ω(1)

s

∂z
+ ω(1)

s
∂U(0)

z

∂z
= K, (8)

where

K = ω(0)
z
∂U(1)

s

∂z
−ω(0)

s
∂U(1)

z

∂z
−U(1)

s

∂ω(0)
s

∂s
+
ω(0)

s

s

−U(1)
z
∂ω(0)

s

∂z
. (9)

In this way, the α coefficient is obtained from the solution to
Eq. (8) with K given by Eq. (9), together with expression (7),
resulting in

α =
λ2κ

12s

[
ω(0)

s + ω(1)
s

]
. (10)

This set of equations constitutes the dynamo model, which
requires as input the hydrodynamic disk structure in terms of
the basic mass flow, the density distribution, and the small-scale
diffusivity η.

3. Accretion disk and magnetosphere models

We considered as the base hydrodynamic structure of the disk
that of the Shakura–Sunyaev model (Shakura & Sunyaev 1973).
The density is given by the expression

ρ =
Ṁ

6πνH

(
1 −

√
r∗
r

)
e−

r2 cos2 θ
2H2 , (11)

where ν is the turbulent viscosity, and H is the half-thickness of
the disk,

H = γr (12)

with γ > 0 a dimensionless factor. The viscosity ν can be
expressed as a function of the sound speed in the medium, Cs,
and the dimensionless parameter a as

ν = aHCs. (13)

We set the parameter a = 0.01, a typical value that implies an
evolutionary timescale of the system close to 1 Myr (Dominik
2015).
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Considering the material in the thin accretion disk modeled
as an ideal gas, we can write the density as a function of the
radius only as

ρ =
Ṁ

6πγ2r2a

√
mi

kBT
, (14)

where T is the temperature.
We considered the quasi-Keplerian accretion disk to be

located between an internal radius ri and an external radius re.
The angular velocity was considered to be Keplerian, but U has
components in er and eθ given by

Ur = −
3
2
ν

r

(
1 −

√
r∗
r

)−1

, (15)

Uθ = Ur
r
H
∂H
∂r

cos θ. (16)

The small-scale magnetic diffusivity was modeled using
Smagorinsky’s expression (Scotti et al. 1993),

η(r, θ) = C2
k∆r∆θr

√
2S klS kl, (17)

where Ck is the Smagorinsky coefficient, S kl is the large-scale
rate of strain due to the meridional and azimuthal large-scale
velocity field, and ∆r and ∆θ the local radial and latitudinal grid
sizes, respectively.

Boundary conditions for the magnetic field in the disk-
magnetosphere interface are required. Using 1 as a lower index
for quantities inside the accretion disk and 2 for those in the
magnetosphere, the boundary conditions at the interface can be
written as

Aφ1 = Aφ2, (18a)
Bφ1 = Bφ2. (18b)

These conditions also apply at the interface between the low-
density region and the magnetosphere. The necessary continuity
of the azimuthal component of the potential vector Aφ across
the disk-magnetosphere interface also ensures the required con-
dition that Bθ is continuous across this interface. Moreover,
because a magnetosphere with very high electric conductivity is
in contact with the disk, the continuity of the tangential electric
field across the boundary disk-magnetosphere ensures a vanish-
ing tangential (radial) volume density of the electric current in
the disk at the interface because the disk has a finite electrical
conductivity. This is so because, being threaded by the magnetic
field of the disk, the fluid element of the magnetosphere in con-
tact with the disk is assumed to corotate with it, which together
with the continuity of Bθ, ensures that the radial electric field in
the fluid frame is zero at both sides of the interface. The vanish-
ing of this current leads then, via the Ampère equation, to the
condition for the azimuthal component of the magnetic field Bφ
in the disk, at the disk surface,

∂

∂θ

(
Bφ sin θ

)
= 0. (19)

The azimuthal component of the electric current cannot be
considered zero at the disk side of the magnetosphere-disk inter-
face because the radial velocity of fluid elements at each side
can be different in principle. However, the assumption of no sur-
face current density at the interface suffices to ensure continu-
ity of ∂Aφ/∂θ at this boundary, which is an additional condition
required to match disk and magnetosphere solutions.

