
3.847

Determining Real-Time
Communication Feasibility in IoT
Systems Supported by LoRaWAN

Matias Micheletto, Paula Zabala, Sergio F. Ochoa, Roc Meseguer and Rodrigo Santos

Special Issue
Green Communication & Computing for Heterogeneous Internet of Things

Edited by

Prof. Dr. Bo Cheng

Article

https://doi.org/10.3390/s23094281

https://www.mdpi.com/journal/sensors
https://www.ncbi.nlm.nih.gov/pubmed/?term=1424-8220
https://www.mdpi.com/journal/sensors/stats
https://www.mdpi.com/journal/sensors/special_issues/L7S78ZEW3J
https://www.mdpi.com
https://doi.org/10.3390/s23094281

Citation: Micheletto, M.; Zabala, P.;

Ochoa, S.F.; Meseguer, R.; Santos, R.

Determining Real-Time

Communication Feasibility in IoT

Systems Supported by LoRaWA.

Sensors 2023, 23, 4281. https://

doi.org/10.3390/s23094281

Academic Editor: Guanding Yu

Received: 16 March 2023

Revised: 10 April 2023

Accepted: 20 April 2023

Published: 26 April 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Determining Real-Time Communication Feasibility in IoT
Systems Supported by LoRaWAN

Matias Micheletto 1,†, Paula Zabala 2,† , Sergio F. Ochoa 3,*,† , Roc Meseguer 4,† and Rodrigo Santos 5,†

1 CIT Golfo San Jorge Research and Transfer Center (CIT-GSJ), CONICET,
Comodoro Rivadavia 9000, Argentina; matias.micheletto@gmail.com

2 Department of Computer, FCEN-UBA, ICC-CONICET-UBA, Buenos Aires 1428, Argentina;
pzabala@dc.uba.ar

3 Department of Computer Science, Universidad de Chile, Santiago 8370456, Chile
4 Department of Computer Architecture, Universitat Politècnica de Catalunya, 08034 Barcelona, Spain;

meseguer@ac.upc.edu
5 Department of Electrical Engineering and Computers, UNS, ICIC-CONICET-UNS,

Bahia Blanca 8000, Argentina; ierms@uns.edu.ar
* Correspondence: sochoa@dcc.uchile.cl
† These authors contributed equally to this work.

Abstract: LoRaWAN is a long range and low power protocol devised for connecting devices under
the Internet of Things (IoT) paradigm. This protocol was not conceived to support real-time message
delivery; therefore, it is not always feasible using it to support IoT solutions involving large wireless
sensors networks and time constraint messaging, e.g., in early warning systems for natural hazards,
remote monitoring of industrial machinery or autonomous control of transportation systems. This
paper presents a model that provides certainty, at the design time of IoT systems, about the real-time
communication capability of their supporting network. It allows solution designers: (1) to decide if
developing or not a real-time IoT solution based on the feasibility of its communication infrastructure,
and (2) to improve the communication infrastructure to try making real-time communication feasible
using LoRaWAN.

Keywords: LoRaWAN; real-time communication in IoT systems; feasibility model; heuristic
optimization; large wireless sensors networks

1. Introduction

LoRaWAN is one of the leading technologies to support IoT-based solutions, as they
can provide connectivity in long distances with a rather low energy demand [1]. It im-
plements a transmission protocol that addresses the physical and link layer, and provides
access control based on an ALOHA unslotted protocol.

LoRaWAN networks operate in a star topology (Figure 1) that involves end-devices,
gateways, a network server and communication links with different purposes. The end-
devices (EDs), usually sensors and actuators, are connected to one or more gateways. These
gateways (GWs) concentrate the messages from the EDs and forward them to the Network
Server (NS) through a stable communication link known as backhaul. This backhaul is
usually implemented through 4G/5G, wired fiber optic or satellite connections.

In several application domains, like smart cities and industrial IoT, the applications
require connecting a large number of EDs and operate under time constraints (i.e., perform-
ing real-time communication). For instance, in industrial control networks the periodicity
of messages delivery can be in the order of tenths per second, which is at least two orders
of magnitude smaller than frequencies used in most of IoT applications. Something similar
happens in many IoT applications that monitor urban critical infrastructure like airports,
traffic light systems or subway systems.

Sensors 2023, 23, 4281. https://doi.org/10.3390/s23094281 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s23094281
https://doi.org/10.3390/s23094281
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-1341-4152
https://orcid.org/0000-0002-0431-8767
https://orcid.org/0000-0002-9414-646X
https://orcid.org/0000-0003-0382-477X
https://doi.org/10.3390/s23094281
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s23094281?type=check_update&version=1

Sensors 2023, 23, 4281 2 of 27

Figure 1. Operation scenario of IoT systems supported by LoRaWAN.

Although LoRaWAN networks work properly when managing messages with low
sampling frequencies or large periods, their scalability is not always feasible when thou-
sands of end-devices are connected and time constraints are present for message deliv-
ery [2,3]. On the one hand, LoRaWAN packets access the shared channels randomly,
producing collisions that affect the network scalability. On the other hand, the real-time
communication support provided by LoRaWAN is limited by the duty-cycle restrictions,
the overhead protocol operation, and the use of ALOHA as MAC protocol.

In some cases, these limitations can be addressed controlling the density and location
of the gateways in the supporting network; i.e., the EDs are located where they are required
by the IoT application, but the number and location of the gateways can be established (at
the network infrastructure design time) considering the time-constraints communication
requirements. Although the system designers can reconfigure the location of the gateways
(or add new ones) to try supporting real-time communication, in many cases addressing
such a requirement is not feasible.

In order to deal with this situation, the system designers require to count on mech-
anisms that give them certainty, at the IoT system design time, on the feasibility of per-
forming real-time communication on a particular network infrastructure. Unfortunately,
the gateways assignment and location problem in these networks has been proved to
be NP-hard [4–7]. Therefore, it cannot be solved with an exact method; at least not in a
reasonable time, since it has exponential characteristics.

In case of IoT communication scenarios supported by LoRaWAN, their design be-
comes an optimization problem; i.e., it is necessary to determine the minimum number
of gateways, and also their locations, to guarantee that all end-devices can transmit their
messages on-time to the Network Server through the gateways.

In order to support the communication infrastructure design activity, this paper
presents an integer linear programming (ILP) model that determines, at the network design
time, the feasibility to perform real-time communication in a particular LoRaWAN network.
Moreover, the model allows the designers to establish the number and location of gateways
required to reach real-time communication, when that communication type is feasible. The
model allows these designers to obtain several alternatives of solution (i.e., the number and
location of gateways) using different optimization heuristics.

Section 2 discuses recent proposals to deal with network scalability limitations when
time constraint messages must be addressed. The following Section 3 presents background
information on LoRaWAN that allows to better understand the communication dynamic of
the proposed model. Section 4 presents the design decisions and constraints considered to
support real-time communication. Section 5 introduces the proposed model, which allows
determining feasibility of real-time communication in a particular LoRaWAN network.
Section 6 presents three heuristics to determine the minimum number of gateways to

Sensors 2023, 23, 4281 3 of 27

support real-time communication (when it is feasible), and the locations of these nodes.
Section 7 describes the experimental evaluation and explains the obtained results. Finally,
Section 8 presents the conclusions and future work.

2. Related Work

As mentioned before, in several application domains the IoT systems require a com-
munication infrastructure capable of connecting thousands of sensors at the sensing layer,
e.g., in smart cities. Many of these nodes must operate under time constraints, therefore,
real-time scheduling becomes a key issue to address in large sensors networks. In what
follows, we discuss the related work on three aspects highly relevant to deal with the
stated challenge: the LoRaWAN limitations in terms of scalability and real-time support,
the placement of gateways to allow real-time communication, and the main extensions
proposed to LoRaWAN to deal with message synchronization issues.

2.1. Real-Time and Scalabitity Support in LoRaWAN

In [3] the authors analyze the limits of LoRaWAN, and identify the scalability problem
as one of the main issues caused by the duty-cycle restriction and time needed for message
transmission. Aligned with that, in [2] the authors present a survey on challenges for LoRa
and LoRaWAN networks, where they identify the link coordination and resource allocation
as the main problems to deal with multiple access problem. These authors also indicate
that is required a suitable coordination for using the links and allocating end-devices to
gateways. In this sense, there are some research works where the gateways location and
EDs assigned to them, are treated for the case of wireless sensor networks [8,9]. These
proposals consider different issues like energy demand, throughput, and data aggregation.

In [10] the authors propose a new MAC protocol for LoRa to reach a better scalabil-
ity. The protocol is backward compatible with LoRaWAN, but incorporate new features
(e.g., to allow group acknowledgments), and thus to reduce the required bandwidth and
increase the number of end-devices that can be scheduled. This protocol, named DG-LoRa,
addresses the network scalability in LoRa, but it does not deal with the gateways allocation
problem that is present in LoRaWAN.

2.2. Gateways Placement Problem Optimization

In [6] the authors propose a greedy heuristic to minimize the use of gateways in
wireless mesh networks. However, when this approach is implemented on LoRaWAN
networks, it produces asymmetric loads on the gateways. In [11], the allocation problem
is analyzed for the case of LoRaWAN networks. Particularly, end-devices are allocated
to gateways using an algorithm based on the Signal-to-Noise Ratio (SNR) and SF range.
The objective is to minimize collisions or maximize throughput while saving energy, but
without considering time constraints.

