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Abstract—Information about daily variations of vegetation
moisture is of widespread interest to monitor vegetation stress and
as a proxy to evapotranspiration. In this context, we evaluated op-
tical and passive microwave remote sensing indices for estimating
vegetation moisture content in the Dry Chaco Forest, Argentina.
The three optical indices analyzed were the Normalized Difference
Vegetation Index (NDVI), the Normalized Difference Water Index
(NDWI) and the Normalized Difference Infrared Index (NDII)
and, for the microwave region the Frequency Index (FI). All these
indices are mainly sensitive to leaf area index (LAI), but NDWI
and NDII, and FI are also sensitive to leaf water content (LWC)
and CanopyWater Content (CWC) respectively. Using optical and
microwave radiative transfer models for the vegetation canopy,
we estimated the range of values of LAI, LWC and CWC that
can explain both NDWI/NDII and FI observations. Using a com-
bination of simulations and microwave and optical observations,
we proposed a two step approach to estimate leaf and canopy
moisture content from NDWI, NDII and FI. We found that the
short variation of LWC estimated from NDWI and NDII present
a dynamic range of values which is difficult to explain from the
biophysical point of view, and it is partially related to atmosphere
contamination and canopy radiative transfer model limitations.
Furthermore, the observed FI short-term variations ( 8 days)
cannot be explained unless significant CWC variations are as-
sumed. The CWC values estimated from FI present a short-term
variations possibly related to vegetation hydric stress.

Index Terms—Microwave index, optical indices, vegetation
water status.

I. INTRODUCTION

T HE knowledge of temporal and spatial variability of veg-
etation moisture is critical to understand plant physiolog-

ical properties [1], to provide useful information in agriculture
for drought assessment [2] and to determining fire susceptibility
in forests [3]. Several indices related to vegetation moisture
have been proposed as remote sensing proxies to estimate forest
evapotranspiration [4]–[6].
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Historically, the estimations of foliar water content have been
based on optical systems. Several studies based on the relation-
ship between foliar and vegetation water content and spectral re-
flectances have been conducted [7]–[9]. Liquid water in leaves
has strong absorption features at shortwave infrared (SWIR)
wavelengths, which can be used to determine leaf water con-
tent (LWC, leaf H2O [g]/leaf fresh weight [g]). Therefore, Nor-
malized Difference Vegetation Index (NDVI) has limited capa-
bility for estimation of LWC, because it does not include re-
flectance information corresponding to the SWIR channels [10],
[11]. On the contrary, it has been shown [10], [12], [13] that the
reflectance ratio SWIR/NIR is related to the amount of water per
leaf area (equivalent water thickness, EWT, g/cm ). A SWIR
channel is critical to estimate EWT and a NIR channel is needed
to account for variation of leaf internal structure and dry matter
content variations [11], [14]. In particular, Normalized Differ-
ence Infrared Index (NDII), which uses 1.65 m and 0.85 m
channels, was successfully related to leaf water content in spe-
cific ecosystems [15]. NDII has been studied by several authors
under different names (i.e. Land Surface Water Index (LSWI)
using MODIS bands 2 and 6 for paddy rice landcover mapping)
[7], [16], [17]. Finally, in [8] the Normalized Difference Water
Index (NDWI) was developed using 1.24 m and 0.85 m chan-
nels. Both vegetation water optical indices present some sen-
sitivity to EWT at leaf scale [5], [8]. These experimental evi-
dences were backed using leaf and canopy radiative transfer in-
teraction models, which demonstrated the theoretical basis be-
hind the relationship between LWC and canopy reflectance in
the near-infrared spectral region [18], [19].
However, SWIR/NIR infrared indices are not a general so-

lution to estimate overall vegetation water content (VWC, (in-
clude moisture from leaf, branch and stem) H2O [kg/m ],) [20].
Although there is sensitivity to estimated VWC in herbaceous
vegetation, but this sensitivity is very low for complex vegeta-
tion architectures. The overall VWC includes two components,
one related to branches and steam, and a seasonal component
due to leaves. In crops areas the first component can be consider
constant, and VWC can be estimated using allometric equa-
tions [21]. For trees this approach is more difficult to implement,
since the annual xylem growth may supply water to the foliage,
and cannot be consider as a constant component [22].
In this context, passive microwave data becomes interesting