The numerical method for solving the internal problem of the
accretion disk is the same as was used in Sraibman & Minotti
(2016). The main difference is that the solution needs to be
matched to the external solution corresponding to the magnetho-
sphere, described by the Grad–Shafranov equation, given in
spherical coordinates as

∂2Ψ

∂r2 +
1
r2

∂2Ψ

∂θ2 −
1

r2 tan θ
∂Ψ

∂θ
= −

µ2
0

4π2 I(Ψ)
∂I(Ψ)
∂Ψ

, (20)

where Ψ = Aφr sin θ and I = 1
µ0

Bφr sin θ.
The boundary conditions used in the solution of Eq. (20)

are Ψ = Ψ∗ at r∗,
[
∇2

(
Ψ

r sin θ ϕ̂
)]
.ϕ̂ = 0 at re, Ψ = 0 at θ = 0

and Ψ = ΨDisk at the surface of the accretion disk. The zero
tangential electric current in the disk at the interface, discussed
above, also implies the continuity of I(Ψ) across the boundary,
and, consistently, the second of the conditions in Eq. (18). This
allows determining ΨDisk and I(Ψ) using the values of Aφ and
Bφ at the interface, as obtained from the solution of the internal
dynamo problem for the disk. In this way, the field in the mag-
netosphere is determined by the field in the disk, while the mag-
netosphere mainly forces zero tangential (radial) current density
at the disk surface, which is expressed as the boundary condi-
tion (19). The presence of the magnetosphere also establishes
a connection with the magnetic field of the star through the
matching conditions of the continuity of Aφ and of ∂Aφ/∂θ at
the magnetosphere-disk boundary.

4. Simulation parameters

The disk we considered was thin, with γ = 0.1,
which is expected to show relatively strong dynamo effects
(Hogg & Reynolds 2018). It was also considered that the accre-
tion disk extended to 40 solar radii because the dynamo effect is
negligible for larger radius (Latif & Schleicher 2016).

Following several works on accretion disks in proto-
stars or main-sequence stars, such as Kenyon et al. (1996),
Williams & Cieza (2011), Dudorov & Khaibrakhmanov (2016),
C̆emeljić et al. (2019), parameters related to T Tauri stars were
used for the central object. In this way, as the main example in
this work, we chose a central object with solar values of the mag-
netic field, radius, and mass, similar to those of low-mass T Tauri
stars.

To calculate the density of the accretion disk, the temper-
ature and the mass accretion rate are needed. We took as rep-
resentative values T = 103 K and Ṁ = 1017 kg s−1, which are
in the ranges used in the works mentioned above. As a conse-
quence, our hydrogen accretion disk has a maximum density
of ρM ∼ 10−5 kg m−3. As a representation of the interstellar
medium, a minimum density ρm = 10−9 kg m−3 was also con-
sidered.

The scale parameter λ was chosen as 0.1H(ri), while κ =
0.2 and Ck = 0.15 were used, representative of the values used
in other simulations (Sraibman & Minotti 2019; Buccino et al.
2020). In addition, considering that these parameters can take
values 0 ≤ κ ≤ 1 and 0.1 ≤ Ck ≤ 0.2 (Pope 2000), it was verified
that the magnitude of the variables studied changed by less than
5% when they were modified within their allowed ranges, and no
qualitative changes in the evolution of the system were observed.

The simulation was initiated with a zero magnetic field gen-
erated by the disk, which was permeated by the dipolar field of
the central object, determined by the potential vector

Aφ = B∗
r3
∗

r2 sin θ, (21)
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with r∗ the radius of the star, and B∗ the equatorial magnetic
field of the star. As considered in more detail in the discussion
section, the stationary solution we obtained is independent of the
precise initial conditions assumed because of the strong dynamo
action of the Keplerian disk mass flow, which rapidly modifies
any initial field, together with the fixed conditions for the mag-
netic field at the surface of the central object. In addition to the
main example, we present the results of simulations with a set of
different values of M∗, B∗, Ṁ, and ri.

5. Results

5.1. Solar type system

As a first example, we present the stationary state reached from
the initial conditions discussed in the previous section for a sys-
tem with M∗ = MSun, r∗ = rSun, Ṁ = 1017 kg s−1, B∗ = 10−4 T,
ri = 2 r∗, and re = 40 r∗. The numerical simulation includes the
evolution of the magnetic field and the velocities during a total
time of 200 viscous timescales tvis = 1

a
r2

H2
1
Ω

, equivalent to 400
years. During the last 100 viscous timescales, the values of these
magnitudes vary less than 1%.

The resulting toroidal magnetic field inside the disk is shown
in Fig. 1.

This field is antisymmetric with respect to the midplane of
the disk. Its maximum value is about 4 orders of magnitude
smaller than B∗, and located at the inner radius of the disk;
it decays with radius to almost 80% of its maximum value at
r = 10 r∗. To observe these features in more detail, the lower
panel in Fig. 1 shows the intensity of the magnetic field at 2◦
above the disk midplane as a function of r.

