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Anomalous Hall effect in the coplanar antiferromagnetic coloring-triangular lattice
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We study the anomalous Hall effect on the antiferromagnetic coloring-triangular lattice with a coplanar
magnetic configuration in the presence of a spin-orbit interaction. The effect of the spin-orbit coupling is included
at an effective level as a rotation of the electronic spin as the electrons hop from site to site. Our result reveals
that a finite Hall conductivity in the planar 120◦ structure takes place if a finite spin-orbit coupling is present. A
quantized Hall conductivity occurs at global band gaps resulting from the topologically nontrivial band structure.
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I. INTRODUCTION

The anomalous Hall effect (AHE) is characterized by the
presence of a Hall conductivity in the absence of an external
magnetic field, in systems where the time-reversal symme-
try is broken, as, for example, in magnetic states with net
magnetization. But even in the absence of an external field
and net magnetization, the Hall phenomena can be observed.
In noncollinear magnetic textures, like ferromagnetic and
antiferromagnetic skyrmion lattices [1–4], the so-called topo-
logical Hall effect [1] (THE) can be observed. Despite their
distinctive features, in both cases the Hall phenomena can
be described by a nontrivial Berry phase acquired by the
electronic states, which leads to a nonzero Berry curvature.
In the AHE the underlying physics can be described as a
consequence of a reciprocal-space Berry curvature, while in
the case of the THE the underlying physics can be described
as a consequence of a real-space Berry curvature.

When the magnetic configuration corresponds to coplanar
structure with no net magnetization it is not obvious that a Hall
effect can take place. The coplanar configuration seems to fail
at generating a real-space Berry curvature, as well as the lack
of net magnetization fails at generating a Berry curvature in
the reciprocal space.

However, it is well known that certain frustrated magnets
with coplanar noncollinear states, such as Mn3Sn [5] and
Mn3Ge [6], exhibit a large value for the Hall conductivity
[7–9]. Here, as in the case of a collinear state, the spin-orbit
coupling (SOC) plays a central role in the electronic properties
of these systems and in particular in the Hall conductivity.

The AHE in coplanar antiferromagnets suggests the pres-
ence of a Berry curvature associated with the SOC. Indeed,
it turns out that the effect of the SOC can be interpreted in
terms of an effective magnetization configuration with a net
contribution to the Berry curvature [10].

Recently, Zhang et al. [11] have shown that, by introducing
the SOC at an effective level in the hopping amplitudes, a

direct contribution to the Berry phase in the reciprocal space
can be obtained, leading to a nonzero Berry curvature when
the SOC is adequately chosen. The effect of the SOC is taken
into account by a proper change of the hopping terms. To this
end they introduce a set of SU(2) rotation matrices Ui, j that
take into account the rotation induced by the SOC when the
electrons hop between sites i and j.

In this work, we show that an AHE can emerge on a tri-
angular lattice with a coplanar magnetic configuration and no
net magnetization. The existence of spontaneous Hall effect
on a triangular lattice in the absence of net magnetization has
been reported previously for the case of noncoplanar magnetic
structure in Ref. [12], which gives rise to a THE. In the
present case, we show that a triangular lattice with nonuniform
nearest-neighbor hoppings and SOC, in the absence of net
magnetization and with a coplanar magnetic structure, can
also exhibit a spontaneous Hall effect, but in this case an
AHE. We consider a particular pattern of nearest-neighbor
hoppings that can be mapped to a three-colored triangular
tessellation, generally called color-triangular (CT) lattices.
These CT lattices can exhibit a band structure quite similar
to that of the kagome lattice [13]. As is well known, many
interesting phenomena are attached to the kagome lattice,
such as frustration, Dirac cones, and flat bands, which are
the scenario for strongly correlated phases [14–21]. Due to
the aforementioned connection, many of these phenomena are
expected to be present in the CT lattices. Recently, it was
shown that the organic compound Cu-dicyanobenzene, which
presents the structure of the CT lattice and a ferromagnetic
state, exhibits the AHE [22]. In this system, a band structure
with nontrivial Berry curvatures emerges as a consequence of
a net magnetized state, the presence of SOC, and the similarity
with its kagome partner. To the best of our knowledge, the
antiferromagnetic counterparts of these CT lattices have not
been well studied and are the main objective of this article.
In what follows we show that the AHE could emerge in the
120◦ coplanar structure without net magnetization, which is
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FIG. 1. (a) The triangular lattice with the plaquettes highlighted
in orange representing the magnetic cell. The intracell links (black
links) include the t1 hopping and the SOC, while the intercell links
correspond to the t2 hopping. The spins on each site are labeled by
1, 2, and 3. The vectors δ1,2 represent the primitive lattice vectors of
the Bravais lattice. For the 120◦ structure [panels (b) and (c)], two
possible chiralities are compatible with this magnetic ordering.