In [12] the authors introduced an ILP model to compute an optimal distribution of the
end-devices allocated to gateways within a smart-city IoT communication network. The
model uses the spreading factor and transmission power together with the geographical
distance to build an efficient network. Extensive simulations show that the proposed mech-
anism improves other allocation algorithms. The authors propose a two-step optimization
procedure. First they allocate the end-devices to the gateways based on the SF range.
Then, the transmission power used by each end-device is minimized to avoid unnecessary
collisions. Although useful, this proposal does not use real-time communication as a
factor to allocate end-devices to gateways, therefore, the real-time communication cannot
be ensured.

In [13] the authors present an adaptive priority-aware resource allocation mechanism
to improve LoRaWAN scalability and energy consumption in a dense IoT scenario. The
simulation results show high packet delivery and low delay for high priority applications.
However, the approach is not considered real-time because deadlines are not included in
the analysis.

Sensors 2023, 23, 4281 4 of 27

2.3. LoRaWAN Extensions to Deal with Synchronization Issues

In [14], a synchronization entity is incorporated to the Network Server (NS) to compute
a time sharing schedule for the end-devices. New nodes becoming active in the network,
when they register with a gateway, are allocated to a particular time slot that is synchronized
with certain periodicity to keep clock drifts under control. Although the proposal is
interesting, it does not allocate end-devices to gateways, therefore, the it is not clear how
this proposal allows LoRaWAN network scale and operate under real-time constraints.

In [15] the authors present an extension to LoRaWAN protocol, called Aggregated
Acknowledgment Slotted Scheduling LoRaWAN (A2S2-LoRaWAN), to improve the scala-
bility and reliability of these networks. This protocol contains time-slotted ALOHA-based
periodic frame structure, which is supported by aggregated acknowledgment methods for
scheduling transmissions. The authors proved an important reduction in the bandwidth
requirements, which allows increasing the number of end-devices that can be scheduled
to transmit.

In [16] the authors report an extension to the LoRaWAN architecture, and implements
a packet-forwarding mechanism between the end-devices of the system. The proposal
helps overcome potential infrastructure blackouts after an earthquake; therefore, it provides
safety awareness information when it is most needed. The LoRaWAN extension is not
oriented to support the real-time communication, but to provide alternative interaction
paths between the EDs and the NS.

In [17] a real-time MAC protocol is proposed to provide real-time guarantees in the
context of industrial IoT systems. The authors present an heuristic to schedule messages
in nodes to facilitate their transmission on-time. Similarly, in [18] the authors propose a
new MAC protocol for LoRa to provide real-time guarantees in industrial monitoring and
control scenarios. The scheduling is based on the implementation of transmission frames,
in which messages are scheduled on a set of logical-index following some heuristic rules.
Then, the same authors extended their previous work to address mixed traffic of periodic
and aperiodic real-time messages [19]. Both approaches are not based on LoRaWAN but,
on LoRa as physical and link layer.

Summarizing, there is a set of previous works that propose modifications to the
LoRaWAN medium access control protocol, as the ALOHA mechanism restricts the network
scalability when time constraints are present. Next section describes a set of communication
design decisions that considers the characteristics of the LoRaWAN protocol and shapes the
model proposed to determine feasibility of the real-time communication in these networks.

3. LoRaWAN Background

LoRaWAN uses a spread spectrum technique to transmit messages with low power.
The technique facilitates the reception of these messages, but at the cost of low bit-rate
transmission [20]. As the radio frequency is within the unlicensed spectrum, the duty-cycle
(DC) associated to each device is small, being 1% the most used value. These networks
specify six spreading factors (SFs), which result orthogonal among them. This allows the
EDs to transmit simultaneously using different SFs. Each ED and GW may use different
channels; the typical bandwidth (B) used by each channel is 125 Khz.

The last parameter to set-up in a LoRaWAN communication is the code rate (CR) that
specifies the number of redundant bits to be sent. Typically, this parameter is set to 4/5.
With this information it is possible to determine the bit rate (BR) achievable with each
possible combination of parameters by computing the Equation (1) [21].

BR = SF
B

2SF
CR (1)

From (1) we can see that, while moving up in the SF selection, the BR is almost halved
each time, i.e., the time needed to transmit a message is approximately doubled. This
expression is provided by manufacturers, and it comes from the modulation used by the
radio transducers.

Sensors 2023, 23, 4281 5 of 27

LoRaWAN provides a complete set of working primitives to interconnect EDs with
GWs using three different modes of operation: A, B and C. All modes are bi-directional.

In class A, when a message is ready to be transmitted, it wakes up and transmits
following an ALOHA based protocol. After an up-link transmission, two short down-link
reception windows are open. When the ACK message is received, the end-device goes back
to sleep mode.

In class B, the EDs operate in a synchronized fashion with the gateways. The gateway
transmits beacon frames at regular intervals of time, and the end-devices use these frames
to open reception windows.

Finally, in class C the end-devices are always listening; therefore, the messages can
be exchanged at any time. Clearly, this last mode of operation is less efficient in terms of
energy consumption, but it has better throughput than the previous ones. All end-devices
should operate in class A at the moment of registering with a gateway.

LoRaWAN devices can be tuned in sixteen different channels, and like in the case
of the SFs, these channels are orthogonal. This provides a rather large set of combina-
tions (eighty), in which end-devices and gateways may operate simultaneously without
producing collisions. The GW devices can listen up to eight channels at the same time [22].

When a node transmits (i.e., an end-device or gateway), its message is listened by
every node within the transmission range. To avoid collisions, it is mandatory to guarantee
that only one device is accessing the medium at a particular combination of SF and channel.

On the other hand, LoRaWAN introduces a rather long overhead (30 bytes) in each
message that affects the real-time communication. Considering the time needed to transmit
a byte; e.g., when using SF7 (see Table 1), just the MAC header will require 45 ms. Without
sending payload bytes, the 1% DC imposes the minimum period to be 4.5 s. This limits
the real-time operation of LoRaWAN, as message requiring shorter update periods are not
feasible. This aspect should be considered at the network design time. Table 2 defines the
symbols used along the paper.

Table 1. Transmission bit rates and byte transmission delay.

SF BR [b/s] Delay per Byte [ms]

7 5468.8 1.5
8 3125.0 2.6
9 1757.8 4.6

10 976.6 8.2
11 537.1 14.9
12 292.9 27.3

Table 2. Symbol table.

Symbol Meaning

B Transmission banwidth used by the radio transducer.
CR Code rate value related to the amount of redundancy bits used in the modulation.
SF Spreading factor, it varies between 7 and 12.
BR Bit-rate, number of bits per second transmitted by the radio transducer.
Z Message length in bytes.
c Message transmission time.
T Message period.
D Message deadline.

ED End-device.
GW Gateway.
ch Channel.
E Set of end-devices.
G Set of gateways.

Sensors 2023, 23, 4281 6 of 27

4. Design Decisions and Constraints to Support Real-Time Communication

Recognizing the large diversity of real-time communication scenarios in IoT systems,
this proposal is focused on those where the sampling rates are large (i.e., from some seconds
to minutes) and LoRaWAN is used as communication protocol. The proposal establishes
changes in the configuration of end-devices, gateways and network server, but not in the
LoRaWAN protocol; i.e., the proposed modifications do not affect the way in which the
schedule of messages is organized in large networks with thousands of nodes. For this,
end-devices are operate in class B.

The proposal also includes a time sharing mechanism, in which end-devices transmit
their messages to a particular gateway at predefined instants using a specific spreading
factor and channel. This communication dynamic is inspired in the proposal presented
in [14]. As real-time operation should be predictable at the network design time, we have
assumed the following characteristics for the communication model:

• Time is considered to be discrete and the time unit is the slot. Events are synchronized
with the beginning of the slots.

• For simplicity, it is assumed that when changing from SFi to SFi+1, the number of slots
required to transmit the message is duplicated.

• It is assumed that the transmission range is doubled with each increment in the SF.
• Each EDi transmits a sequence of periodic messages characterized by (Zi, Ti, Di). It is

assumed Ti = Di and ∀i Zi = Z. All time units are expressed in slots.
• The time required to transmit one message, with SF7, B = 125 KHZ and CR = 1, is

the time unit or slot.
• All end-devices used the same transmission power.
• A non-preemptive earliest deadline first policy is adopted for end-devices transmission

scheduling [23].

Assuming these design decisions, next subsections describe the communication dy-
namic and constraints considered to support real-time messaging.

4.1. Communication Dynamic

When an end-device (ED) becomes active, it has to register within the network server
by selecting for this the best possible gateway through which it will transmit messages
to that server. However, when dealing with real-time messages, the common criteria of
choosing the gateway with the best RSSI is not necessarily used, as end-devices should be
distributed to comply with time restrictions. Thus, in some cases a gateway with lower
RSSI will eventually be chosen.