The magnitude of the poloidal field can be appreciated in
Fig. 2, where the θ component of the magnetic field at the upper
surface of the disk is presented as a function of radius. The same
figure shows that the radial decay is somewhat slower than that
given by the law r−1, with a much slower decay than r−3, which
is characteristic of a dipolar field.

The poloidal magnetic field lines are shown in Fig. 3 as
obtained from the Ψ function. In order to present a clearer global
view of the magnetic lines, only a few of them are shown and
they are not equally spaced in magnitude because the magnetic
field magnitude can be better appreciated in the previous figure.
Field lines passing through the disk are outwardly bent in angles
of less than 60◦ relative to the disk surface, indicating a section
of the disk where mass loss by centrifugal forces is possible
(Blandford & Payne 1982). The separation between field lines of
the star and the lines of the disk occurs at the disk inner radius.
During the evolution of the system, the lines originated in the
star that initially threaded the disk are expelled into the mag-
netosphere. A more detailed view of the lines close to the disk
inner radius is shown in Fig. 4, indicating the compression of
the field lines between the star and the disk due to the mentioned
expulsion of the lines toward the star.

The secondary mass flow generated by the Lorentz force
in the disk, in addition to the basic accretion flow, is shown
in Fig. 5. Throughout almost the entire length of the disk, the
radial component of the velocity of the secondary flow points
away from the accretion center, and only near the surface is this
flow directed to that center. This secondary mass flow amounts
to approximately 108 kg s−1, about 9 orders of magnitude smaller
than Ṁ, indicating a very small perturbation to the main accre-
tion flow. However small, this secondary flow is important for
the dynamo effect in its contribution to the α effect through the
corresponding ω(1)

s in Eq. (10).

Fig. 1. Toroidal magnetic field obtained in the axisymmetric accretion
disk model. Upper panel: spatial distribution of the toroidal magnetic
field in the disk. Lower panel: magnitude of the toroidal magnetic field
at 2◦ above the midplane as a function of r.

Fig. 2. Bθ on the upper surface of the accretion disk. Solid line: field
magnitude. Dotted line: fitting using the function c

r , with c a constant.

5.2. Systems with different parameters

We present here some of the results we obtained for a different
set of values of M∗, B∗, Ṁ, and ri. The magnetic field intensity in
the disk is strongly dependent on the star magnetic field B∗, and
so this parameter was used to distinguish the different cases. In
this way, for each of the three values B∗ = 10−6 T, B∗ = 10−4 T,
and B∗ = 10−2 T, we tabulate the maximum values of toroidal
and zonal magnetic field of the disk according to the different
values of Ṁ, ri , and M∗ in Tables 1–3.
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Fig. 3. Poloidal magnetic field lines. The central object and the disk are
also depicted. The dotted line shows the limiting field line originating
in the disk.

Fig. 4. Zoom in on the poloidal magnetic field lines near the central
body. The central object and the disk are also depicted. The dotted line
shows the limiting field line originating in the disk.

Fig. 5. Velocity of the secondary mass flow in the accretion disk. The
color of the graph represents the absolute value of the velocity, and the
vectors represent the direction of motion.

Two values of Ṁ were used: Ṁ = 1017 kg s−1, similar
to accretion rates found in the T Tauri systems, and Ṁ =
1020 kg s−1. This parameter has the least influence on the toroidal
magnetic field intensity in the disk. As expected from the mag-
netic field dragging by the mass flow, however, for the largest Ṁ,
the magnetic field is more concentrated near the inner radius.

For the stellar mass, values below, similar, and above solar
were chosen: M∗ = 1027, M∗ = 1030, and M∗ = 1033. As
expected from the contribution of the dynamo Ω-effect, depen-
dent on the velocity shear, the more strongly affected compo-
nent is Bφ, which increases in magnitude with M∗, while the
poloidal component is only slightly affected. A similar effect for
Bφ should be caused by the increment in velocity shear as the
inner radius of the disk is closer to the star. This is indeed seen
for the set of values of ri we chose: ri = 1.1 r∗, ri = 2 r∗, and

Table 1. Maximum value of the magnetic field in an accretion disk
around a star with B∗ = 10−2 T.

