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Abstract

In this paper the kinetic of dissociative adsorption of dimers followed by associative desorption
is analyzed. The coupled di5erential equations which describe the kinetics of the process were ob-
tained by applying the so-called local evolution rules. Particular interest presents the irreversible
desorption process. In fact, given that desorption proceeds from the reacting nearest-neighbor
monomers, a remaining coverage results from those isolated particles when the mobility is
neglected, therefore, the resulting con8guration can be considered as a jamming state of the
system. The exact solution for the remaining coverage is obtained in one-dimensional chain,
where the e5ect of the lateral interactions are also included. The two-dimensional case is an-
alyzed by using Monte Carlo simulation. The equilibrium solutions and the thermal desorption
spectra are also studied.
c© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Heterogeneous catalysis involves di5erent steps like adsorption, surface di5usion,
reaction and desorption. These processes are largely analyzed in the surface science
and many of them are by now well understood [1–4]. In fact, development of new
experimental techniques, such as 8eld ion microscopy or scanning tunneling microscopy,
has opened up the possibility to monitor chemical reactions on surfaces of metal
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catalysts in real time with almost atomic resolution [1,2]. Thus, the behavior of par-
ticles on surfaces, even reactive particles become directly observable. Motivated by
these experimental 8ndings, new theoretical approach as well as numerical simulations
have been proposed [3,4].
One of the various steps involved in heterogeneous catalysis is the adsorption process.

The experimental evidence shows that in most of the catalytic surface reactions, larger
molecules dissociate after adsorption. States like these existing over empty sites are
called intrinsic precursor states [5,6]. The most common example of such precursors
are weakly bound molecular states for diatomic molecules on metal surfaces, from
which dissociation into strongly bound atomic adsorption may occur.
Besides that, in many catalytic reactions single atoms associate in the surface to

desorb as molecular species. The kinetic of associative desorption has been largely
studied by means of a great number of experimental techniques [1,2], as well as us-
ing di5erent theoretical approaches [3] and computer simulations [4]. There are several
examples where associative desorption is present, particularly, those catalyzed reactions
that follow the Langmuir–Hinshelwood mechanism, for instance, the oxidation of car-
bon monoxide and the reaction between NO and CO over single-crystal catalyst. In
the 8rst one, the CO reacts with a O atom to form a CO2, which desorb from the
surface, while in the second reaction the product is N2 and CO2 which desorb to the
gas phase.
Dissociative adsorption, associative reactions, and desorption of simple molecules

concomitant with the metal surface restructuring are of particular interest. These pro-
cesses have been discussed for reactions involving H–H, C–H or C–C bond breaking
on stepped and kinked crystal faces of platinum [7]. These reactions have been ana-
lyzed by means of theoretical approach and Monte Carlo simulations [8,9]. However,
some aspects of the process are still unclear and deserve to be analyzed, particularly
the adsorption–desorption kinetics.
Here, the kinetic of dissociative adsorption of dimers followed by associative desorp-

tion was studied. The process is described by using the one-dimensional lattice gas
model, particularly, the evolution equations of the observable are derived throughout the
so-called local evolution rules [10–12]. The equilibrium properties, adsorption isotherms
and nearest-neighbor correlation are derived from the kinetic equations.
The irreversible kinetics is also considered. Particularly, when the only process

allowed in the surface is the molecular desorption, there is a remaining coverage due
to the isolated atoms on the substrate. This coverage can be removed by increasing
temperature or by surface di5usion. However, for certain range of temperature, the
remaining coverage can be considered as an irreversible state or jamming state of the
system.
Thermal desorption is also analyzed in one- and two-dimensional lattices, for di5er-

ent lateral interactions. The two-dimensional lattices with repulsive lateral interactions,
where the system undergoes a second-order phase transition, are of special interest.
The rest of the paper is organized as follows: In Section 2, the model is introduced