Typically, an ED begins its registration sending an uplink message to all the gateways
within communication range, indicating its location, device identification (DevId), message
period and RSSI. The gateways (GWs) forward the messages to the network server where
the Network Synchronization and Scheduling Entity (NSSE) is located [14]. Based on the
information provided by the ED, the NSSE defines the gateway, spreading factor and time
slot in which the end-device should transmit. Once this information is received by the ED,
it can begin its participation in the network. Figure 2 shows the sequence diagram of this
joint procedure.

Sensors 2023, 23, 4281 7 of 27

Figure 2. Sequence Diagram for the Join Procedure of an ED.

4.2. Constraints to Support Real-Time Messaging

Let Γ be a set of real-time flows Fi. Each flow is associated to only one EDi and
described as a stream of periodic messages with period Ti, size in bytes Zi and deadline
Di. In each period, a new instance of the message is generated for its transmission, which
should be sent before its deadline Di. For simplicity, it is assumed that the absolute deadline
is equal to the period.

As previously explained, the time needed to transmit a message depends on three factors:
the spreading factor SF, the bandwidth B and the code rate CR. Considering these elements,
a real-time flow Fi will require a transmission time given by Ci(Zi, SFi, Bi, CRi) (2).

Ci =
8Zi

BRi
(2)

where the subindex identifies the EDi that transmits the flow. On top of this, the trans-
mission power TPi of the ED can be used to limit the range to which it can transmit. BRi

comes from Equation (1) and states the bit-rate at which the EDi transmits and receives
information depending on the radio parameters set-up. The time demanded to transmit Zi

bytes is simply the product of BRi and eight times Zi, as the number of bits per byte is 8.

Lemma 1. A periodic real-time flow Fi is not feasible if there is not a configuration setup that satisfies:

Ci(Zi, SFi, Bi, CRi)

Ti
≤ 0.01

Proof. LoRa in general, and LoRaWAN in particular, define the duty-cycle or maximum
allowable percentage of transmission time to be 1%. This hard bound should not be over-
passed for the system to be feasible. As the transmission time is a function of the message
length in bytes and the radio transducer set-up, if the duty-cycle bound cannot be met, the
real-time flow is not feasible.

While the period depends on the application needs, the time required to transmit
the information depends on the ED configuration setup. There may be several possible
combinations of SF and B that satisfied the DC, but it may be the case that it is not possible
to comply with this restriction. In that case, the only possibility (if the application allows
it) is to change the periodicity of the ED, or assume that real-time communication is not
feasible for that node.

On the other side, the gateways should listen to end-devices in an ordered way, as
to not collide messages. The number of messages a gateway can process is limited by the
periods of the devices connected to it, and the SF that is used.

Sensors 2023, 23, 4281 8 of 27

Then, the real-time scheduling problem can be analyzed with the techniques that
allows allocating tasks to processors [24–26], as messages should complete their transmis-
sions on time and accessing a unique gateway that forwards them. Assuming the gateway
operates in just one channel, we can consider each SF as an independent system in which
messages may be scheduled until reaching 100% utilization factor.

Let us suppose the set of messages MSFk
= {(Ci, Ti)} that the gateway transmits to

the network server in SFk. Once an ED begins transmission, it cannot be preempted as the
protocol has a large overhead.

Lemma 2. A gateway GWj is feasible when its incoming messages are scheduled by a non-
preemptive earliest deadline first policy if the following conditions are satisfied:

∀i ∀k max
i

< Cik < min
i

Ti (3)

∀SFk ∑
∀MSFk

Cik

Ti −maxi Cik
≤ 1 (4)

where Cik stands for the maximum transmission time of any message allocated to the GW using
SFk. It must be noted that as it was assumed that all messages within the system have the same
length maxi Cik = Cik. For simplicity the k subindex can be dropped.

Proof. Gateways listen to the six SF simultaneously. Nevertheless the SF are orthogonal
among them. Thus, the gateway can be seen as six different sinks where messages are sent.
Each sink has a maximum processing capacity that should be respected to guarantee that
all messages are received on time. Trivially this upper bound is 1, this indicates the gateway
can handle all the messages arriving with that SF. However, as the ED transmission is not
preemptable (it means that once an ED begins a transmission it is not interrupted until the
last byte has been sent), the capacity is reduced to consider the time an ED is blocked from
transmission as proved in [23].

If the utilization factor is greater than one, for any of the SFs, the gateway will not be
able to forward the messages [23]. To avoid this, a careful time scheduling of messages is
necessary, together with a proper allocation of end-devices to gateways.

Even if all nodes within the network comply with the condition stated in Lemma 1,
we still need to find a feasible schedule. For this, each end-device should be associated to a
gateway with a proper SF and channel. As all gateways within the transmission range of
an end-device may listen to it (to avoid collisions), at each time only one node should be
transmitting in a particular SF and channel.

5. Real-Time Communication Feasibility Model

The feasibility model considers a set of end-devices that have messages to be scheduled.
Each end-device is allocated to one gateway using a specific channel and SF. End-devices and
gateways must satisfy the Lemmas 1 and 2 respectively. This allocation is an optimization
problem that considers the design decisions and constraints stated in the previous section. In
order to address it, we defined an Integer Linear Programming (ILP) model that describes the
particular characteristics of LoRaWAN networks, in which end-devices and gateways operate
using different SF and channels, and have duty-cycle and time restrictions.

Figure 3 shows a clustering example where sixteen end-devices are grouped in two
cluster trees. As can be seen, ED5, ED6, ED7, ED9 and ED10 impact with different SF on
both GW1 and GW2. However, only one of them is used as gateway. The dotted lines
indicate the not used links. The allocation procedure of EDs to GWs proposed in what
follows, selects for each ED a unique SF and channel, in such a way that only one gateway
is used. Particularly, in some deployment scenarios an ED can reach more than one GW. If

Sensors 2023, 23, 4281 9 of 27

this occurs, these gateways will forward the message to the Network Server, and it decides
on such allocation.

ED1

ED2 ED3

GW1

ED4

ED5

ED6

ED7

ED8

ED9

ED10

ED11

GW2

ED12

ED13

ED14

ED15

ED16

7

8 8

10

9

8

12
11

7

7

9

8

8

10

11

11

12

10

11

12

12

Figure 3. Gateway rooted tree graph description.

In the ILP model, the sets (5) and (6) define the location of every ED and GW in the
map. As shown in (7), it is possible to calculate the Euclidean distance between any two
elements in both sets.

E = {ED(ex, ey)i} (5)

G = {GW(gx, gy)j} (6)

dist(GWj, EDi) =
√

(gjx − eix)2 + (gjy − eiy)2 (7)

Each GW can be considered as the center of six circles with different radios; each
one representing a different communication threshold. The EDs located within each circle
may reach the GW using the different SFs. Moving away from the center increases the SF
needed to send messages. The radios are problem dependent as they vary with the kind
of environment in which the network is deployed. In this case, we assume a set of values
measured experimentally in [27]. In (8) the distances associated to each SF are shown.

R = {Rk | k = 7, . . . , 12, (7, 62.5), (8, 125), (9, 250), (10, 500), (11, 1000), (12, 2000)} (8)

There are sixteen possible channels within LoRaWAN to be used by gateways and end-
devices. These channels are orthogonal; therefore, neighbor EDs may operate in different
channels using the same SF without interfering each other. Equation (9) indicates the set of
channels that can be used.

C = {ch |ch = 0, . . . , 15} (9)

Each EDi has to send a message every Ti. All messages have the same length, but the
transmission time depends on the SF that is used. Equation (10) computes the utilization
factor demand or bandwidth demand that the EDi places on a GW when connected at SF equal
to k.

uik =
2k−7

Ti − 2k−7 (10)

The fact of scheduling messages with a non-preemptive earliest deadline first policy is
considered by reducing the message period Ti [23]. As all messages transmitted to a GW
should be received on time, each GW can schedule up to a maximum capacity for each SF
equal to 1, in compliance with Lemma 2.