as a complementary source of information. Passive microwave
vegetation indices (such as Frequency Index (FI) and Emissivity
Difference Vegetation Index (EDVI) [4]) are also sensitive to
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vegetation properties [23]. Although characterized by coarser
spatial resolutions, passive microwave sensors present shorter
revisit times and are less affected than optical systems by atmo-
spheric conditions. In particular, both FI and EDVI are known
to be sensitive to vegetation moisture and structure. Moreover,
EDVI was found to be sensitive to evapotranspiration fraction
under all-sky conditions [4]. This day-to-day analysis of vege-
tation moisture variations during growing season is particularly
relevant, because it is mainly related to plant water stress due to
environmental factors.
In this study, we evaluated the potential of passive microwave

and optical remote sensing for estimating weekly variation of
vegetation moisture (expressed as fraction of water by weight
(in g/g)) in an open dry forest in Argentina. In particular, the
LWC (defined as g H20/g fresh leaves weight) and Canopy
Water Content (CWC, defined as g H20/g fresh weight branches
and leaves) are monitored with optical and microwave indices
using a two-step procedure. First, we estimated LAI as a func-
tion of NDVI using PROSAILH simulations [24] and MODIS
LAI product. Second, given LAI values obtained previously, we
estimated LWC from both NDWI and NDII (optical estimation)
and CWC from FI (microwave estimation), using PROSAILH
and a microwave interaction model [23] respectively. In this
way, we compared optical and microwave estimations of vege-
tation moisture, and weighted the utility of these indices.

II. METHODOLOGY

A. Study Area

The studied region is the Bermejo River Basin in Argentina
(22–27 S, and 58–66 W). This Basin includes the Chaco Plain,
which is a dry forest phytogeographic region. Fig. 1 reports
a map of this area, which is mainly an open dry forest [25],
with mean annual temperatures between 20 and 22 C, mean
summer temperatures between 24 and 27 C, and minimum an-
nual rainfall (500 mm). The dominant species of Chaco forest
is Quebracho (Schinopsisi lorentzeii and Aspidosperma que-
bracho-blanco), and it is accompanied by Bulnesia sarmientoi,
Prosopis spp., and Ziziphus mistol. The study area has several
important characteristics for microwave signal analysis: large
homogeneous sites covered by forest with biomass values that
vary between 70–110 Mg/ha. This region was mentioned as an
environmental hot spot of landcover change by [26].

B. Data Sets

Radiometric measurements were collected by AMSR-E
from 2007 to 2008 [27]. In this study, we have used L2 A
data of the ascending orbits that cover this area, which contain
values of brightness temperature at vertical (V) and horizontal
(H) polarizations. The temporal resolution is 3 days. Optical
measurements were obtained from Aqua’s 8-days composition
MODIS land surface reflectance product at 500 m spatial
resolution (MYD09A1), acquired from February 2007 to De-
cember 2008. The data were downloaded from the National
Aeronautics and Space Administration (NASA) site http://re-
verb.echo.nasa.gov/.

Fig. 1. Ecoregion of Bermejo River Basin. The study area is the Dry Chaco
plain.

TABLE I
SPECTRAL INDICES CALCULATED FROM MODIS AND AMSR-E INCLUDING
THEIR SHORTENED ACRONYM, MATHEMATICAL FORMULATION AND

REFERENCES

is the reflectance in MODIS band x (1 to 7), TB is the brightness temper-
ature, and v means vertical polarization.