and the kinetic equations, which describe the process, are derived. In Section 3, di5erent
aspects of the kinetics are discussed, in the 8rst place the reversible kinetics, where the
equilibrium properties are derived from the evolution equations and an exact form for
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the one-dimensional isotherms are obtained. Then, the irreversible kinetics are studied.
The exact solution for the irreversible isothermal desorption is obtained, calculating the
remaining coverage as a function of the initial coverage and its dependence with lateral
interactions. Finally, the thermal programmed desorption (TPD) spectra are obtained
from the kinetic equations. An extension to two-dimensional lattices is given by using
Monte Carlo simulations, where TPD spectra are calculated. From those spectra we
also obtain the remaining coverage in two-dimensional square lattice. The conclusions
are presented in Section 4.

2. Rate equations in one-dimensional chain

Let us describe the kinetic of the process, following the evolution of a given con8gu-
ration of particles in the line. For this purpose, it can be considered a system composed
of a chain of M sites, where the state of each site can be either empty (Ni = 0) or
occupied by a particle (Ni =1). By using this notation, let us de8ne the di5erent steps
of the process as follows:
(i) An incoming dimer is adsorbed with certain probability pads, if the pair of chosen

neighboring sites are empty (Ni = 0 and Ni+1 = 0);
(ii) dimer dissociate, with certain probability pdis after adsorption;
(iii) eventually, di5usion of monomer units is allowed with certain jump rate �;
(iv) if two neighboring sites are occupied (Ni =1 and Ni+1 = 1), they react to form

a dimer with certain probability pas;
(v) after that, desorption is attempted with probability pdes and the sites become

empty (see Fig. 1). Particles interact each other with a coupling constant J =exp(−V=
kBT ), where V is the interaction energy between two nearest-neighbor particles, kB is
the Boltzmann constant and T is the temperature. If either (or both) of the two sites is
empty, the desorption attempt is rejected and the state of the sites remains unchanged.
In order to simplify the treatment, in the rest of the paper, pdis =pas =1 and �=0.
To describe the process, let us de8ne P(c; t) as the probability that the system is

found in the con8guration c = {N1; N2; : : : ; NM} at time t. The average occupation

Fig. 1. Schematic representation of the adsorption–desorption process.
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number or coverage � is given by

�= 〈N 〉 = 1
M

∑
i

∑
c

NiP(c; t) ; (1)

where the 8rst sum runs over the sites “i” and the second one runs over all the
microscopic con8gurations c. Higher moments are de8ned in the same way, as for
example, the nearest-neighbor correlation �,

� = 〈NN 〉 = 1
M

∑
i

∑
c

NiNi+1P(c; t) : (2)

The vacancy of the site “i” is de8ned as

Ei = (1 − Ni) (3)

then its average is given by

〈E〉 = 1
M

∑
i

∑
c

(1 − Ni)P(c; t) : (4)

Following the de8nition of the moments, there are a number of relations between them,
for instance,

〈NE〉 = 〈N 〉 − 〈NN 〉 ; (5)

〈NNE〉 = 〈NN 〉 − 〈NNN 〉 ; (6)

〈NEE〉 = 〈NE〉 − 〈NEN 〉 : (7)

The evolution of the system can be followed through the time behavior of one
generic site i. For this purpose a set of evolution rules, depending on the state of
the site and its neighborhood, was built. After that, and properly averaging, a set of
coupled di5erential equations are obtained. This technique has been used to analyze
the irreversible growth models, particularly to derive the Langevin equations in (1 +
1)-dimensional systems [10] and dimer kinetics in one-dimensional lattice [11]. This
method is particularly eLcient in case where the use of master equation approach
seems to be extremely diLcult, if not impossible, specially in the irreversible growth
models with quenched noise [12].
The method is rather simple and consists of monitoring the time evolution of a chosen

site, through the following procedure: (i) A dummy index j is chosen and compared
with the label of the site, if they are equal i = j, the trial continues, otherwise it is
rejected. (ii) The occupation of a given site at time tn+1 is given by Ni(tn+1) which
depends on the state of the site at time tn. This can be written as