Ṁ [kg s−1] ri [r∗] M∗ [kg] Max |Bϕ| [T] Max |Bp| [T]

1017 1.1 1027 5.10−8 7.10−4

1017 1.1 1030 2.10−6 7.10−4

1017 1.1 1033 4.10−5 7.10−4

1017 2 1027 5.10−8 9.10−4

1017 2 1030 2.10−6 9.10−4

1017 2 1033 5.10−5 9.10−4

1017 10 1027 5.10−8 10−3

1017 10 1030 2.10−6 10−3

1017 10 1033 5.10−5 10−3

1020 1.1 1027 10−7 7.10−4

1020 1.1 1030 5.10−6 7.10−4

1020 1.1 1033 10−4 7.10−4

1020 2 1027 10−7 9.10−4

1020 2 1030 4.10−6 9.10−4

1020 2 1033 10−4 9.10−4

1020 10 1027 8.10−8 10−3

1020 10 1030 2.10−6 10−3

1020 10 1033 7.10−5 10−3

Table 2. Maximum value of the magnetic field in an accretion disk
around a star with B∗ = 10−4 T.

Ṁ [kg s−1] ri [r∗] M∗ [kg] Max |Bϕ| [T] Max |Bp| [T]

1017 1.1 1027 5.10−10 8.10−6

1017 1.1 1030 10−8 8.10−6

1017 1.1 1033 3.10−7 8.10−6

1017 2 1027 5.10−10 10−5

1017 2 1030 10−8 9.10−6

1017 2 1033 4.10−7 9.10−6

1017 10 1027 5.10−10 10−5

1017 10 1030 2.10−8 10−5

1017 10 1033 5.10−7 10−5

1020 1.1 1027 10−9 8.10−6

1020 1.1 1030 4.10−8 8.10−6

1020 1.1 1033 10−6 8.10−6

1020 2 1027 10−9 10−5

1020 2 1030 4.10−8 9.10−6

1020 2 1033 10−6 9.10−6

1020 10 1027 6.10−10 10−5

1020 10 1030 2.10−8 10−5

1020 10 1033 7.10−7 10−5

ri = 10 r∗. However, the change in ri also has a marked effect
on the poloidal component, with variations of up to 50% of its
magnitude for the set of inner radii we explored.

6. Discussion

For all parameter sets we studied, the obtained magnetic field
configurations are qualitatively similar and are also similar
to those in other works, such as Contopoulos et al. (2006),
C̆emeljić et al. (2019), Mishra et al. (2020), where diverse
approaches to the problem were used. A result worth not-
ing is the decay with radius of Bθ at the disk surface as
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Table 3. Maximum value of the magnetic field in an accretion disk
around a star with B∗ = 10−6 T.

Ṁ [kg s−1] ri[r∗] M∗ [kg] Max |Bϕ| [T] Max |Bp| [T]

1017 1.1 1027 6.10−12 8.10−8

1017 1.1 1030 2.10−10 8.10−8

1017 1.1 1033 4.10−9 8.10−8

1017 2 1027 6.10−12 10−7

1017 2 1030 2.10−10 10−7

1017 2 1033 5.10−9 10−7

1017 10 1027 5.10−12 10−7

1017 10 1030 2.10−10 10−7

1017 10 1033 5.10−9 10−7

1020 1.1 1027 2.10−11 8.10−8

1020 1.1 1030 6.10−10 8.10−8

1020 1.1 1033 10−8 8.10−8

1020 2 1027 6.10−10 9.10−8

1020 2 1030 2.10−10 10−7

1020 2 1033 10−8 9.10−8

1020 10 1027 10−11 10−7

1020 10 1030 3.10−10 10−7

1020 10 1033 10−8 2.10−7

close to but slower than r−1. This result is similar to that
in Latif & Schleicher (2016), where simulations with an α−Ω
dynamo show a dependence on r between r−1 and r−1.5.

The fact that the poloidal field lines tend to accumulate near
the internal radius, thus leading to relatively intense magnetic
fields, was discussed in Shu et al. (1994). This effect occurs
mainly for objects with sizes and magnetic fields similar to those
of T Tauri stars. Due also to the dragging of the magnetic field
by the mass flow, the effect is further increased when the mass
accretion rate increases. Both effects are found in the simula-
tions performed in this work. Moreover, Miller & Stone (1997)
presented different magnetic field configurations as a function of
the plasma β, which are similar to those in this work in the case
of low β, consistent with the Grad–Shafranov description used.