Sensors 2023, 23, 4281 10 of 27

When an ED is listened by more than one GW in a certain SF, its transmission impacts
on all of them. If the capacity of the GW is exceeded (it is over 1), a different GW should
be used in a different channel to avoid interferences. Considering that, the EDi to GWj

allocation problem can be modeled using the following binary variables, objective function
and constraints.

wjch =

1 if GWj uses channel ch

0 otherwise
(11)

xij =

{

1 if GWj listens to EDi

0 otherwise
(12)

yikch =

{

1 if EDi is active in SFk and channel ch

0 otherwise
(13)

We consider that a gateway and an end-device listen to each other when they operate
within the same channel, and the distance is covered by the SF used. In this scenario, the
objective function of the model is to minimize the number of gateways required to address
time constraints in the message delivery, as shown in (14):

min ∑
j

∑
c

wjc (14)

subject to:

∑
c

wjch ≤ 1 ∀j ∈ G (15)

∑
j∈G

xij ≥ 1 ∀i ∈ E (16)

∑
c

∑
k

yikch = 1 ∀i ∈ E (17)

xij + ∑
k

yikch ≤ wjc + 1 ∀j ∈ G ∀ch ∈ C ∀i ∈ E (18)

wjch + ∑
k

yikch ≤ xij + 1 ∀i ∈ E ∀j ∈ G ∀ch ∈ C (19)

∑
i∈E

yikch ∗ uik ≤ 1 + M(1− wjch) ∀j ∈ G ∀k ∀ch (20)

xij + ∑
k

∑
c

yikc ≤ 1 ∀i ∈ E ∀j ∈ G (21)

The first constraint (15) indicates that at each GW, if active, it uses only one channel
c ∈ C. Constraint (16) indicates that each ED is listened at least by one GW. Restriction (17)
makes each ED to use only one channel c ∈ C and one SFk. In constraints (18) and (19) the
sum is made over all the SFk, such that the ED is listened by GWj. Constraint (18) ensure
that if GWj is chosen to listen to EDi, then they work on the same channel, while constraint
(19) state that if GWj and EDi work on the same channel with an appropriate SFk, they are
listening to each other. Constraints (20) limit the utilization factor for each active GW in
each SF; for this all the utilization factors of the ED listened by GWj are added for each
SF, and should not be greater than one. The last constraint (21) is an exclusion restriction,
as it forces each ED not to use a SFk lower than the minimum with which it is listened
by GWj. This ILP model was programmed in CPLEX v20.1.0 with the default parameters
(https://www.ibm.com/docs/en/icos/20.1.0, accessed on 19 April 2023)

6. Dealing with the Allocation Problem in LoRaWAN

The allocation of end-devices to gateways is conditioned by the messages’ periods
and the Euclidean distance between both nodes that limits the SF to use. End-devices can
operate in different SF, but usually only some of them can be used to reach the assigned

https://www.ibm.com/docs/en/icos/20.1.0

Sensors 2023, 23, 4281 11 of 27

gateway. As it is shown in Lemma 1, time restrictions (particularly, messages’ periods
and DC) may limit the use of higher SFs. As transmission time doubles when the SF
is incremented in one unit, an end-device with period 100 and a message of one unit to
transmit, may use SF7 complying with the DC restriction. However, it may not use SF8 as
it would violate the DC.

The distance to a possible gateway is the other factor that conditions the allocation
process. Again, an end-device may connect to a close gateway using SF7, but not to another
one with a higher SF, since it violates the DC restriction. If the ED can use a higher SF,
then its messages will reach several gateways, although only one of them would forward
the message to the Network Server. Therefore, using one or another SF is not the same,
as the eventual interference should be considered. The message period and distance to
the potential gateways are the variables that allow determining the feasibility to link an
end-device to a gateway.

The end-devices distribution within a certain area is another key design aspect to
consider when determining the number of gateways required to schedule all the messages.
If end-devices are distant among them, probably more gateways would be required to
cover the area where the network is deployed, even if it is possible to use larger SF and the
gateway utilization factor (U) is low.

On the other side, when the concentration of nodes is high in a reduced area, one
gateway may be enough to schedule all the messages. However, if the number of end-
devices is too large, such that the U of the gateway is over 1, more gateways operating in
different channels would be necessary to handle all the traffic. The node density is then
another important issue at the moment of deploying gateways.

Eventually, the system would not be feasible if end-devices and messages are grouped
in a reduced area, in a way that the available gateways are not enough to handle the
traffic. Next we describe the optimization heuristic proposed to solve the stated allocation
problem. We also present the algorithms for positioning gateways, and connecting them to
end-devices.

6.1. Resource Allocation Optimization Algorithm

The periods of messages are part of the application requirements, but the transmission
time of the messages is a function of the selected SF. The application of Lemma 1 determines
a set of possible SF for each ED. The heuristic allocates each ED to only one GW, sets the
channel, the SF and the instant at which the ED is allowed to transmit complying with
Lemma 2. If more than one time slot is allocated because a SF > 7 is selected, then the
transmission is not preemptible. In case the ED reaches two gateways operating in the same
channel, both gateways should mark the slot as temporarily allocated to that end-device,
although only one of them will finally forward the message to the network server.

There is a trade-off between complying deadlines and duty-cycle, and minimizing the
number of gateways to be deployed in the network. In order to satisfy deadlines and keep
the duty-cycle, it is necessary to keep the SF in the lower range; however, for reducing the
number of gateways it is better to use higher SF. The methods proposed in this work reach
a compromise between both requirements.

Algorithm 1 presents the pseudo-code of the process followed to optimize the alloca-
tion of end-devices to gateways. Based on the gateway positioning method that is used, the
algorithm iterates until a feasible solution is obtained, the number of iterations is completed,
or the time-out limit is reached.

The algorithm has four configuration parameters: (1) the gateway positioning method
to be used, (2) the progress threshold, (3) the stagnation threshold and (4) the maximum
spreading factor allowed for gateways, line (1).

Three different methods were implemented to position the gateways: greedy, random
and pseudo-springs; lines (8), (11) and (13) show the call to these methods respectively. The
greedy allocation method runs in one step, until all the end-devices are assigned to one

Sensors 2023, 23, 4281 12 of 27

gateway. The last two methods iterate several times, incorporating gateways as needed
until full coverage is reached, i.e., when there are no more disconnected end-devices left.

Initialising the method with a high number of gateways speeds up the process, but
it does not guarantee that the solution will be optimal. To improve the coverage, the
gateways are moved following different positioning strategies, but if after a few iterations
the coverage does not improve anymore, new gateways should be added to the network,
as indicated in lines (14) to (20). For this, two parameters are used to control the timing to
add new gateways, the progressThreshold and stagnationThreshold

The progressThreshold (shown in (22)) contributes in determining if the newly com-
puted solution is considered or not an improvement respect to the previous one. In this
proposal, the number of new connected end-devices, after each step, is used as an indicator.
Moreover, the threshold value is selected proportional to the total number of EDs in the
network, divided by a factor of 1000. For example, in a network with ten thousands end-
devices, eleven new EDs should be connected after each optimization step to be considered
a significant progress. After a certain number of steps without improvement or progress, a
new gateway will be added. This is where the stagnationThreshold parameter (23) comes
in. By trial and error, it was determined that a value of ten allows obtaining acceptable
results for most cases. To achieve better results, it is recommended to fine-tune these
two parameters.

progressThreshold = 1 +
Number of ED

1000
(22)

stagnationThreshold = 10 (23)

Algorithm 1: Resource allocation optimization algorithm

Input: E, G ; // Sets of ED and GW
Output: GW number, positions and ED allocation

1 runOptimization (positioning, progressThresshold, stagnationThreshold, SFmax)

2 begint ← now() ; // Initialize timer

3 GW ←initGatewayPositions() ; // Set initial positions of GW

4 updateLinks() ; // Connect EDs to GW

5 NC ←getNotConnectedCount(ED) ; // Number of not connected EDs

6 wtdg← 0 ; // Initialize progress watchdog

7 if positioning == ’greedy’ then

8 Greedy() ; // Greedy allocation method

9 while iter < maxiter and now()− begint < timeout and NC > 0 do
10 if positioning == ’random’ then

11 stepRandom() ; // Apply single step of positioning algorithm

12 if positioning == ’pseudo-springs’ then

13 stepPseudoSprings() ; // Apply single step of positioning algorithm

14 prog← NC−getNotConnectedCount(ED) ; // Optimization progress

15 NC ←getNotConnectedCount(ED) ; // Update number of not connected EDs

16 if prog < progressThreshold then

17 wtdg← wtdg + 1 ; // If no progress, increment watchdog

18 if wtdg > stagnationThreshold then

19 GW ← addGateway(SFmax) ; // If stagnated, add a new GW at random location

20 wtdg← 0 ; // Reset progress watchdog

21 if NC == 0 then

22 mc← computeMinChannels() ; // Compute number of channels

23 if mc > 16 and SFmax > 7 then

24 SFmax ← SFmax − 1 ; // If many channels result, reduce value of SF

25 runOptimization() ; // Repeat optimization process with new SFmax

Sensors 2023, 23, 4281 13 of 27

6.2. Algorithm to Assign End-Devices to Gateways

Greedy, random and pseudo-springs methods use the same algorithm (Algorithm 2)
to connect end-devices to gateways. What is different among them is the strategy used to
position the gateways into the network.

The function updateLinks sorts the gateways for each end-device in ascending order
considering the euclidean distance, line (1). After that, the reachable gateway with the
lowest SF and enough available utilization factor, U, is selected, lines (8) to (11). Several
gateways may be impacted by one end-device with a certain SFk; in that case, the time
schedule should consider the transmission of that end-device for all the involved gateways.
If one gateway cannot handle such an end-device, then it should use a different channel.

Algorithm 2: Algorithm to connect end-devices to gateways
Input: NCED (not connected end-devices) and GW (gateways)
Output: ED (connected end devices) and NCED (not connected end devices)

1 updateLinks ()
2 for each ed in NCED do

3 for each gw in sortedByClosest(GW, ed) do

4 SFmin ←getMinSF(distance(gw, ed)) ; // Compute min{SF} for ED and

GW

5 SFmax ←getMaxSF(edperiod) ; // Compute max{SF} given ED period

6 Ugw,s f ←getU(gw, s f) ; // Compute U of GW for all SF

7 s f ← SFmin ; // Begin with min. SF

8 while s f < SFmax and Ugw,s f +
2s f−7

period−2s f−7 <= 1 do

9 s f ←getNextSF(s f) ; // If not possible to connect, try next SF

10 if s f < SFmax and Ugw,s f +
2s f−7

period−2s f−7 <= 1 then

11 connect(ed, gw, s f) ; // Link current ED with closest GW

12 break ; // Once connected, go to next ED

As mentioned before, the use of channels is limited to 16 in the LoRa physical layer [21],
and the transmission distance depends on the SF and power used. As we suppose that
every end-device uses the same transmission power, the distance is a function of the SF.