Ni(tn+1) = Ni(tn) + Gi;j |ads + Gi;j|des ; (8)

where Gi;j|ads and Gi;j|des represent the local evolution rules for adsorption and desorp-
tion, respectively. Eq. (8), expresses that the occupation of the site i at time tn+1

depends on its value at time tn modi8ed by the adsorption or desorption of a given
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dimer. The adsorption is considered as a Langmuir process, i.e., it is independent on
the state of the neighborhood. Local evolution rule for adsorption is given by

Gi;j|ads = [EiEi+1�i; j + Ei−1Ei�i−1; j]�(pads − �ads) ; (9)

where �i; j and �i−1; j are the Kronnecker delta. The step function �(pads−�ads) will be
one, if the adsorption probability pads is greater than a random number �ads (pads¿�ads),
otherwise it will be zero. The function de8ned in Eq. (9) takes the value 1, if the pair
of sites i; i+1 or i−1; i are empty, the index j is equal to i or i−1, and the argument
in the step function is positive, otherwise it is 0. (As is observed, pads does not depend
on the occupation numbers of the nearest-neighbor of the dimer.)
For desorption the rule is de8ned as

Gi;j |des =−NiNi+1�i; j�(pdes(i − 1; i + 2) − �des)

−Ni−1Ni�i−1; j�(pdes(i − 2; i + 1) − �des) : (10)

Here the function Gi;j |des takes the value −1, if the pair of sites i; i + 1 or i − 1; i
are occupied, the index j is equal to i or i − 1 and the argument in the step function
is positive, otherwise it is 0. The desorption probability pdes(k; l) depends on the
occupation numbers of the nearest-neighbor of the dimer and is de8ned as

pdes(k; l) = p∗
dese

−V=kBT (Nk+Nl) ; (11)

where p∗
des is a constant which does not depend on the occupation numbers.

To show how the method works, the evolution equation corresponding to the 8rst
moment (coverage) will be exampli8ed. To do this let us introduce the following
approximation:

〈Ni(tn+1)〉 − 〈Ni(tn)〉 ≈  0
d〈Ni(tn)〉

dtn
(12)

and setting t = tn, the di5erential equation for 〈Ni〉 is obtained as,

 0
d〈Ni〉
dt

= 〈EiEi+1�i; j�ads〉 + 〈Ei−1Ei�i−1; j�ads〉

−〈NiNi+1�i; j�(pdes(i − 1; i + 2) − �des)〉
−〈Ni−1Ni�i−1; j�(pdes(i − 2; i + 1) − �des)〉 : (13)

After performing the products of the dynamic variables in the required sequence and
taking the average on both sides, the equations of motion are constructed. To calculate
the average appearing in the right-hand side of Eq. (12), one can take into account that
some probabilities do not depend on the occupation variable, while others do depend,
therefore the averages do not factorize in the same way. If the probabilities px for
any x do not depend on the variable Ni or Ei and the randomly chosen numbers � are
statistically independent, one can factorize the average as

〈�x�k;jmimi+1 : : : mk : : : mi+r〉 = 〈�x〉〈�k;j〉〈mimi+1 : : : mk : : : mi+r〉 ; (14)
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where mi = Ni or Ei and

〈�(px − �)〉 = px ; (15)

�i; j = 1=M : (16)

If the probability px depends on Nk and /or Ek , the above factorization is not valid.
To overcome the problem the next identity can be used,

〈�x�k;jmimi+1 : : : mk : : : mi+r〉 = 〈�k;j〉〈pxmimi+1 : : : mk : : : mi+r〉 : (17)