characteristic of the triangular antiferromagnets. In the model
discussed here, proper combinations of the hopping strengths
and, crucially, the SOC lead to a significant contributions to
the AHE even in the absence of a ferromagnetic order. As
we show here, in this model the interplay between SOC and
inhomogeneous hopping integrals leads to the appearance of
topologically nontrivial bands. Moreover, for a suitable set of
parameters a significant contribution to the Hall conductivity
is present. We show that, as a consequence of the presence of
topologically nontrivial bands with a definite Chern number,
a quantized AHE takes place within the global band gaps.

The article is organized as follows. In Sec. II we introduce
the model under study and its band structure. In Sec. III we
analyze the band topology and deliver the main results on the
Hall conductivity and the presence of chiral edge states. In
Sec. IV we discuss possible experimental realizations of the
model as considered here. Finally, in Sec. V we summarize
our main results and conclusions.

II. THE MODEL AND BAND STRUCTURE

The model consists of a two-dimensional triangular lattice
with a lattice spacing a. The magnetic cell is comprised of
three sites where the spins lie in the plane of the system form-
ing a 120◦ structure (Fig. 1). The bonds connecting two sites
within a magnetic cell [black lines in Fig. 1(a)] are character-
ized by the hopping amplitude t1 and the SOC, whereas the
bonds connecting sites between adjacent magnetic cells are
characterized by a hopping amplitude t2 without SOC [blue
lines in Fig. 1(a)]. The effect of the magnetic texture is taken
into account via a Hund’s coupling between the electronic spin
and the localized magnetic moments. The SOC is treated here
in the context of an effective theory as discussed in Ref. [11].
The Hamiltonian then reads as follows:

H = Ht + HJ ,

Ht =
∑
〈 j,k〉

(tk jc
†
kUk jc j + t∗

k jc
†
jU

†
k jck ),

HJ = −JS

2

∑
j

c†
jσc j · n j . (1)

The c j and c†
j are two-component spinors:

c j =
(

c j,↑
c j,↓

)
, c†

j = (c†
j,↑, c†

j,↓).

The localized spin on site j is represented by the vector n j ,
which takes three possible values leading to a tripartite lattice
as shown in Fig. 1. The SOC is introduced effectively in
the SU(2) matrix Uk j through two parameters for each bond
connecting the sites k and j. Since Uk j represents a rotation of
the electronic spin we can write it in terms of a unit vector, ak j ,
that gives the direction of the rotation and the rotation angle
αk j (that measures the SOC strength):

Uk j = exp
[
− iαk j

2
(ak j · σ)

]
, (2)

where σ = (σx, σy, σz ) is a vector of Pauli matrices. In this
effective approach the direction of the vectors ak j , which
characterize the SOC, can be inferred following the rules for
the Dzyaloshinskii-Moriya interaction (DMI) [23]. According
to these rules, the mirror plane Mz parallel to the lattice
plane would set the unit vectors ak j to be perpendicular to the
lattice plane, but we consider the lattice to be embedded in a
three-dimensional structure which breaks this Mz symmetry.
The presence of a mirror symmetry plane, Mi, perpendicular
to each black bond in Fig. 1 and passing through its midpoint
sets the vectors ak j to be parallel to Mi in such bonds. Thus,
we choose the vectors ak j to point to the outer region of the
triangular plaquette and ak j ⊥ r̂k j , where r̂k j points in the
direction of the intracell bond connecting the sites k and j
[black lines in Fig. 1(a)], that is,

a12 = 1

2
cos(φ)x̂ −

√
3

2
cos(φ)ŷ + sin(φ)ẑ,

a23 = − cos(φ)x̂ + sin(φ)ẑ,

a13 = 1

2
cos(φ)x̂ +

√
3

2
cos(φ)ŷ + sin(φ)ẑ,

where φ is the angle between the vectors ai j and the lattice
plane.