C. Microwave and Optical Indices

Microwave measurements are affected by the absorption and
scattering properties of vegetation elements, which can be char-
acterized by total amount of biomass, its distribution among
trunks, branches and leaves, and vegetation moisture [23]. FI
was calculated using the brightness temperatures at 37 GHz (Ka
Band) and 10.6 GHz (X band) AMSR-E channels at vertical po-
larization (see Table I). As shown by [4], for forest areas the FI
calculated at vertical polarization has a higher correlation with
vegetation state than the horizontal component. In addition, fre-
quencies were selected after analyzing and comparing several
combinations discussed in a previous study [28]. As an example,
[29] showed that plant water status can be monitored using X
and Ka bands data. In order to better compare with optical in-
dices, the 8-day mean value of FI was calculated.
There are three main physical processes which could influ-

ence FI: 1) yearly cycle of leaves, 2) rainfall during acquisition,
and 3) variations of soil moisture [23]. For this area, soil mois-
ture has a small effect on FI due to relatively high crown atten-
uation (at least at X and Ka bands). On the other hand, rainfall
events can strongly affect the emission at Ka band, because the
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contribution of cold raindrops to the overall emissivity is impor-
tant. During rain events, FI is strongly reduced, and can become
negative. This was checked by comparing FI trends with in situ
precipitation data. Using this information, negative values of FI
were excluded from the analysis.
MODIS 8-day composition of the land surface reflectance

product was used to derive NDVI, NDWI, and NDII (see
Table I). We projected these indices into the AMSR-E spatial
grid for comparison. In general, optical remote sensing mea-
surements are influenced by atmospheric effects, clouds, and
viewing geometry [30]. Using the information contained in the
Quality Assessment band (QA), we excluded data of lower or
bad quality, with partial or complete cloud cover [31].

D. PROSAILH: Optical Radiative Transfer Model

PROSAILH is a combination of SAILH and PROSPECT
model [24], [33], [34]. The SAILH canopy reflectance model
is a one dimensional bidirectional turbid medium radiative
transfer model that has been later modified to take into account
the hot spot effect in plant canopy reflectance [34], [35]. SAILH
requires input parameters to produce the top of canopy bidirec-
tional reflectance (sun zenith angle (ts), sensor viewing angle
(to) and azimuth angle (ps)). PROSPECT model calculates the
leaf hemispherical transmittance and reflectance as a function
of four input parameters [33]: leaf structural parameter (N), leaf
chlorophyll a + b concentration (Ca+b), the dry matter content
(DMC), and the equivalent water thickness (EWT).
A simulation approach was conducted to study the capability

ofMODIS for retrieving EWT and leaf area index (LAI, m /m )
in the Dry Chaco Forest area. EWT (g/cm ), LWC (g H2O/g
fresh weight) and DMC (g/cm ) for the model are defined as:

(1)

(2)

(3)

(4)

where FW is the fresh weight, DW is the dry weight, and A is
the leaf area. Equation (4) shows the relation between EWT and
LWC.
Using the PROSAILH model [24], we generated synthetic

canopy reflectance in the 400–2500 nm range, using input vari-
ables that are site specific for Dry Chaco Forest (see Table II).
Since the study area is large and mostly inaccessible, input pa-
rameters for the models were derived from specific field sam-
pling and a comprehensive literature review. Viewing geometry
parameters sun angle (ts), view angle (tv), and relative azimuth
angle (ps) from land surface reflectance product were extracted
for every pixel in the image from MODIS metadata. The range
of variation for viewing geometry of all MODIS reflectance
products was 17 –52 for ts, 10 –59 for tv, and –169 for
ps. As far as vegetation parameter is concerned, we adopted the
usual range of values for N for dicotyledons, (1.25–2.5) [36],

TABLE II
SUMMARY OF MAIN AVAILABLE MEASUREMENTS

OF FOREST VARIABLES [25], [44]

[37]. The magnitude of the hot spot size-parameter was esti-
mated with the general rule of thumb defining it as the ratio
of leaf width to canopy height [38]. For these data, we esti-
mated the MODIS-equivalent reflectance using the sensor spec-
tral bandwidth: bands centered at 645 nm, 858 nm, 1240 nm,
and 1640 nm with 50 nm, 35 nm, 20 nm, and 24 nm bandwidth
respectively. From this synthetic MODIS-equivalent signature,
we calculated MODIS NDVI, NDWI, and NDII.