Using exp(N$) = 1 + N [exp($) − 1] for N = 0; 1 and the above ensemble average,
the coupled evolution equations for the correlations are obtained. Then, the equation
for the average occupation number is written as

d〈N 〉
dt

= 2pads〈EE〉 − 2p∗
des[〈NN 〉 + 2C〈NNN 〉 + C2〈NNNN 〉] (18)

similarly for the nearest-neighbor correlation function,
d〈NN 〉
dt

=pads[2〈NEE〉 + 〈EE〉] − p∗
des[〈NN 〉 + (2 + 4C)〈NNN 〉)

+C(2 + 3C)〈NNNN 〉] ; (19)

where C = J − 1.
To help the notation, the site indices of N and E are eliminated in the last two

equations.
Otherwise, the adsorption and desorption probabilities must satisfy the following

relation:
pads

p∗
des

= exp(−(&0 − ')=kBT ) : (20)

In Eq. (20), ' is the chemical potential and &0 is the adsorption site energy which
takes the value &0 = 0 in the rest of the paper.
Due to that the 8rst two moments in Eqs. (18) and (19) depend on higher moments,

a hierarchy of coupled di5erential equations is necessary to describe the kinetics of the
process (equations for higher correlation functions are shown in the Appendix).
To obtain information from the set of coupled di5erential equations of motion, the

hierarchy must be truncated. Several works have been written about closure approxima-
tions, particularly by ben-Avraham and KOohler [13], who have considered a mean-8eld
(n,m)-cluster approximation for di5erent lattice models. The simplest closure scheme
is the Kirkwood approximation, in which one expresses all higher correlation functions
in terms of two-body correlation functions. To develop a systematic closure scheme,
one uses similar procedure as in equilibrium statistical mechanics. For instance, in the
quasi-chemical approximation, which gives exact results in one dimensional space, one
calculates the partition function for two sites exactly and then distributes these pairs
randomly over the lattice. Therefore, for the reversible kinetics, where the adsorbed
phase is in equilibrium with the gas phase, a (2,1) Kirkwood closure is enough to
obtain the exact solution for the coverage and nearest-neighbors correlation function.
This scheme can be used also in the irreversible desorption without lateral interactions.
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However, in the presence of lateral interactions, the (2,1) closure fails and more accu-
rate closure is necessary. In fact, one observes that a (4,3) Kirkwood closure gives an
exact solution for irreversible desorption and also for thermal desorption. This arises
because in order to desorb a given particle, one needs to know its local environment.
This e5ect was also observed in the desorption of monomers [14] and dimers [11]
where (3,2) and (4,3) closures were used, respectively.

3. Analysis of the results

3.1. Reversible kinetics. Equilibrium

To derive the equilibrium properties from the kinetics, it is necessary to reduce
the dimension of the set of coupled di5erential equations. To this purpose, a (2,1)
Kirkwood closure to obtain the coverage and nearest-neighbor correlation function in
exact form has been used. This scheme is equivalent to the quasi-chemical solution,
which is exact in one-dimensional space.
After truncating the hierarchy of di5erential equations, a set two coupled equations

is obtained for the coverage and nearest-neighbors correlation function, respectively.
Equating to zero both equations, we obtain the following expression for the coverage,

exp('=kBT ) =
〈NN 〉(1 + C)[� 2 + C〈NN 〉(2� − 1)]

� 2[1 − 2�+ 〈NN 〉] (21)

where the nearest-neighbors correlation function is given by

〈NN 〉 = 2C� − 1 − C +
√

C2(1 − 2�)2 + C(2 − 4�+ 4� 2) + 1
2C

: (22)

For, C = 0, one can obtain

exp('=kBT ) =
� 2

(1 − �)2
(23)

with

〈NN 〉 = � 2 : (24)

The isotherms given by Eqs. (21) and (23) are valid only for the case where the
dimers dissociate instantaneously after adsorption, and desorption proceeds from two
random neighboring monomer units which can or cannot belong to the original dimer.
In order to analyze the behavior of the adsorption process as a function of lateral

interaction, in Fig. 2, a set of adsorption isotherms for di5erent values of V is plot-
ted. As is observed, the isotherms are very di5erent from the corresponding to dimer
adsorption [11]. In fact, for low values of chemical potential, adsorption for repulsive
interactions is higher than for attractive interactions. To understand such a situation,
it is necessary to highlight that adsorption is de8ned as a Langmuir process, that is,
the probability of adsorption does not depend on the neighborhood of a pair of sites,
therefore, the equilibrium coverage depends on the desorption process.
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Fig. 2. Adsorption isotherms, V=kBT = 5; 4; 3; 2; 1; 0;−1;−2;−3;−4;−5;−6;−7 (left to right at � = 0:8).