Up to now this model corresponds to the general CT lattice
and could be the scenario for a wide variety of phenomena
if we consider different setups for the parameters. However,
we limit ourselves to a particular case. We consider |t1| � |t2|.
The reason for this is twofold. On one side, we found that for
|t1| > |t2| the Hall conductivity is strongly suppressed even
in the presence of a SOC as shown in Fig. 4. On the other
side, the setup with |t1| � |t2| has the potential to describe real
systems as we discuss in Sec. IV.

While the band structure changes with the value of φ, the
topological characteristics of each band remains unchanged,
so, for concreteness, we set φ = 0 for the rest of the article.
This situation can reproduce the emergent SOC due to inver-
sion symmetry breaking in real systems (discussed in Sec. IV).

The 120◦ magnetic configuration is degenerated for the
case of an inversion-symmetric antiferromagnet with pure ex-
change interactions. This degeneracy corresponds to the two
possible chiralities for the 120◦ structure [Figs. 1(b) and 1(c)].
However the presence of an antisymmetric interaction such as
the DMI can lift this degeneracy and select a state with definite
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chirality. For the present case we assume that the magnetic
configuration corresponds to that shown in Fig. 1(b).

We describe the properties of this model through the
Hamiltonian in Eq. (1), which in momentum space is a 6 ×
6 matrix given by

Hk =
⎛
⎝− JS

2 σ · n1 H†
12 H13

H12 − JS
2 σ · n2 H†

23
H†

13 H23 − JS
2 σ · n3

⎞
⎠, (3)

with

H13 = t1U13 + t2(e−ik·(δ1+δ2 ) + e−ik·δ2 ),

H12 = t1U12 + t2(e−ik·(δ1+δ2 ) + e−ik·δ1 ),

H23 = t1U23 + t2(e−ik·δ2 + eik·δ1 ),

and δ1,2 are the primitive lattice vectors of the Bravais lattice
as depicted in Fig. 1. We arrive at Eq. (3) by writing the
Hamiltonian in Eq. (1) in terms of the operators ci, replacing
the sum

∑
i over lattice sites by the sum

∑
R

∑
rμ(μ=1,2,3),

where R represents the plaquette positions and rμ represents
the position of each site μ with respect to the center of the
plaquette. We then Fourier transform cR,μ:

cR,μ = 1√
N

∑
k

exp[ik · (R + rμ)]ck,μ.

Finally we absorb the phase factor eik·rμ by introducing new
operators c̃k,μ = eik·rμck,μ.

The most general electronic structure consists of six bands
that, for J = 0 and α = 0, merge into a lower number of
degenerated bands. We study some particular limits of the pre-
vious model and, in order to do that, we consider t1 + t2 = 1
and parametrize the imbalance between them as t1 = (1 +
λ)/2 and t2 = (1 − λ)/2, with −1 � λ � 1. In the first place
we have the case λ = 1 (t2 = 0). In this situation the system
consists of a series of independent triangular plaquettes; this
leads to electronic states localized at each plaquette. In fact the
band structure corresponds to two flat bands: the upper band
is doubly degenerated and the lower band has a fourfold de-
generacy. For 0 < λ < 1 the lower band splits into two bands
with two crossing points at the � and K points. However, they
remain well separated from the upper band. A gap closing for
λ = 0 (t1 = t2) introduces additional crossings, now between
the upper and lower bands.

On the opposite side λ = −1 (t1 = 0), and for J = 0 and
α = 0, the band structure resembles that of the kagome lattice
with three (doubly degenerate) bands and level crossings at the
� and K points. For −1 < λ < 0, those band crossings survive
and no other crossings are developed insofar as λ belongs
within the previous range.