E. Forest Microwave Interaction Model

In order to interpret the observed trends in FI, the discrete
forest model described in [23] and modified in [39] has been
used to simulate the variations of FI as a function of CWC in
Dry Chaco Forest area. The model developed at the University
of Rome “Tor Vergata” uses the radiative transfer formulation
to describe the interaction between the incoming electromag-
netic wave and the vegetation [23]. It can compute the emis-
sivity [23] by using the energy conservation law. To represent
the vegetation geometry, a discrete approach is adopted, and di-
electric bodies with suitable shapes are used to describe the geo-
metric properties. The model includes the multiple interactions
among the different dielectric bodies which compose the vege-
tation and the soil. The model was previously tested using both
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Fig. 2. Ground biomass histogram extracted from [44].

ground based and airborne radiometers, over agricultural fields
and forest [40]–[43].
For the simulation we have used all the available information

about forest structure in the study area: biomass, dry matter den-
sity, gravimetric moisture content of woodymatter and diameter
at 1.3-m height (DBH) distribution [25], [44] (see Table II). It
is important to note that most of the trees in the area belong
to species characterized by high-density wood, such as Aspi-
dosperma quebracho-blanco, Schinopsis lorentzii, and Bulnesia
sarmientoi. ForAspidosperma quebracho-blanco, the following
densities (weights over fresh volume) are given: fresh matter of
1100 kg/m and dry matter of 875 kg/m . The mean size of the
leaves is 5 cm length and 2 cm wide, with a mean leaf thickness
of 0.02 cm.We have used these values for the whole forest, since
other dominant species show very similar values. Using given
data, the other canopy variables required by the model as input
have been derived according to the procedure specified in [39].

F. Available Ground Measurements

A summary of the average available data of the selected forest
area used for both models is presented in Table II. This in-
cludes the distribution of DBH which will be used in the sim-
ulations of Section II-B. Additional ancillary information was
extracted from an above ground biomass (AGB) map, derived
from MODIS [44]. This AGB was estimated using the Random
Forest algorithm and the vegetation indices of MODIS. The re-
sulting product was validated using independent biomass mea-
surements. In this validation, a mean relative error of 3% and a
maximum relative error of 15% were found [44]. Fig. 2 gives
the characteristic biomass distribution extracted from the AGB
map. In order to use updated land cover categories, a land cover
maps of the area provided by the Argentinean National Forest
Monitoring System (UMSEF) [25] and from [31] were utilized.

G. Vegetation Water Content Estimation

The vegetation moisture estimation methodology developed
in this work is a two step procedure, based on several assump-
tions (Fig. 3). In general, the vegetation indices values depend
on several canopy variables (LAI, LWC, CWC, chlorophyll
content, leaf internal structure, and others [24]), which are
known to change throughout the year. Nevertheless, at first

order we will assume that the annual cycle of all the studied
vegetation indices (NDWI, NDII, and FI) depends on LAI,
LWC, and CWC. However, the observed rapid variations of
vegetation indices are mainly related to vegetation moisture
changes, not LAI changes [45], [46] Therefore, it is mandatory
to know LAI to robustly estimate LWC from observations. This
can be accomplished using the MODIS LAI product [47] or by
using NDVI, which is mainly sensitive to LAI (at least for low
values of LAI [48]) and presents a moderate dependence on
LWC. Once LAI is obtained, we can use the estimated LAI to
retrieve LWC from optical (NDWI and NDII) and microwave
(FI) indices. For both steps, interaction models were used.
In order to retrieve a value of a biophysical variable for every

acquisition, a minimization procedure was implemented. The
iterative technique consists of building the cost function with
the observed and modeled values of the index as

(5)

where and are the observed and modeled value
of the index respectively, and is the retrieved biophysical vari-
able (LAI, LWC for theoretical indices and CWC for the mi-
crowave indices). Minimizations are performed for every 8-day
period independently (temporal unconstrained minimization).
However, if some temporal correlation of the estimated vari-
able is expected, it is possible to increase the robustness of the
analysis by including temporal constraints to the solution. For
example, abrupt changes (spikes) in NDVI can correspond to
abrupt changes in LAI and/or cloud contamination and com-
posite algorithm noise [28], [31]. Nevertheless, spikes in the
LAI trend are not biophysically sound for the vegetation in our
study area [31]. In this cases, it is possible to constraint the so-
lutions by forcing the Fourier spectrum of the solution to only
a given set of harmonics (Harmonic Analysis of Time-Series
(HANTs) method [49]). In this way, it is possible to filter the
solutions which present a given range in frequency harmonics
in an estimated variable (Fig. 3). The accuracy of the observed
and simulated index values was determined from the determi-
nation coefficient (r ) and the root mean square error (RMSE).