Let us consider four consecutive occupied sites limited by empty sites; in case of
attractive lateral interactions, the desorption probability is lower for the dimer in the
middle of the con8guration than those located in the extreme of the chain, consequently
after reactions, all the particles are desorbed. For repulsive lateral interactions, desorp-
tion probability is higher for the dimer located in the middle of the con8guration than
those located in the extremes; then only one dimer desorbs and two monomers remain
adsorbed.
Another relevant feature observed for repulsive lateral interactions is the classical

step at half coverage which appears for repulsive lateral interactions. Note that, in our
case, the alternation between particles and vacancy cannot be perfect, because contacts
between particles are necessary in order to have desorption.

3.2. Irreversible kinetics. Isothermal desorption and remaining coverage

In the following, the desorption kinetics is analyzed, in particular the isothermal
process. After truncating the hierarchy system and neglecting adsorption, we obtain the
time dependence of the coverage and correlation functions solving the following two
equations:

d�
dt

= −p∗
des

[
2� + 4C

�2

�
+ 2C2 �3

� 2

]
(25)
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and

d�
dt

= −p∗
des

[
� + (2 + 4C)

�2

�
+ C(2 + 3C)

�3

� 2

]
; (26)

where we replaced 〈N 〉 = � and 〈NN 〉 = � in order to simplify the notation.
In particular, for the case without lateral interactions C=0, the solution is given by

�= �0 exp[2�0(e−p∗
dest − 1)] (27)

and

� = �20 exp[2�0(e
−p∗

dest − 1) − p∗
dest] ; (28)

where �0 is the initial coverage. In the limit t → ∞ we obtain the remaining coverage,
�R as a function of the initial coverage,

�R = �0 exp(−2�0) : (29)

Particularly, for �0 =1, we can relate this remaining coverage with the jamming cover-
age in the classical one-dimensional RSA problem [15], considering that the desorption
of dimer is equivalent to the random sequential adsorption of two adjacent vacancy.
In fact,

�J = (1 − �R) 
 (1 − e−1) : (30)

To analyze the dependence of the remaining coverage with the lateral interaction, it
is necessary to solve the seven coupled di5erential equations, (18), (19), (31)–(35),
after using (4,3) Kirkwood closure and neglecting adsorption. In Fig. 3 the remain-
ing coverage as a function of the initial coverage �0 has been plotted, for di5erent
lateral interactions. The initial coverage corresponds to the equilibrium con8guration.
As is observed, there are two set of curves depending on the sign of V : (i) the at-
tractive lateral interaction, where the remaining coverage is always smaller than for
V = 0 (8lled line) and (ii) repulsive lateral interaction, where �R is always greater
than the non-interacting case. The explanation of both cases is straightforward: attrac-
tion favors the contact between monomer units and then the desorption of dimers is
higher, repulsive interaction does not contribute to the contact and therefore desorption
diminished. For very high values of repulsive interaction, desorption starts for initial
coverage higher than �0 ¿ 0:5.