If two nodes interfere with each other in such a way that they cannot be scheduled,
one of them should change its transmission channel. If the number of channels used is over
16, then the system is not feasible in that configuration. In that case, the maximum SF used
should be reduced, and probably new gateways would be deployed as the transmission
distances of the end-devices are reduced too. This process is repeated until all end-devices
are allocated to gateways and the total number of channels used is under 16.

To determine the minimum number of channels required to support the operation of
the network gateways, a chromatic number algorithm is applied to the graph of gateways.
This graph is built connecting gateways with edges when the range of two different
gateways produce an overlapping region. Following this strategy, it may happen that there
is no possible solution, as the time demand of end-devices can exceed the capacity of the
gateways and the possibility of channel differentiation is not available anymore.

6.3. Positioning Gateways Using Different Approaches

Once explained the algorithms for gateways assignment and the optimization, in this
section we present the algorithms used to position the gateways. Particularly, we show three
alternatives of positioning approaches: greedy, random and pseudo-springs. However,
more approaches can be added to the model, and used with the Algorithms 1 and 2.

Sensors 2023, 23, 4281 14 of 27

6.3.1. Positioning Algorithm Using a Greedy Approach

This gateways positioning method is presented in Algorithm 3. It considers that every
end-device in the system may be turned into a gateway. For this, an adjacency matrix A is
built, in which each element aij represents the lowest SF with which the end-devices i and
j can connect, based on the distance and period of the messages to be transmitted.

Once the matrix is computed, the end-device with the highest adjacency degree (i.e.,
the sum of all elements in a row) is selected as gateway. After this, the utilization factor
for each SF is computed before adding the end-device to the selected gateway. Then, the
elements in that row and the corresponding elements in the different columns are turned to
zero. Therefore, the adjacency degree is computed again for all the end-devices still not
allocated, and the process is repeated until all end-devices has been connected to a gateway,
or what is the same, all the elements in the adjacency matrix are zero.

Finally, the number of channels is checked using the Algorithm 1, and in case it is
greater than sixteen, the maximum allowed SF is decreased and the whole process is
run again.

Algorithm 3: Gateways greedy positioning algorithm
Input: ED (end-devices), SFmax

Output: GW (gateways)
1 begin

2 A = I(n) ; // Build an identity matrix

3 ; while |A| > 1 do

4 MaxED = 0; ; // keeps the ED with higher adjacency

5 for i = 0; i < n;i++ do

6 for j = 0; j < n;j++ do

7 if {min SFk | EDj reaches EDi} ≤ SFmax then

8 aij ←− {min SFk} ; // Build adjacency matrix A

9 else

10 aij ←− 0

11 AdjDegree(EDi) = ∑j aij ; // Compute the adjacency for each ED

12 if AdjDegree(MaxED) < AdjDegree(EDi) then

13 MaxED = i;; // update the highest adjacency ED

14 for j = 0; j < n; j++ do

15 k = AMaxED,j ; // minimum SF with wich EDj reaches MaxED

16 if UMaxED,k + uj,k ≤ 1 then

17 UMaxED,k = UMaxED,k + uj,k ; // updates UMaxED,k

18 AMaxED,j = 0 ; // turns adjacency to 0

19 Aj,MaxED = 0 ; // turns adjacency to 0

20 GW ←− {GW}+ {MaxED} ; // incorporate MaxED to GW

21 NC = 0 return (GW)

6.3.2. Positioning Algorithm Using a Random Distribution

This gateways positioning strategy is rather simple. Considering that the distribution
of end-devices is random, the gateways locations are selected using a uniform random
distribution. Particularly, at each step, a new GW distribution is generated. If the percentage
of coverage achieved decreases, then the positions are reverted to the previous step. If after
a series of attempts no improvement is achieved, then a new GW is added. The number of
steps to perform before adding a GW is a configurable parameter.

Algorithm 4 shows the procedure of a single step, which will be performed iteratively.
This method improves rapidly the distributions of gateways at the beginning, but after a

Sensors 2023, 23, 4281 15 of 27

few iterations it begins to stagnate, as the probability of finding a better GW distribution
becomes lower. Although the final solution depends on the number of gateways and the
dimensions of the network area, this method serves as reference to evaluate the suitability
of other positioning techniques.

Algorithm 4: Gateway random positioning algorithm
Input: ED (end-devices) and GW (gateways)
Output: GW (gateways with improved positions)

1 begin

2 initialNE← getConnectedCount(ED) ; // Initial number of connected

ED

3 saveGWPositions() ; // Save GW positions before updating

4 for each gwi in GW do

5 gwix
←uniform_random() ; // Update x component of GW position

6 gwiy ←uniform_random() ; // Update y component of GW position

7 updateLinks() ; // Update connections between ED and GW

8 newNE← getConnectedCount(ED) ; // Number of connected ED after

updating positions

9 if newNE < initialNE then

10 revertGWPositions() ; // If connected ED are less, revert GW

positions

11 return (GW)

6.3.3. Positioning Algorithm Using a Pseudo-Spring Model

In this case, the objective function consists in determining the minimum number of
GW to schedule all messages from end-devices. As stated above, it requires to find a method
that efficiently positions the gateways in appropriate places. Taking into account that each
ED in the network is more likely to be connected to a nearby gateway, the equations of a
dynamic system are proposed to give mobility to the gateways by simulating attraction
forces acting on them [28].

In this positioning approach, the initial state or positions are randomly selected.
Eventually, they can be man-placed with certain knowledge of the network to schedule.

On the one hand, disconnected EDs attract the nearest GW as to be able to connect to
them when they are in a valid transmission range. On the other hand, the connected EDs
attract the GW to which they are currently connected to, in order to position them in what
would be the center of mass of that cloud (i.e., the subset of EDs). The latter force should
be usually weaker than the former, and it allows balancing the distribution of GW in the
network space.

Then, the position xg of a certain GW is updated according to its velocity ẋg, which
follows the Equation (24), where EDc is the set of connected EDs to the current GW, EDn is
the set of closest non-connected EDs, yi are the ED positions, and the constants kn and kc

are responsible of regulating the strength of the forces acting on the GW. If these constants
are defined as the inverse of the numbers of connected or not-connected ED, then the total
attraction force (or velocity) is averaged, keeping them in reasonable values. To avoid GW
reaching high speeds, a clamp function is applied to limit the value to which the positions
are updated.

ẋg = ∑
i∈EDn

kn · (yi − xg) + ∑
i∈EDc

kc · (yi − xg) (24)

This method allows us to experiment with more complex equations, for instance, by
introducing physical variables such as mass or inertia, to change or eventually improve
the behavior of the system. The Algorithm 5 shows the procedure for a single step of the
optimization process that uses the pseudo-spring model [28].

Sensors 2023, 23, 4281 16 of 27

Algorithm 5: Gateway pseudo-spring positioning algorithm
Input: ED (end-devices) and GW (gateways)
Output: GW (gateways with improved positions)

1 begin

2 NE←getConnectedCount(ED) ; // Number of connected EDs

3 NC ←getNotConnectedCount(ED) ; // Number of not connected EDs

4 for each edj in ED do

5 if isConnected(edj) then

6 gwi ←getConnectedGateway(edj) ; // Get the GW of the current

ED

7 vix
←

(edjx−gwix)
NC ; // Update x component of GW velocity

8 viy ←

(

edjy−gwiy

)

NC ; // Update y component of GW velocity

9 else

10 gwi ←getClosestGateway(edj, GW) ; // Get closest GW to current

ED

11 vix
←

(edjx−gwix)
NE ; // Update x component of GW velocity

12 viy ←

(

edjy−gwiy

)

NE ; // Update y component of GW velocity

13 for each gwi in GW do

14 gwix
← gwix

+clamp(vix
) ; // Update x component of GW position,

limiting velocity value

15 gwiy ← gwiy+clamp(viy) ; // Update y component of GW position,

limiting velocity value

16 updateLinks() ; // Update connections of ED and GW according to new

positions

17 return (GW)

7. Simulations and Experimental Results

The suitability of the proposed model was evaluated through various experiments, in
which we used the three gateways positioning approaches. The results were compared for
synthetic sets of problems with different characteristics.

The experiments were carried out on a server with 2 x Intel(R) Xeon(R) Silver 4210R
CPU (10 cores/20 threads) @ 2.40 GHz, 768 RAM DDR4-2400 ECC LRDIMM, using a
virtual machine with 10 cores, 128 GB RAM, and Debian 11 Linux/GNU distribution.
The implementations were written in C++, and the source code is publicly available in
an online repository (https://github.com/matiasmicheletto/realtime-lorawan-sirmulator,
accessed on 19 April 2023). A web application was also developed and put it available
(http://www.ingelec.uns.edu.ar/rts/LoRaAllocSim, accessed on 19 April 2023), as a way to
facilitate the network configuration, simulation and visualization of results. This application
uses a WebAssembly (https://webassembly.org/, accessed on 19 April 2023) implementation
of the heuristic, compiled from C++ with the Emscripten software (https://emscripten.org/,
accessed on 19 April 2023), and a ReactJS (https://reactjs.org/, accessed on 19 April 2023)
based GUI.