It is important to mention that, since in the model con-
sidered here the SOC acts through the t1 terms, in the limit
t1 = 0 the SOC has no effect on the band structure irrespective
of the value of J . Out of this limit, the introduction of the
Hund’s coupling and the SOC can induce a band structure in
which all bands are well separated from each other. In the next
section we study this regime, that is, −1 < λ < 0, and discuss
the effect of a finite SOC on the Hall conductivity.

III. HALL CONDUCTIVITY

Since the Hall conductivity σxy is related to the topology
of the electronic bands, we start with a topological analysis of
the band structure of the system. To this end we consider the
Bloch Hamiltonian Hk in Eq. (3). Without loss of generality,
we fix the SOC strength setting as α = 0.2π in the rest of the
article.

As we mention in the previous section, when we move the
values of the parameters some of the gaps are closed and
then reopened, signaling a topological phase transition. To
characterize this transitions we calculate the Chern numbers
Cn, where n labels the bands from the lowest (n = 1) to the
highest (n = 6), associated with each band. The set of Chern
numbers can be computed as follows:

Cn = 1

2π i

∫
S
�n(k)d2k, (4)

where the integral is evaluated on the surface S corresponding
to the Brillouin zone. The Berry curvature is expressed in
terms of the Berry connection An

kμ
(k) for the nth band, with

μ = x and y, through the equations

�n(k) = ∂kx A
n
ky

(k) − ∂ky A
n
kx

(k), (5)

An
kμ

(k) = 〈n(k)|∂kμ
|n(k)〉. (6)

The Chern numbers are computed by numerically discretizing
the Brillouin zone and computing the Berry phase in each
discrete plaquette in k space, following the numerical method
developed by Fukui-Hatsugai-Suzuki [24].

As mentioned in the previous section, for positive values
of λ (t1 > t2) the system is topologically trivial; that is, we
found Cn = 0 ∀n. For negative values of λ we found nonzero
Chern numbers for the different bands. For example, in Fig. 2
we show the band structure together with the Chern numbers
of each band for two representative cases. When the 120◦
structure is uniformly rotated through an angle θ around a
vector perpendicular to the plane of the system, the band
structure changes. The Hall conductivity for a Fermi level
within a band gap behaves as a step function of θ (varying
from 1 to −1), similar to the behavior shown in Ref. [10].
Each band retains its nontrivial character regardless of the
angle value, although the Chern number sign changes. Thus,
without loss of generality, for the magnetic background we
keep the structure as depicted in Fig. 1(b).

So far we have seen that the presence of SOC could lead
to nontrivial bands for suitable ratios of t1/t2. We analyze
now the consequences of those results in the anomalous Hall
conductivity, which is our ulterior objective. The Hall conduc-
tivity σxy is given by [25]

σxy = e2

(2π )h

∫
B.Z.

∑
n

f (En(k))�n(k)d2k, (7)

where the sum runs over all energy bands and f (En(k)) is
the Fermi-Dirac distribution. At zero temperature we can ap-
proximate f (En(k)) by the step function �[ε f − En(k)], with
ε f being the Fermi level, and compute the Hall conductivity
as a function of ε f for different values of J at fixed values
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FIG. 2. (a) Hall conductivity and band structure for λ = −0.6
and J = 0.4. One gap is visible in the band structure between bands
4 and 5, which leads to a plateau in the Hall conductivity equal to the
accumulated Chern number. All bands have a nonzero Chern number.
(b) Hall conductivity and band structure for λ = −0.6 and J = 8. In
this case there are three gaps in the band structure, each one leads to
its corresponding plateau in the Hall conductivity. All six bands have
a nonzero Chern number.

λ = −0.6 and α = 0.2π as seen in Fig. 2 for two representa-
tive cases.