3.3. Thermal desorption

In this section, the thermal desorption kinetics is presented, particularly the thermal
desorption spectra in one and two-dimensional lattices are analyzed. The 8rst case
will be studied solving the kinetics equations, the second one, by using Monte Carlo
simulations. The TPD spectra for immobile desorption in 1D lattice are also obtained
by solving Eqs. (18), (19) and (31)–(35), where adsorption process is neglected.
In Fig. 4(a), the TPD spectra for non-interacting immobile adsorbate in a one-

dimensional chain have been plotted. In all desorption experiments the rate of des-
orption is proportional to the number of possible pairs in the surface; for this reason,
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Fig. 3. Isothermal remaining coverage as a function of the initial coverage. V (kcal=mol) = −1:5;−1;
−0:5;−0:3;−0:2;−0:1; 0; 0:1; 0:2; 0:3; 0:5; 1 (top to bottom). In the desorption experiment the temperature
was T0 = 60 K.

the curves are slightly shifted to the right as the initial coverage diminishes. It is im-
portant to note that, in all cases, the initial con8guration corresponds to the equilibrium
con8guration.
In Fig. 4(b), the spectra for attractive lateral interaction have been shown. The

position of the maximum is almost independent of the initial coverage; this is due to
the fact that dimers desorb from the extreme of the monomer domains.
In Fig. 4(c), the desorption curves for repulsive lateral interactions have been plotted.

Due to the repulsion, there are three possible cases for a generic dimer in the line: (i)
with two neighbors (very unstable), (ii) with only one neighbor (unstable) and (iii)
isolated (indistinct). In this 8gure, we can observe three peaks for �0 ¿ 0:5. The 8rst
peak corresponds to case (i) the second to case (ii), and 8nally the third to the case
(iii). For lower initial coverage only the case (ii) and (iii) are present.
The two-dimensional TPD spectra for non- and attractive lateral interactions are very

similar to the one-dimensional case. The repulsive case, however, is more interesting.
In fact, in Fig. 5, the TPD spectra for three di5erent repulsive interactions are plotted.
Case (i), for V = −0:2 kcal=mol, see Fig. 5(a); the maximum was shifted to higher
temperature as the initial coverage diminished. However, two well di5erent regime
according to the value of �0 can be distinguished. In fact, for �06 0:4 the temperature
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Fig. 4. TPD spectra in one-dimensional lattice for di5erent initial coverage. (a) No interaction, (b) attractive
interaction (1 kcal=mol) and (c) repulsive interaction (−1 kcal=mol). The initial coverage for the cases (a)
and (b) increase from �0 = 0:1 to 1 in step of 0.1, while for the case (c) increase from �0 = 0:5 to 1 in
step of 0.05.
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Fig. 4. Continued.

of the maximum is almost constant, while for �0 ¿ 0:4 this temperature diminished
almost linearly. To visualize this fact, it has been plotted in Fig. 6, the temperature of
the highest peak as a function of the initial coverage for di5erent lateral interactions.
Case (ii): for V = −0:3 kcal=mol, see Fig. 5(b): There are three desorption regimes,
the 8rst one, for �06 0:45 where the temperature of the peak is almost constant, the
second regime, for 0:56 �06 0:65 where the temperature is also constant but lower,
and 8nally for �0 ¿ 0:65 the temperature of the peak diminished as a function of the
initial coverage. Case (iii): for V = −0:5 kcal=mol, see Fig. 5(c), and for �0 ¡ 0:5
there is no desorption. For 0:5¡�06 0:65 the temperature of the maximum is almost
constant and for �0 ¿ 0:65 the temperature diminished with �0.
To explain the behavior of the spectra, let us describe the initial con8guration for the

desorption experiment as a function of lateral interaction. All the spectra are obtained
starting the desorption at initial temperature T0 =60 K. The initial con8guration, which
is the equilibrium con8guration, depends on the lateral interaction. This is due to the
fact that for temperature below the critical one T ¡Tc, the adsorbate undergoes an
order disorder phase transition, where at half coverage the particles are located in a
chessboard-like structure due to the repulsion between nearest neighbors; this structure
is called c(2 × 2) ordered phase. The critical temperature at half coverage is exactly
calculated and is given by the following relation, kBTc=V = 0:56729 : : : [16], which
depends on the lateral interaction. The phase diagram [17] corresponding to this kind
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Fig. 5. TPD spectra in two-dimensional lattice for di5erent values of repulsive interaction: (a) V =
−0:2 kcal=mol, with initial coverage varying from �0 = 0:1 to 1 in step of 0.1; (b) V = −0:3 kcal=mol,
with initial coverage at T = 130 K, varying from �0 = 1 to 0.5 in step of 0.05 (top to bottom);
(c) V = −0:5 kcal=mol, with �0 = 0:55 to 1 in step of 0.05.
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Fig. 5. Continued.