7.1. Experiments Setup

The experiments were performed on synthetic cases, specially conceived to evaluate
the behavior of the model in different scenarios and using different positioning approaches.
Two kind of experiments were designed to evaluate the performance of the proposed alloca-
tion and scheduling methods. The first set of experiments evaluated the objective function
considering variability of nodes density and time demand, according to the following:

https://github.com/matiasmicheletto/realtime-lorawan-sirmulator
http://www.ingelec.uns.edu.ar/rts/LoRaAllocSim
https://webassembly.org/
https://emscripten.org/
https://reactjs.org/

Sensors 2023, 23, 4281 17 of 27

• Three square maps with sides of 100 m, 1000 m and 2000 m.
• Three time configuration demands: hard, medium and soft.
• Two end-devices distribution: uniform and clouds.
• Five sets of end-devices with 1000, 2000, 5000, 10,000, 20,000 elements each for each

map/time/distribution configuration.

The second set of experiments considered constant density of nodes and memory
footprint; particularly:

• Three square maps: 500 m, 1000 m and 2000 m side of the square.
• Medium real-time demand.

In the first experiments, 900 instances were evaluated with the three positioning
approaches presented in Section 6.3. We compare the performance of these approaches
for the two end-devices distribution approaches, in order to solve the problem on two
main aspects: number of necessary gateways, time needed to find a solution. In total 2700 runs
were performed.

The second experiment was designed to determine if the optimization result is better
when considering large areas, although it requires more time, or if solving consecutive
smaller areas in less time would provide a good enough solution.

7.2. The First Set of Experiments: Details and Results

The size of the network area is a key aspect when configuring a LoRaWAN network.
LoRa technology can reach long distances at the cost of using higher SF. As explained
in Section 3, it increases the transmission time. Both facts become a trade-off for the
minimization of gateways. On the one hand, in a sparse area (where end-devices are
distant among them), the network will require a relative high number of gateways with
low utilization factors, and probably not using many channels. However, when the node
density is increased, the gateways reach higher utilization factors, and in small areas
probably several channels should be used to accommodate all the transmissions. Next
sections explain the distribution of end-devices in the deploying area, the time demand
requirements and the obtained results.

7.2.1. Distribution of End-Devices in the Deploying Area

Two different random distributions were simulated. First, end-devices were uniformly
distributed in the target area. In this case, the gateways were also located following a
uniform distribution, trying to aggregate as much end-devices as possible in each gateway.
The number of gateways can be previously approximated, if the density and time demands
are known.

The second distribution is considered scenarios where end-devices are concentrated in
regions (known as clouds). This may happen for example in residential areas, where end-
devices are deployed within buildings and not in parks or open places. The same happens
in urban areas, where the downtown usually concentrates a higher density of nodes. The
cloud distribution reflects this situation more appropriately than the uniform one.

7.2.2. Time Demand Requirements

In Section 3 we explained the transmission times for the different SF. Considering
a payload of ten bytes for all messages, the time needed to send a message, using SF7, is
60 ms. This forces the shorter period to be higher or equal to 6 s.

Let us assume that the slot duration of the system is equal to the time needed by an
end-device (using SF7) to send a message, which is 60 ms. The periods selected for the
evaluation of the proposal are in line with what is expected from monitoring applications
in smart environments. For example, the shortest period considered is 19.2 s. This can be
associated to a sensor requiring three updates per minute. The longest period instead is
16 minutes or roughly four times per hour. Monitoring weather, traffic, pollution or elderly
people are samples of applications that can operate within these sensor update rates easily.

Sensors 2023, 23, 4281 18 of 27

The DC restriction imposes limits on the SF used to transmit, according to distances
and messages periods. When the end-devices have shorter periods, the possibility of using
higher SF is reduced, and therefore, more gateways are necessary as the distances covered
by lower SF are shorter. In some cases, when the number of end-devices is high, the real-
time scheduling is not possible. The three kind of constraints considered in the simulations
show the way in which the several approaches solve the allocation and scheduling of
the systems.

As mentioned before, the time unit for each slot is 60 ms, which is the time needed to
transmit a LoRaWAN message with ten bytes payload at SF7. Systems having soft time
constraints use the following periods: 3200, 4000, 8000 and 16,000 slots. In systems that use
medium time constraints the periods are: 1600, 2000, 4000 and 8000 slots. Finally, in case of
hard time constraints the periods are: 320, 400, 800 and 1600 slots.

Considering the DC restriction, in hard time constraints no end-device may transmit
using SF12, while in the medium ones only those end-devices with period 4000 and 8000
can use SF12. In the case of soft demands, all end-devices can use the maximum SF. Within
each time constraint group, all periods have equal probability, i.e., 25% of the end-devices
have each period.

7.2.3. Results of the First Set of Experiments

Figures 4–9 presents the simulation results for the three maps, both in time required
to find an optimum solution and the number of gateways for the three time constraints
types. In some figures the curves are not complete because there was a timeout while
computing the solution, or the maximum number of iterations was reached not obtaining
100% coverage.

The first map is rather small. A square of 100 m is just a city block. In this scenario,
a gateway placed in the middle of the square may listen to all the devices with all the
SF. Figures 4 and 5 show the results obtained for the computation time and gateways
needed for both end-devices respectively, three optimization methods and three time
constraints types.

The results show that the hard time constraints is always the one that needs two or
three orders of magnitude (in terms of computation time) over soft time constraints, and
also requires more gateways. Comparing both figures, it is clear that the clouds distribution
is harder to solve.

It is important to note that even if a solution is found on time for 40 gateways, it is not
feasible for the maximum number of end-devices, as the number of required channels is
over 16. This is a serious restriction for using LoRaWAN in high density areas with hard
time constraints.

The medium and soft time constraints are feasible, and solutions are find with all
positioning approaches. It is interesting to note that the computation time for the Pseudo-
Springs approach is significantly shorter, and the Greedy approach provides the minimum
number of required gateways. This is a consequence of the allocation mechanism in such a
small area.

The second map (i.e., the square of 1000 m) represents an area of one hundred blocks in
a city. The heuristics solve the allocation problem deploying different numbers of gateways
to cover the region. As can be seen in Figures 6 and 7, the elapsed time to compute a
solution for the hard time demand systems is like in the previous map; i.e., higher than the
one needed for medium and soft cases, with both end-devices distribution.

The Spring methods obtains a better solution in much less time than the other methods,
and clouds distributions demand more time than the uniform case. In this case, the raw
data (https://github.com/matiasmicheletto/lorawan-simulation-results, accessed on 19
April 2023) shows that for the clouds distribution, the Greedy approach is unable to find
a solution for the hard time demand systems in this map in half of the instances, for ten
and twenty thousand end-devices. The situation is worst for the Random method, as
it is not able to find a solution over two thousand end-devices. Timeout condition or a

https://github.com/matiasmicheletto/lorawan-simulation-results

Sensors 2023, 23, 4281 19 of 27

maximum iterations limit are reached, and the coverage is not complete so the results are
not comparable with the rest of the methods.

(a) (b)

(c) (d)

(e) (f)

Figure 4. Results for the first map with uniform distribution. For the three GWs allocation methods,
it considers time demanded and minimum number of gateways. (a) Greedy Elapsed. (b) Greedy
Gateways. (c) Random Elpased. (d) Random Gateways. (e) Springs Elapsed. (f) Springs Gateways.

The third map (i.e., the square of 2000 m) is four times the previous one. Figures 8 and 9
present the results for the elapsed time and gateways required for both end-devices dis-
tributions. In this case, the random method is unable to find a solution within the time
limit for the hard time constraints. A larger area implies lower end-devices density, and
this forces more gateways to be deployed as the distance to cover is longer. Like in the
previous cases, the Springs method provides the better results both considering the number
of gateways and the time needed to compute the solution. In the case of the clouds distri-
bution of end-devices, the Random method is unable to find a solution for any number

Sensors 2023, 23, 4281 20 of 27

of end-devices in the hard time constraint instances, and the greedy is unable to find a
solution in the medium and hard time demand systems in half of the instances.

(a) (b)

(c) (d)

(e) (f)

Figure 5. Results for the first map with cloud distribution. For the three GWs allocation methods,
it considers time demanded and minimum number of gateways. (a) Greedy Elapsed. (b) Greedy
Gateways. (c) Random Elapsed. (d) Random Gateways. (e) Springs Elapsed. (f) Springs Gateways.

Sensors 2023, 23, 4281 21 of 27

(a) (b)

(c) (d)

(e) (f)

Figure 6. Results for the second map with uniform distribution. For the three GWs allocation methods,
it considers time demanded and minimum number of gateways. (a) Greedy Elapsed. (b) Greedy
Gateways. (c) Random Elapsed. (d) Random Gateways. (e) Springs Elapsed. (f) Springs Gateways.