We can see that the ingredients considered here could
introduce large contributions to the Hall conductivity as a con-
sequence of nontrivial bands. It is interesting to note that even
in the weak Hund’s coupling regime the Hall conductivity
is large. In fact, for small values of J the Hall conductivity
could be increased by a factor of 2 as compared with the
large J case shown in Fig. 2(b). A quantized Hall conductivity
is obtained at the global gaps indicated by the red bars in
Fig. 2, σxy = C × e2/h, where C = ∑

n Cn and the index n
runs over the band index up to the last band below the gap
under consideration. This quantization of the Hall conduc-
tivity is a hallmark of the nontrivial topological structure of
the electronic bands and suggests the presence of robust edge
states. The magnitude of the plateaus in the Hall conductivity
is proportional to the number of chiral edge channels. We
therefore expect two homochiral states for the case repre-
sented in Fig. 2(a) at E ≈ 0.6. In the case represented in
Fig. 2(b), we have at most one chiral state, and the chirality of
the states at E ≈ −3.9 and E ≈ 3.8 is opposite to that of the
state at E ≈ −4.4. To show this in this last case, we consider
a ribbon of 30 sites long (along the direction v̂ =

√
3x̂
2 + ŷ

2 )

and infinitely long in the ŷ direction. The band structure for
the ribbon is shown in Fig. 3(a). The band structure consists
of two band bundles separated by a large band gap. There are
three smaller gaps, and within these last gaps we can find the
aforementioned edge states. In Fig. 3(b) we show the band
structure around the gap at E ≈ 3.8. The bands crossing the
gap connect the upper and lower levels and correspond to the
gapless edge states. Each of them are localized at opposite
ends of the ribbon as shown in Fig. 3(d) for ky/3a = 0.5.
A similar situation is observed for the gap at E ≈ −4.4 in
Fig. 3(c), where we find again a pair of states crossing the
gap and they correspond to edge states as seen in Fig. 3(e).
In Figs. 3(d) and 3(e) the colors red and blue distinguish
the states localized at the right and left edges, respectively,
and the intensity of the colors and the size of the points are
proportional to the square of the wave function |i|2 on each
site of the ribbon. We have also computed the polarization of
the chiral edge states shown in Figs. 3(d) and 3(e). For the
left and right states in Fig. 3(d), we find S ≈ (0.155, 0, 0.145)
and S ≈ (−0.160, 0,−0.163), respectively. Analogously, we
find S ≈ (−0.256, 0, 0.118) and S ≈ (0.134, 0,−0.176) for
the left and right states, respectively, in Fig. 3(e). It is seen
that Sy, the polarization along the edge, is zero. Then, the
polarization of the edge states is transverse to the propagation
direction and lives in the x-z plane; a similar phenomenology
is found in the quantum anomalous Hall effect in collinear
states [26].

Since for λ > 0 all the Chern numbers are zero, the
absolute value of the Hall conductivity becomes orders of
magnitude lower than the σ (ε f ) obtained for λ < 0, as seen in
Fig. 4. A different situation arises when we turn off the spin-
orbit coupling by setting α = 0, in this case both Cn = 0 ∀n
and σxy(ε f ) = 0 (see Fig. 4, blue line), which evidences the
relevance of a finite SOC.

In Fig. 5 we show a phase diagram representing the
different values of the vectors of Chern numbers C̄ =
(C1,C2,C3,C4,C5,C6) in the J-λ space for 0.4 < J < 2 and
−1 < λ < 0. We concentrate on negative values of λ since, as
was previously discussed, all the Chern numbers for λ > 0 are
zero. Each region maps a different set of Chern numbers for
each band.

IV. POSSIBLE REALIZATION IN REAL SYSTEMS

Besides the cases discussed previously, we have seen that
even for the case of t1 = t2 the Hall conductivity exhibits
a strong plateau. This brings the possibility to realize the
anomalous Hall effect in a conventional triangular antifer-
romagnet, provided the SOC can suitably be introduced on
each triangular plaquette. This effect can be induced by the
adsorption of transition metal atoms sitting on the lattice sites
and voids of a transition metal dichalcogenide monolayer and
forming a triangular arrangement. In Ref. [27] this process
actually leads to a DMI between the magnetic moments that
forms a triangular antiferromagnetic lattice. Thus we expect
that the SOC, as considered here, can be induced by this
mechanism. Following the previous line, the more generic CT
lattice (with t1 �= t2) can be achieved by the same mechanism
of adsorption. This was considered in Ref. [13]. The authors
showed that Au atoms adsorbed onto a monolayer of the
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FIG. 3. (a) The band structure of a ribbon that is 30 sites long for λ = −0.6, J = 8, and α = 0.2π . Detail of the band structure showing the
edge states at (b) the upper band gap (around E ≈ 3.8) and (c) the lower band gap (around E ≈ −4.4). The blue and red circles [at ky/3a = 0.5
in panel (b) and ky/3a = −1 in panel (c)] correspond, respectively, to the left and right edge states represented for the upper (d) and lower (e)
band gaps. In panels (d) and (e), the size of the circles and the intensity of the color, red (for right edges) and blue (for left edges), indicate the
square of the wave amplitude at the corresponding site on the ribbon.