H. Estimation of LAI

The first step is to estimate LAI using MODIS LAI product
or MODIS NDVI time series and PROSAILH model with the
input parameters of Table II, assuming a constant value of EWT
for the whole year. Since NDVI is almost insensitive to EWT,
this assumption is reasonable for estimating LAI. For this case,
(5) is written as

(6)

where the estimated value of LAI corresponds to the minimum
value of .

I. Estimation of LWC and CWC

After LAI is estimated, LWC is calculated as a function of
NDWI and NDII and CWC as a function of FI with a similar
procedure as in Section II-G, but using the estimated LAI time
series as input. For example,

(7)
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Fig. 3. Methodological flowchart. MODIS land surface reflectance product (MYD09A1) was used to calculate NDVI, NDWI, and NDII, and AMSR-E Level-2A
brightness temperatures product (AE 2A) was used to calculated the FI index. The radiative transfer models used were the Microwave model from [23], and the
PROSAILH model from [24]. LAI could be estimated using two options: MODIS LAI product (MYD15A2) or NDVI and PROSAILH model. References: LAI is
leaf area index, LWC is leaf water content, CWC is canopy water content, is observed and is modeled, and is the cost function.

In this way, the LAI-dependent seasonality is removed in the
indices, and the remaining signal is interpreted as changes in
LWC or CWC.

III. RESULTS

A. Vegetation Indices Time Series Analysis

Fig. 4 reports the trends of NDVI, NDII, NDWI, and FI as a
function of time for the 2007–2008 growing season, expressed
as days from July 1, 2007. The starting period for each year is
taking at the start of winter, so it includes the complete vegeta-
tion cycle. NDVI, NDII, NDWI, and FI time series present an
evident annual pattern, related to the phenological cycle.
NDVI trend correlates with annual phenology events such as

onset greenness, peak greenness and senescence period. Using
the TIMESAT approach [50] with a Savitzky-Golay filtering,
we estimated the spring onset and end of growing season days
for the vegetation in our study area, which are 80 and 300
days from July 1st for the period 2007–2008 (starting in the aus-
tral winter). This is in agreement with bibliography in which the
mean growing season period has been estimated betweenMarch
and October [51]. NDWI and NDII time series also present an
annual cycle, with higher values in summer and lower values
in winter. The main annual behavior of FI shows a decrease in
summer and an increase in winter. This is related to the fact
that, at microwave frequencies, leaf growth tends to increase the
emissivity at the lower frequencies (X band), but an opposite ef-
fect can be obtained at Ka band, due to leaf scattering occurring
when the leaf becomes large versus wavelength [23].

Fig. 4. Representative examples of FI, NDII, NDWI, and NDVI time series
data for 2007–2008. Dark box corresponds to the growing season period.

The correlation between water indices (NDWI and NDII)
during growing season is 0.87 . The correspondence
between FI and water indices during this season is consistent,
with statistically significant correlation coefficients
of 0.72 and 076 respectively. As expected, these indices
were inversely related, since a peak of leaf development corre-
sponds to a minimum in FI. There is a low significant correlation

between NDVI and FI during the growing season
. For the same period the correlation values between
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Fig. 5. NDVI, NDWI, and NDIII as a function of LAI, simulated for different
LWC values at fixed sun angle (ts), view angle (tv), and relative azimuth angle
(ps). Dashed lines represent the range of observed values. Color bar represents
a gradient of LWC values.

NDVI and NDWI and is 0.87 and between NDVI and NDII is
0.79 (both ).