Ghosh & Lamb (1979), Shu et al. (1994), Matt & Pudritz
(2005), Lai (2014), and C̆emeljić et al. (2018) determined the
radius Rx in the disk that separates stellar field lines from those
that originated in the disk. In particular, C̆emeljić et al. (2018)
found through MHD simulations with parameters similar to
those used here that Rx = 2.9R∗. At variance with this result, the
field lines of the star do not cross the disk in all cases considered
in our simulations.

C̆emeljić et al. (2018) also found that the poloidal magnetic
field magnitude scales almost linearly with that of the star, and
that the poloidal magnetic field within the disk is approximately
3 orders of magnitude smaller at a distance of 10 R∗. The almost
linear relation between field magnitudes is similar to what was
obtained with our model, but with a somewhat slower decay with
radius. In addition, the poloidal field is approximately one order
of magnitude larger than that obtained in that work.

Finally, we verified that the stationary solutions we presented
are independent of the initial conditions considered by starting
with initial fields in the disk that are an order of magnitude
smaller or larger than those determined by the field of the star.
The reason is that the sheared rotation of the Keplerian disk has
a strong dynamo effect that rapidly modifies any initial field. In
addition, the magnetosphere strongly links the field of the star

to that of the disk, so that fixing the field at the stellar surface
conditions the possible stationary solutions.

7. Conclusions

We have applied a model for an axisymmetric large-scale mag-
netic dynamo to an accretion disk, described by the Sakura &
Sunyaev model, around a star with a dipolar magnetic field,
including a magnetosphere described by the Grad–Shafranov
equation. The dynamo model we used has the advantage of being
a large-scale model, derived from fundamental MHD equations
with a minimum of assumptions, and applied to accretion disks
for the first time.

A basic magnetic field configuration was found in which
magnetic field lines that originated in the star are concentrated
near the internal radius of the disk, always outside the disk. The
disk magnetic field has an inclination toward the disk surface
that favors centrifugally driven outflows. Moreover, for angles
near the rotation axis, the field lines tend to approach the axis,
which could favor collimation in case of jets.

We also studied the relation of the disk magnetic field inten-
sity to different parameters of the system such as stellar mass,
stellar magnetic field, mass accretion rate, and internal radius of
the disk. The results of the magnetic field configuration, magni-
tude, and the relation to the parameters of the system compare
well with those by other authors who used diverse approaches,
showing some features that are particular to the dynamo model
used, however, such as the relative slow decay with radius of the
poloidal field of the disk, and the expulsion from the disk of field
lines that originated in the central object.
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Appendix A: Expressions of the S components

The explicit expression of the term S φ that enters Eq. 2 is

S φ =
λ2

24 r2 [−BrUθ − Ur∂θBr − Uθ∂θBθ + Br∂θUr

+ ∂θBθ∂θUr − ∂θBr∂θUθ + Bθ (Ur + ∂θUθ)

+r2 (∂rBθ∂rUr − ∂rBr∂rUθ)
]
. (A.1)

On the other hand, it is convenient to express the terms
depending on S in Eq. 3 by separating them into a part asso-
ciated with the differential rotation and another part associated
with the meridional flow. The part corresponding to the differen-
tial rotation is written as

(∇ × S)Ω
· eφ =

λ2

24r2 [FrBr + FθBθ + Frθ∂rBθ

+Fθr∂θBr + Fθθ∂θBθ] , (A.2)

where

Fr = 3 cos θ∂θΩ + sin θ
(
∂θθΩ + r∂rΩ − 2r2∂rrΩ

)
,

Fθ =
3 + cos 2θ

2
csc θ∂θΩ − r sin θ∂rθΩ − r2 cos θ∂rrΩ,

Frθ = r2 sin θ∂rθΩ,

Fθr = r cos θ∂rΩ − sin θ∂θΩ + r sin θ∂rθΩ,

Fθθ = cos θ∂θΩ + sin θ∂θθΩ − r2 sin θ∂rrΩ. (A.3)

The part associated with the meridional flow is given by

(∇ × S)U
· eφ = −

λ2

24r2

[
Gr∂rBφ + Gθ∂θBφ + Grθ∂rθBφ

+Grr∂rrBφ + Gθθ∂θθBφ
]
, (A.4)

where

Gr = Ur + Uθ cot θ + r∂rUr + r2∂rrUr + r∂rθUθ,

Gθ =
(
Ur cot θ + Uθ csc2 θ + ∂θθUθ

)
/r − ∂rUθ + ∂rθUr,

Grθ = −Uθ + ∂θUr + r∂rUθ,

Grr = r2∂rUr,

Gθθ = (Ur + ∂θUθ) /r. (A.5)
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