Sensors 2023, 23, 4281 22 of 27

(a) (b)

(c) (d)

(e) (f)

Figure 7. Results for the second map with cloud distribution. For the three GWs allocation methods,
it considers time demanded and minimum number of gateways. (a) Greedy Elapsed. (b) Greedy
Gateways. (c) Random Elapsed. (d) Random Gateways. (e) Springs Elapsed. (f) Springs Gateways.

Sensors 2023, 23, 4281 23 of 27

(a) (b)

(c) (d)

(e) (f)

Figure 8. Results for the third map with uniform distribution. For the three GWs allocation methods,
it considers time demanded and minimum number of gateways. (a) Greedy Elapsed. (b) Greedy
Gateways. (c) Random Elapsed. (d) Random Gateways. (e) Springs Elapsed. (f) Springs Gateways.

Sensors 2023, 23, 4281 24 of 27

(a) (b)

(c) (d)

(e) (f)

Figure 9. Results for the third map with cloud distribution. For the three GWs allocation methods,
it considers time demanded and minimum number of gateways. (a) Greedy Elapsed. (b) Greedy
Gateways. (c) Random Elapsed. (d) Random Gateways. (e) Springs Elapsed. (f) Springs Gateways.

7.3. The Second Set of Experiments: Considerations and Results

In these simulations we kept constant the nodes density and used three map sizes
with a uniform distribution of end-devices and a medium time constraint. The smallest
map is a square of 500 m, with 2500 end-devices. In terms of size, the next map is a square
of 1000 m, with 10 thousand end-devices. The largest map is a square of 2000 m, with forty
thousand end-devices. This experiment was designed to evaluate the performance of the
GWs positioning strategies, when they have to deal with a large area where thousand of
end-devices are deployed.

In Table 3 a constant density is kept for three areas. As can be seen in the results, as the
map increases, also the number of gateways and the time needed to compute the solution

Sensors 2023, 23, 4281 25 of 27

and the memory footprint demanded by the methods. What is interesting is that while the
map size is increased four and sixteen times respectively, the number of required gateways
increases also linearly, but the computation time increases exponentially.

In Table 3, the 500 m square area is considered the base and the results of the other
maps are relative to the previous map size. In this way, the number of gateways for 500 m
is unity (it is not the actual number, but the base), in the next map (that is four times larger)
the number of gateways necessary to schedule all the end-devices, and also the time needed
to compute this result, are relative to that previous case. As it can be seen, as the number
of gateways increases proportional to the increase in the map size, the time needed to
compute the result is incremented more than twenty times (500 m to 1000 m) and over fifty
times (1000 m to 2000 m) for the other two areas.

The memory footprint is also an important fact to be considered for the implementation
of this kind of systems. In this aspect, Greedy has a rather bad behavior, in comparison
with the Random and Springs cases.

It is interesting to note that while the map size is quadruple, the ratio of gateways is
slightly below four, indicating that optimizing the deployment in larger areas may have
some benefit. However, the time demanded to compute a solution for the larger map is so
much larger that the small average reduction is not significant.

Table 3. Experiments involving a constant density of EDs.

Map Size
Greedy Random Springs

Rel GW Rel Time Mem [MB] Rel GW Rel Time Mem [MB] Rel GW Rel Time Mem [MB]

500 1 1 31.2 1 1 9.1 1 1 9.1
1000 3.8 29.8 389 4.4 36.3 54.2 3.6 40.5 54.2
2000 3.7 60.6 6114 4.5 52.8 600.7 4.1 136 600.7

8. Conclusions and Future Work

LoRaWAN has shown to be useful to support communication in IoT systems, although
it is limited when real-time message delivery is required to support the systems operation.
Therefore, using LoRaWAN is not always feasible when the communication involves time
constraints. For economic and time reasons, that feasibility must be determined at early
stages of any IoT system development project.

Today, there is not a simple way to determine such a feasibility at early stages of a
project when the solution uses LoRaWAN as communication support. In this article we
propose an Integer Linear Programming model to determine the feasibility of using this
protocol in different settings and addressing several messages time constraints.

The model can use various heuristics to link end-devices to gateways, although in this
article we have used only three approaches: greedy, random and pseudo-springs. The first
one solves the nodes assignment by computing the end-devices with the greatest adjacency
degree and transforming them in gateways. The second one uses a random deployment
approach to position the gateways, and the third one, after an initial random deployment
of gateways, moves these nodes towards the “center of mass” of the end-devices.

Two different experimental scenarios were set up to evaluate the gateways positioning
approaches, in order to support time constraint messaging. In the first set of experiments,
an extensive evaluation of the positioning approaches was made with 1700 instances,
which allow us to perform a deep analysis of the different cases. The results show that the
pseudo-spring approach is the only one that solves all the instances, obtaining the better
results both in computation time and reaching the objective function (minimum number of
gateways), while providing on-time scheduling to all the end-devices.

In the second set of experiments, we studied different alternatives to evaluate the
performance of the heuristics to solve different map sizes with constant density of nodes.
To address this assignment problem, the results show that it is convenient to partition the
deployment area into smaller ones, as the number of gateways is not minimized further
if larger spaces are considered. In these cases, the time needed to compute a solution

Sensors 2023, 23, 4281 26 of 27

increments exponentially with the size of the map and the number of end-devices to
allocate and schedule. In fact, considering larger areas does not provide better solutions
in relation to the number of required gateways or channels, and it demands two or three
orders of more time to compute the results.

The allocation of end-devices to gateways was made only on the basis of minimiz-
ing the number of the latter. These are more expensive nodes that require better radio
equipment, at least two types of network interfaces (one for LoRa devices and the other
to connect into Internet), more memory to manage the two concurrent protocols, and an
important CPU capability. However, depending on the type of the application on which
the LoRaWAN network will finally operate, it may require also the minimization of the
demanded energy or transmission active window. These other optimization objectives
should be also supported by the model, and the gateways positioning heuristics should
consider them in the search of a multi-objective optimization process. These aspects are
part of the future work.

Author Contributions: Conceptualization, R.S., R.M., P.Z.; methodology, M.M., R.S.; software, M.M.,
P.Z.; validation, R.S., S.F.O.; formal analysis, R.M., P.Z, S.O; investigation, R.S.; resources, R.S.; data
curation, R.S.; writing—original draft preparation, R.S., S.F.O.; writing—review and editing, S.F.O.;
visualization, M.M.; supervision, R.S., S.F.O. All authors have read and agreed to the published
version of the manuscript.

Funding: This work was partially supported by the Spanish Government under contract PID2019-
106774RB-C21, ANPCyT (Argentina) PICT-2017-1826, Universidad de Buenos Aires (Argentina)
UBACyT 20020170100484BA, CONICET PUE (Argentina) Project “Diseño y Desarrollo de Solu-
ciones Inteligentes para la Innovación Digital en el Contexto de Servicios Públicos a Nivel Mu-
nicipal y Regional” (2019–2023). ICIC CONICET UNS, Bahía Blanca, Argentina; and Universidad
Nacional del Sur (Argentina), PGI “INTEGRACIÓN DE SISTEMAS DE TIEMPO REAL: HARDWARE-
SOFTWARE. III”.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Simulation code and results are available at the following web-
sites: https://github.com/matiasmicheletto/realtime-lorawan-simulator, accessed on 19 April
2023 http://www.ingelec.uns.edu.ar/rts/LoRaAllocSim, accessed on 19 April 2023. https://github.
com/matiasmicheletto/lorawan-simulation-results, accessed on 19 April 2023.

Acknowledgments: We thank ICIC for facilitating the use of the server to run experiments.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Raza, U.; Kulkarni, P.; Sooriyabandara, M. Low Power Wide Area Networks: An Overview. IEEE Commun. Surv. Tutor. 2017,
19, 855–873. [CrossRef]

2. Shanmuga Sundaram, J.P.; Du, W.; Zhao, Z. A Survey on LoRa Networking: Research Problems, Current Solutions, and Open
Issues. IEEE Commun. Surv. Tutor. 2020, 22, 371–388. [CrossRef]

3. Adelantado, F.; Vilajosana, X.; Tuset-Peiro, P.; Martinez, B.; Melia-Segui, J.; Watteyne, T. Understanding the Limits of LoRaWAN.
IEEE Commun. Mag. 2017, 55, 34–40. [CrossRef]

4. Capone, A.; Cesana, M.; De Donno, D.; Filippini, I. Optimal Placement of Multiple Interconnected Gateways in Heterogeneous
Wireless Sensor Networks. In Proceedings of the NETWORKING 2009; Fratta, L., Schulzrinne, H., Takahashi, Y., Spaniol, O., Eds.;
Springer: Berlin/Heidelberg, Germany, 2009; pp. 442–455.