B. Estimation of LAI and LWC

The effects of leaf variables on canopy VNIR and SWIR re-
flectances were studied in order to test our work hypothesis,
using high, medium, and low values of LAI and LWC. Simu-
lation results show the theoretical sensitivity of NDVI, NDWI,
and NDII to LAI and LWC for Chaco forest as predicted by
PROSAILH (Fig. 5). As expected, NDVI presents high sensi-
tivity to LAI and negligible sensitivity to LWC (although NDVI
also presents some sensitivity to changing chlorophyll concen-
trations (Ca+b) (Fig. 6). Moreover, NDWI and NDII show sen-
sitivity to LAI, but also present a significant sensitivity to LWC
(Fig. 5). This means that, according to simulations, NDWI and
NDII should be partially correlated to LWC. A number of re-
searchers reported similar results, highlighting how NDWI and
NDII are related to LWC [21], [45], [52]. It is important to note
that in principle, there is no general direct physiological corre-
lation between LWC and chlorophyll content for the forest in
the study area [11], [14].
Estimation of LAI: Since our main objective is to estimate

LWC and CWC, to de-trend optical and microwave indices time
series we could use MODIS LAI product [47] or NDVI-derived
LAI (using PROSAILH). We evaluated both LAI estimations
for two reasons: 1) MODIS reflectance product and MODIS
LAI product differed in the spatial resolution (500 m and 1
km, respectively); and 2) independent evaluations of the pre-
vious Collection 4 MODIS LAI data product arrived at absolute
values of LAI error greater than 1.0 [53]–[55]. In this context,
we first used a constrained minimization approach to retrieve
LAI as a function of NDVI observations and PROSAILH sim-
ulations, assuming a constant mean value of LWC = 0.43 g/g

Fig. 6. NDVI as a function of LAI, simulated for different Ca+b values at fixed
sun angle (ts), view angle (tv), and relative azimuth angle (ps). Dashed lines
represent the range of observed values. Color bar represents a gradient of Ca+b
values.

Fig. 7. LAI estimated from NDVI using PROSAILH model [24]. Dark box
corresponds to the growing season period.

corresponding to the mean LWC of the dominant tree species
present in the study area (Fig. 7).We implemented the constraint
minimization since optical products are strongly affected by at-
mospheric effects in our study area. Therefore, NDVI presents
abrupt changes which cannot be related to rapid changes in LAI
or chlorophyll content. As observed in Fig. 7, the estimated
LAI presents a maximum in austral summer and a minimum in
austral winter.
In order to check for product robustness, in Fig. 8 a compar-

ison between LAI estimations andMYD15A2 product (MODIS
global Leaf Area Index and Fraction of Photosynthetically Ac-
tive Radiation (FPAR) product) is presented [47]. As expected,
MODIS LAI product and estimated LAI present a very good
correlation but a small offset (r = 0.99, RMSE = 0.11). This
offset could be a consequence of the differences between
product scales of the NDVI and the MODIS LAI product (500
m vs. 1 km). The accuracy between both LAI estimations are
good, therefore we concluded that both options are good to be
used as input for leaf and canopy water content estimations. In
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Fig. 8. Scatter-plot between MODIS LAI product (MYD15A2) and LAI esti-
mations from NDVI.

Fig. 9. LWC estimated from NDII and NDWI using PROSAILH model [24]
for the 2007–2008 period. Dark box corresponds to the growing season period.

the following sections we used our NDVI-based LAI estima-
tions.
Estimation of LWC Using NDWI/NDII: Using the previously

estimated LAI time series and the parameters of Table II, we es-
timated LWC using the observed values of NDWI, NDII, and
PROSAILH simulations. As described before, estimation con-
sisted in determining by exhaustive iteration the LWC value
which minimizes the cost function within the range of opera-
tion (5). No temporal constraint was used, since abrupt changes
in LWC may also be observed in the study area.
The mean value of the LWC estimated using NDWI and

NDII for 2007–2008 is shown in Fig. 9. The estimated value
of LWC presents a mean value of 0.22 g/g for the growing
season, which is low even for dry forests. Moreover, LWC
presents abrupt changes, which after investigation were found
to be related to minor cloud contamination. In general, LWC
values estimated from NDII are higher than the ones estimated
from NDWI. Overall, these results indicate that, at least in the
growing season, the observed values of vegetation water indices
cannot be solely explained by changes in LAI or chlorophyll
content.