compound Ca2N lead to a band structure that has the structure
of the kagome bands, and this requires |t1| < |t2| in the CT
lattice partner.

The magnetization configuration (the 120◦ state) consid-
ered here is characteristic of several frustrated antiferromag-
nets. In particular, the triangular antiferromagnetic lattice
exhibits this state as a ground state. However, in the pure

FIG. 4. Hall conductivity for three different configurations of the
parameters λ and α but with a set Hund’s coupling J = 8. When the
SOC strength is set to α = 0, the Hall conductivity is null. If we
increase the SOC strength, the Hall conductivity becomes nonzero,
but acquires significant values only for λ � 0, which corresponds to
t2 � t1.

Heisenberg Hamiltonian with only exchange interactions,
there are many states within this class of configuration. In
addition to the SO(3) global symmetry, which corresponds
to the different orientations of the planar magnetic configu-
ration, there is an additional degree of freedom, namely, the
chirality. This property further distinguishes the 120◦ state
to belong in two classes as shown in Figs. 1(b) and 1(c).
For the pure Heisenberg Hamiltonian the two chiralities are
degenerated. However, the chirality selection can occur due
to chiral interactions such as the DMI. This kind of process
could take place, for example, in the triangular antiferromag-
net Ba3NbFe3Si2O14 [28]. It is important to mention that in
a recent article the authors claim that the DMI is not strong
enough to lift the chirality degeneracy [29].

FIG. 5. A phase diagram in the J-λ space for 0.4 < J < 2 and
−1 < λ < 0. We concentrate on negative values of λ since all the
Chern numbers for λ > 0 are zero. Each colored region maps a
different set of Chern numbers for each band.
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Thus, the different and key ingredients of our model are
present in actual electronic and magnetic systems. So far, we
have considered them as separated components and spread
over a wide range of materials. Reuniting them into a single
compound can be challenging, since these ingredients can
appear entangled in a real system, which possibly can make it
difficult to obtain a representative material consistent with our
model. However, as we mentioned earlier, the emergent band
structure of the CT lattice resembles that of the kagome lattice
(in fact, by setting t1 = 0 the band structure of the kagome
lattice is recovered), which provides an alternative scenario
in which the previous ingredients could be disentangled and
effectively realize the CT lattice as considered here [13].

V. CONCLUSIONS

We have studied the anomalous Hall effect on a CT lattice
antiferromagnet and have shown that a strong anomalous Hall
effect is present in a coplanar magnetic texture without net
magnetization. The SOC is at the heart of this phenomena
since, for the system without SOC, the Hall conductivity is
inhibited. Another key ingredient is the different values for the
intraplaquette (t1) and the interplaquette (t2) hoppings. When

the former is weaker than the latter, a strong Hall conductivity
emerges. The other way around, for t1 > t2, the Hall conduc-
tivity is strongly suppressed.

The results discussed here reveal that the CT lattice pro-
vides an excellent playground for the anomalous Hall effect
even in the antiferromagnetic case with a coplanar mag-
netic configuration. As such, we expect that the phenomena
described here could be realized in the systems previously
discussed, from which we highlight the antiferromagnetic or-
ganic compounds with the structure of the CT lattice and the
triangular antiferromagnetic systems formed with transition
metal atoms adsorbed onto a transition metal dichalcogenide
monolayer. In view of the similarity between the band struc-
ture of the kagome lattice and the CT lattice, the latter
also provides an excellent playground for studying the inter-
play between strong correlations and topology in electronic
systems.
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