Fig. 6. Temperature of the maximum for the TPD spectra as a function of initial coverage. In the inset, the
phase diagram for monomers with nearest-neighbor repulsive interaction is shown.
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of continuous phase transitions is showed in the inset of Fig. 6, the horizontal lines
correspond to the relative temperature of the initial con8guration used in the desorption
experiment. Note that the initial con8guration is obtained after reaching the thermo-
dynamic equilibrium. By using this argument the spectra can be discussed: In case
(i) the critical temperature at half coverage is Tc = 57:30 K and the relative value
Tc=T0 =1:047, therefore, all the initial con8gurations are disordered, irrespective of the
initial coverage. In other words, particles are distributed randomly in the surface. Then,
for 0:5¡�0 ¡ 1 the number of nearest neighbors diminished almost linearly with the
initial coverage due to the repulsion and the corresponding maximum is shifted to
higher temperature. For coverage 0¡�0 ¡ 0:5, the contact is less signi8cant, therefore
the maximum is almost independent of the coverage. In case (ii), the critical tempera-
ture at half coverage is Tc = 85:95 K and their relative value Tc=T0 = 0:698. There are
three possible cases, for 0:6¡�0 ¡ 1 the initial con8guration is disordered, then the
spectra behave as is described above. Additionally, the shoulder appearing for higher
values of initial coverage corresponds to those isolated dimers. For 0:4¡�0 ¡ 0:6,
the initial con8gurations are ordered, then two possibilities must be distinguished: (a)
if the �0 ¿ 0:5 the dimers, which desorb, interact on the average with three occu-
pied nearest neighbors, irrespective of the initial coverage; (b) if �0 ¡ 0:5, due to the
order, there is no contact between monomers in the arrangement and consequently there
is no desorption. Finally, for �0 ¡ 0:4 the initial con8gurations are out of the phase
diagram, and then desorption is higher than for values of �0 belonging to the ordered
phase. For larger interactions (case (iii)), the critical temperature at half coverage is
Tc = 143:25 K and the relative value Tc=T0 = 0:4188. The spectra corresponding to
the initial coverage �0 ¿ 0:625 are similar to the later case, however the shoulder that
appears at high temperature becomes peak in a second. For coverage �0 ¡ 0:625 the
initial con8gurations are ordered; 8nally for �0 ¡ 0:5 there is not desorption.
Finally, the remaining coverage from the thermal desorption spectra is studied. In

fact, for a given initial coverage, and after the desorption experiment, it is observed
that the total area under the desorption curve is less than the initial coverage; that is
because the adsorbed phase is completely immobile and some particles do not react
during the process. This method allows the calculation of the remaining coverage in a
more eLcient way than under isothermal conditions. In Fig. 7(a), it has been plotted,
the thermal remaining coverage as a function of initial coverage for a one-dimensional
lattice, for di5erent interactions. The behavior of the curves are similar to those ob-
tained under isothermal conditions (Fig. 3). The thermal remaining coverage for a
two-dimensional square lattice is shown in Fig. 7(b); there is some di5erence in the
one-dimensional lattice, especially for repulsive interactions, where the e5ect of the
order is visualized in particular for strong repulsive interactions.