Fig. 10. Relation between FI derived from model [23] (line) and AMSR-E ob-
servations at different LAI and CWC. Dashed lines represent the range of ob-
served values. Color bar represents a gradient of CWC values.

It is important to note that these results are valid only during
the growing season. In this time of the year, NDII (r = 0.90,
RMSE = 0.025), and NDWI estimations (r = 0.82, RMSE =
0.014) presented better accuracy with observed values than in
other seasons (NDII r = 0.7, RMSE = 0.032; NDWI r = 0.53,
RMSE = 0.037). These low values in the other seasons are prob-
ably related to complex canopy structure. PROSAILH model is
best adapted for use in homogeneous vegetation canopies [56],
[57]. Unfortunately, the turbid medium assumption used in this
model does not account for heterogeneities in the canopies (e.g.,
multiple leaf layers having different optical characteristics), like
the ones found in Chaco forest outside the growing season. In
addition to this, the parameters used for the simulations were
measured during summer time (higher LAI values).
Estimation of CWC Using FI: To understand the relation be-

tween FI and canopy variables, we used the model described in
Section II-E. Fig. 10 shows the simulated trends of FI at a fixed
soil moisture value (soil moisture = 0.2 g/g), computed using 37
GHz and 10.6 GHz AMSR-E channels, as a function of CWC
and LAI. As expected, FI decreases with LAI, due to the in-
crease in canopy X band emissivity with increasing leaf biomass
[23], [29]. Moreover, FI decreases with increasing canopymois-
ture [23].
Using the estimated LAI time series and the parameters of

Table II, we estimated CWC using the observed values of FI
and the microwave model simulations in an unconstrained
minimization scheme (Fig. 11). As observed, the measured
and simulated FI values are in the same range ( 0.005–0.025)
(r = 0.99, RMSE=2.094 e ). Similarly to NDWI/NDII, the
variations observed in FI could not be explained considering
only LAI changes. Estimated CWC presents a non-constant
trend with a mean value of 0.56 g/g. For the growing season,
the observed variations in CWC are of the order of 0.05 g/g.

IV. DISCUSSION AND CONCLUSION

In this paper, several estimations of vegetation moisture
(LWC and CWC) from remote sensing data were presented.
Methodologically, all the estimations were based on interaction
models and minimization techniques, where the value of the



428 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 7, NO. 2, FEBRUARY 2014

Fig. 11. CWC estimated from FI using the model of [23] for the 2007–2008
period. Dark box corresponds to the growing season period.

biophysical variables which minimizes the difference between
data and model simulations was chosen as the best estimate.
Both radiative transfer models (PROSAILH [24] and Tor Ver-
gata [23]) were run with all the available ground information of
the study area. Three optical (NDVI, NDWI, and NDII) indices
and one microwave (FI at Ka and X band) index were tested
in order to evaluate their potential to estimate leaf moisture in
Dry Chaco Forest.
A direct comparison of land retrievals with in situ data would

be required for a complete validation. In the case of the cur-
rent application (estimation of changes in vegetation moisture
at regional scale), it is desirable to use spatially representative
regional estimations based on in situ sensor networks or in-
tensive field campaigns over large areas. However, collecting
large-scale ground truth data is quite challenging and costly in
areas like Chaco forest. This is mostly due to the large footprints
involved ( 50 km 50 km) and logistic matters. Therefore, it
is also important to validate large-scale vegetation moisture re-
trievals through cross-sensor comparisons, model comparisons
and ancillary data. In this framework, a methodology was pro-
posed and the consistency that it provides between satellite data
and interaction models was studied.
After evaluating indices’ seasonal trends using simulations,