5. Shmoys, D.B. Approximation Algorithms for Facility Location Problems. In Proceedings of the Approximation Algorithms for

Combinatorial Optimization; Jansen, K., Khuller, S., Eds.; Springer: Berlin/Heidelberg, Germany, 2000; pp. 27–32.
6. He, B.; Xie, B.; Agrawal, D.P. Optimizing deployment of Internet gateway in Wireless Mesh Networks. Comput. Commun. 2008,

31, 1259–1275. [CrossRef]
7. Lin, C.C. Dynamic router node placement in wireless mesh networks: A PSO approach with constriction coefficient and its

convergence analysis. Inf. Sci. 2013, 232, 294–308. [CrossRef]

https://github.com/matiasmicheletto/realtime-lorawan-simulator
http://www.ingelec.uns.edu.ar/rts/LoRaAllocSim
https://github.com/matiasmicheletto/lorawan-simulation-results
https://github.com/matiasmicheletto/lorawan-simulation-results
http://doi.org/10.1109/COMST.2017.2652320
http://dx.doi.org/10.1109/COMST.2019.2949598
http://dx.doi.org/10.1109/MCOM.2017.1600613
http://dx.doi.org/10.1016/j.comcom.2008.01.061
http://dx.doi.org/10.1016/j.ins.2012.12.023

Sensors 2023, 23, 4281 27 of 27

8. Luo, J.; Wu, W.; Yang, M. Interference-aware gateway placement for wireless mesh networks with fault tolerance assurance. In
Proceedings of the 2010 IEEE International Conference on Systems, Man and Cybernetics, Istanbul, Turkey, 10–13 October 2010;
IEEE: Piscataway, NJ, USA, 2010; pp. 2373–2380.

9. Wong, J.L.; Jafari, R.; Potkonjak, M. Gateway placement for latency and energy efficient data aggregation [wireless sensor
networks]. In Proceedings of the 29th Annual IEEE International Conference on Local Computer Networks, Tampa, FL, USA,
16–18 November 2004; IEEE: Piscataway, NJ, USA, 2004; pp. 490–497.

10. Lee, J.; Yoon, Y.S.; Oh, H.W.; Park, K.R. DG-LoRa: Deterministic Group Acknowledgment Transmissions in LoRa Networks for
Industrial IoT Applications. Sensors 2021, 21, 1444. [CrossRef] [PubMed]

11. Saluja, D.; Singh, R.; Baghel, L.K.; Kumar, S. Scalability Analysis of LoRa Network for SNR Based SF Allocation Scheme. IEEE

Trans. Ind. Inform. 2020, 17, 6709–6719. [CrossRef]
12. Premsankar, G.; Ghaddar, B.; Slabicki, M.; Francesco, M.D. Optimal Configuration of LoRa Networks in Smart Cities. IEEE Trans.

Ind. Inform. 2020, 16, 7243–7254. [CrossRef]
13. Lima, E.; Moraes, J.; Oliveira, H.; Cerqueira, E.; Zeadally, S.; Rosário, D. Adaptive priority-aware LoRaWAN resource allocation

for Internet of Things applications. Ad Hoc Netw. 2021, 122, 102598. [CrossRef]
14. Haxhibeqiri, J.; Moerman, I.; Hoebeke, J. Low overhead scheduling of LoRa transmissions for improved scalability. IEEE Internet

Things J. 2018, 6, 3097–3109. [CrossRef]
15. Yapar, G.; Tugcu, T.; Ermis, O. Time-slotted ALOHA-based LoRaWAN scheduling with aggregated acknowledgement approach.

In Proceedings of the 2019 25th Conference of Open Innovations Association (FRUCT), Helsinki, Finland, 5–8 November 2019;
IEEE: Piscataway, NJ, USA, 2019; pp. 383–390.

16. Pueyo Centelles, R.; Meseguer, R.; Freitag, F.; Navarro, L.; Ochoa, S.F.; Santos, R.M. LoRaMoto: A communication system to
provide safety awareness among civilians after an earthquake. Future Gener. Comput. Syst. 2021, 115, 150–170. [CrossRef]

17. Leonardi, L.; Battaglia, F.; Lo Bello, L. RT-LoRa: A Medium Access Strategy to Support Real-Time Flows Over LoRa-Based
Networks for Industrial IoT Applications. IEEE Internet Things J. 2019, 6, 10812–10823. [CrossRef]

18. Hoang, Q.L.; Jung, W.; Yoon, T.; Yoo, D.; Oh, H. A Real-Time LoRa Protocol for Industrial Monitoring and Control Systems. IEEE

Access 2020, 8, 44727–44738. [CrossRef]
19. Hoang, Q.L.; Oh, H. A Real-Time LoRa Protocol Using Logical Frame Partitioning for Periodic and Aperiodic Data Transmission.

IEEE Internet Things J. 2022, 9, 15401–15412. [CrossRef]
20. Vangelista, L. Frequency Shift Chirp Modulation: The LoRa Modulation. IEEE Signal Process. Lett. 2017, 24, 1818–1821. [CrossRef]
21. Alliance, L. LoRaWAN 1.1 Specification. 2017. Available online: https://lora-alliance.org/resource_hub/lorawan-specification-

v1-1/ (accessed on 19 April 2023).
22. SEMTECH. SX 1301 Gateway v2.4. 2022. Available online: https://www.semtech.com/products/wireless-rf/lora-core/sx1301

(accessed on 19April 2023).
23. Guan, N.; Yi, W.; Gu, Z.; Deng, Q.; Yu, G. New Schedulability Test Conditions for Non-preemptive Scheduling on Multiprocessor

Platforms. In Proceedings of the 2008 Real-Time Systems Symposium, Barcelona, Spain, 30 November–3 December 2008;
pp. 137–146. [CrossRef]

24. Cayssials, R.; Orozco, J.; Santos, J.; Santos, R. Rate monotonic scheduling of real-time control systems with the minimum number
of priority levels. In Proceedings of the Euromicro Conference on Real-Time Systems, York, UK, 9–11 June 1999; pp. 54–59.
[CrossRef]

25. Santos, R.M.; Santos, J.; Orozco, J.D. A Least Upper Bound on the Fault Tolerance of Real-time Systems. J. Syst. Softw. 2005,
78, 47–55. [CrossRef]

26. Santos, R.; Lipari, G.; Bini, E.; Cucinotta, T. On-line schedulability tests for adaptive reservations in fixed priority scheduling.
Real-Time Syst. 2012, 48, 601–634. [CrossRef]

27. Finochietto, J.M.; Micheletto, M.; Eggly, G.M.; Pueyo Centelles, R.; Santos, R.; Ochoa, S.F.; Meseguer, R.; Orozco, J. An IoT-based
infrastructure to enhance self-evacuations in natural hazardous events. Pers. Ubiquitous Comput. 2022, 26, 1461–1478. [CrossRef]

28. Dehghani, M.; Montazeri, Z.; Dehghani, A.; Seifi, A. Spring search algorithm: A new meta-heuristic optimization algorithm
inspired by Hooke’s law. In Proceedings of the 2017 IEEE 4th International Conference on Knowledge-Based Engineering and
Innovation (KBEI), Tehran, Iran, 22 December 2017; pp. 0210–0214. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.3390/s21041444
http://www.ncbi.nlm.nih.gov/pubmed/33669587
http://dx.doi.org/10.1109/TII.2020.3042833
http://dx.doi.org/10.1109/TII.2020.2967123
http://dx.doi.org/10.1016/j.adhoc.2021.102598
http://dx.doi.org/10.1109/JIOT.2018.2878942
http://dx.doi.org/10.1016/j.future.2020.07.040
http://dx.doi.org/10.1109/JIOT.2019.2942776
http://dx.doi.org/10.1109/ACCESS.2020.2977659
http://dx.doi.org/10.1109/JIOT.2022.3162019
http://dx.doi.org/10.1109/LSP.2017.2762960
https://lora-alliance.org/resource_hub/lorawan-specification-v1-1/
https://lora-alliance.org/resource_hub/lorawan-specification-v1-1/
https://www.semtech.com/products/wireless-rf/lora-core/sx1301
http://dx.doi.org/10.1109/RTSS.2008.17
http://dx.doi.org/10.1109/EMRTS.1999.777450
http://dx.doi.org/10.1016/j.jss.2004.11.021
http://dx.doi.org/10.1007/s11241-012-9156-y
http://dx.doi.org/10.1007/s00779-020-01506-z
http://dx.doi.org/10.1109/KBEI.2017.8324975

	Introduction
	Related Work
	Real-Time and Scalabitity Support in LoRaWAN
	Gateways Placement Problem Optimization
	LoRaWAN Extensions to Deal with Synchronization Issues

	LoRaWAN Background
	Design Decisions and Constraints to Support Real-Time Communication
	Communication Dynamic
	Constraints to Support Real-Time Messaging

	Real-Time Communication Feasibility Model
	Dealing with the Allocation Problem in LoRaWAN
	Resource Allocation Optimization Algorithm
	Algorithm to Assign End-Devices to Gateways
	Positioning Gateways Using Different Approaches
	Positioning Algorithm Using a Greedy Approach
	Positioning Algorithm Using a Random Distribution
	Positioning Algorithm Using a Pseudo-Spring Model

	Simulations and Experimental Results
	Experiments Setup
	The First Set of Experiments: Details and Results
	Distribution of End-Devices in the Deploying Area
	Time Demand Requirements
	Results of the First Set of Experiments

	The Second Set of Experiments: Considerations and Results

	Conclusions and Future Work
	References