4. Conclusions

In this paper the kinetics of dissociative adsorption followed by associative desorption
has been studied. To obtain the kinetic equations, the so-called local evolution rules
have been used, which are alternative to the master equation approach.
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Fig. 7. Thermal remaining coverage as a function of the initial coverage. In the desorption experiment
the initial temperature was T0 = 60 K. (a) for one-dimensional lattice V (kcal=mol)=−1:7;−0:7;−0:5;−0:3;
−0:1; 0; 0:1; 0:3; 0:5; 1; 1:5 (top to bottom); (b) for two-dimensional square lattice. V (kcal=mol) = −0:5;
−0:3;−0:25;−0:2;−0:15;−0:1; 0; 0:1; 0:2; 0:4 (top to bottom).
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The system of coupled di5erential equations is truncated by using a mean-8eld
(n,m)-cluster approximation with di5erent degree of accuracy.
To obtain the equilibrium properties from the kinetic equations, a (2,1) closure has

been used. As a result, the coupled di5erential equations for the coverage and the
nearest-neighbor correlation functions that correspond to the quasi-chemical solution
is obtained, which is exact in one-dimensional space. In the adsorption isotherms it
is observed that at coverage �¡ 0:5, and the repulsive lateral interaction increases
adsorption with respect to the attractive case. The exact expression for the isotherm
di5ers from the corresponding to the non-dissociative dimer adsorption.
The non-equilibrium kinetics is also analyzed, with the focus on irreversible des-

orption. After desorption of nearest-neighbor monomers, a remaining coverage results
from isolated monomers, provided that the adsorbate mobility is neglected. The exact
solution for one-dimensional case is reported. As discussed above, the analytical ex-
pression for the non-interacting case is related with the classical RSA dimer model.
However, the interacting case corresponds to a new jamming state in the line.
The thermal desorption spectra are also obtained from the kinetic equations. The

e5ect of the lateral interactions on the TPD spectra is presented. By using MC sim-
ulation the study is extended to the two-dimensional case. The e5ect of the lateral
interactions is also studied. The most interesting case appears for repulsive lateral in-
teractions in the 2D case, where the kinetics are strongly dependent on the initial
temperature and coverage, especially for the con8gurations belonging to the ordered
region of the phase diagram.
It is important to emphasize that the local evolution rules, which have been used here,

present advantages compared with other methods like the master equation approach.
In fact, even when the equation for the evolution of a given state looks complicated,
the derivation is rather simple and can be easily implemented by symbolic language.
In addition, the de8nition of the Hamiltonian of the system is not necessary, as in the
master equation approach. Furthermore, other mechanisms can be added to the kinetic
process, as more complex surface reactions, surface reconstruction, etc.
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Appendix

The coupled di5erential equations for the third- and fourth-order correlation functions
is presented, which are necessary to obtain the desorption kinetics:

d〈NNN 〉
dt

= 2pads[〈NNEE〉 + 〈NEE〉]

−2p∗
des(1 + C)[〈NNN 〉 + (1 + C)〈NNNN 〉 + C〈NNNNN 〉] ; (31)
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d〈NEN 〉
dt

= 2pads〈NEEE〉 − 2p∗
des[〈NENN 〉 + C〈NNNEN 〉] ; (32)

d〈NNNN 〉
dt

=pads[2〈NNNEE〉 + 2〈NNEE〉 + 〈NEEN 〉]

−p∗
des(1 + C)[(3 + C)〈NNNN 〉

+2(1 + C)〈NNNNN 〉 + 2C〈NNNNNN 〉] ; (33)

d〈NEEN 〉
dt

=pads[2〈NEEEE〉 − 〈NEEN 〉]

−p∗
des[2〈NNEEN 〉 + 2C〈NNNEEN 〉

−(1 + C)2〈NNNN 〉] (34)

and
d〈NENN 〉

dt
=pads[〈NNEEE〉 + 〈NENEE〉 + 〈NEEE〉]

−p∗
des[〈NNENN 〉 + C〈NNNENN 〉

+(1 + C)〈NENNN 〉 + C(1 + C)〈NENNNN 〉] : (35)
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