it was shown that NDWI, NDII and FI seasonal cycles cannot
be solely explained by LAI variations at least during the
growing season. Moreover, indices sensitivity to LWC and
CWC were confirmed by both radiative transfer models. Short
8-day variations of optical indices could not be univocally
related to leaf moisture variation, due to the presence of cloud
contamination. Nevertheless, the small 8-day variations in
FI cannot be explained unless an 8-day change in vegetation
moisture is assumed. This cannot be related to atmospheric
effects or sensor artifacts, since AMSR-E is an instrument of a
very low noise ( 1 K), and the study area presents low standard
deviation of brightness temperature (standard deviation (SD)
0.4 K). This result is particularly relevant, since short-term

variations in CWC could be caused by synoptic scale weather
variations and can be used to monitor quick changes of en-
vironmental factors, including water vapor deficit [5], [58].

According to our results for the growing season analyzed, there
are several events where the estimated CWC mean value is
reduced about 0.05 g H2O/g. This reduction, although small,
could have implications in the surface water flux in Chaco,
where most of the above ground water is in the vegetation due
to the large evapotranspirations rates. Moreover, it is important
to remark that these small changes cannot be explained by
sensor errors, atmospheric noise or target heterogeneities. In
this context, as was discussed and validated in Harvard forest
by [5], [46], and [58], microwave indices may be used to esti-
mate evapotranspiration using the principle of surface energy
balance.
Despite not being able to make a direct comparison with field

data, it is relevant to mention that the average values of LWC for
the main species of the study area, Aspidosperma quebracho-
blanco (mean LWC 0.43 g/g [53]), Prosopis Flexuosa (mean
LWC 0.60 g/g [59]), Zizyphus mistol (mean LWC 0.54 g/g [59])
are all higher than LWC estimated from optical data. These low
estimations of LWC ( 0.20 g/g, calculated without including
cloud contaminated data) and its low dynamic range (0.17–0.39
g/g), seem to be related to problems in the PROSPECT model
for the Chaco area. This result suggests that the PROSPECT
model is not well suited for heterogeneous canopies, as shown
in several previous studies [59]. The inversion of PROSAILH
under such conditions leads to a bias in the retrieval of biophys-
ical parameters [56], [60].
It is relevant to compare LWC and CWC estimations. In gen-

eral, it is assumed that tree wood volume and leaf area have
strong allometric relationships with tree diameter [61] so a re-
lationship between leaf and overall canopy moisture was ex-
pected. Nevertheless, no significant relation was found. This
was observed before [22], where it is shown how LWC is a small
fraction of the total CWC, so in some cases there are no ability
to predict CWC from optical indices (mainly related to LWC).
One possible explanation is based on tree physiology. In some
forests, xylem growth in several past years may supply water to
the foliage [22], effectively decoupling LWC and CWC. On the
contrary, for annual crops increases in xylem and leaf area are
highly related [21].
It is also interesting to compare inherent virtues and weak-

nesses of optical and microwave approaches to vegetation mois-
ture estimation. First, SWIR and NIR wavelengths are sensi-
tive to the first layer of the canopy. Furthermore, NDWI/NDII
can only be retrieved under clear cloud conditions. On the other
hand, FI can be obtained in all-sky conditions, with the ex-
ception of rain events. In addition to this, microwave radia-
tion has much more penetration in vegetated areas than optical
wavelengths. The microwave emission of a canopy is an inte-
gration of microwave radiation from the whole canopy’s ver-
tical profile weighted by its transmission [4], [58]. Although
microwave measurements have lower spatial resolution than
SWIR and VNIR observations, its temporal resolution is much
better (3 days maximum). Moreover, as shown in [5], hourly
observations from several satellites provide the opportunity to
monitor repetitive diurnal variations of passive microwave ob-
servations, which can account for diurnal changes in vegetation
moisture. Diurnal variation of vegetation moisture cannot be de-
tectable from MODIS, since Terra and Aqua MODIS daytime
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overpasses are 11.30 and 14.30 local time, respectively, and are
relative close to the solar noon.
Further work is needed in order to validate the exact relation

between canopy moisture and microwave indices, and the ca-
pability to use FI as a short-term proxy of evapotranspiration.
As future work, we are planning to validate these hypotheses in
other dry forest areas, which present a long history of ground
truth (Australia).
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