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Abstract: Artificial intelligence (AI) is an emerging technology that is revolutionizing the discov-
ery of new materials. One key application of AI is virtual screening of chemical libraries, which
enables the accelerated discovery of materials with desired properties. In this study, we developed
computational models to predict the dispersancy efficiency of oil and lubricant additives, a critical
property in their design that can be estimated through a quantity named blotter spot. We propose a
comprehensive approach that combines machine learning techniques with visual analytics strategies
in an interactive tool that supports domain experts’ decision-making. We evaluated the proposed
models quantitatively and illustrated their benefits through a case study. Specifically, we analyzed
a series of virtual polyisobutylene succinimide (PIBSI) molecules derived from a known reference
substrate. Our best-performing probabilistic model was Bayesian Additive Regression Trees (BART),
which achieved a mean absolute error of 5.50± 0.34 and a root mean square error of 7.56± 0.47,
as estimated through 5-fold cross-validation. To facilitate future research, we have made the dataset,
including the potential dispersants used for modeling, publicly available. Our approach can help
accelerate the discovery of new oil and lubricant additives, and our interactive tool can aid domain
experts in making informed decisions based on blotter spot and other key properties.

Keywords: polyisobutylene; blotter spot; artificial intelligence; Bayesian regression

1. Introduction

Formulated lubricants are essential components for countless industrial and mobility-
related activities, and they represent an over $60 billion global chemical enterprise [1–3].
Regardless of the application, approximately 80–95 wt% of the lubricant’s total weight
composition is the lubricating base oil, which can be either petroleum-based or synthetic
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in nature, such as poly-alpha-olefins or synthetic esters. In addition to the base oil, a
formulated lubricant incorporates in the formula a series of additives, e.g., an additive
package, which improves the physicochemical properties, thus providing unique essential
characteristics depending on the specific application. The United Nations’ global goal
of net zero emissions by 2050 [4–6] is demanding an increase in the production of high-
performance fuels and lubricants from sustainable feedstock in order to reduce dependence
on petroleum-based products and mitigate the environmental footprint. In addition, addi-
tives have to be taken into consideration because of their contribution to the performance
of a lubricant. Additives’ sustainability needs to be evaluated not only with respect to their
manufacturing process but also regarding how they improve the performance and durabil-
ity of the formulated lubricant. Considering the small time-window available to achieve
the net-zero emission goal, the design of a new generation of lubricant additives that can
improve sustainability by helping with fuel economy, reducing carbon dioxide emissions
and prolonging the useful life of lubricants, can benefit from the speed-up provided by an
artificial intelligence (AI) based approach to molecular design.

Dispersant additives, which have been extensively used since the 1950s, are one of the
main components of the total additive percentage of a formulated lubricant for modern
internal combustion engines. Under the harsh operating conditions of an engine, soot is
produced as a result of incomplete oxidation/combustion of the fuel. In an engine, soot ag-
gregation increases lubricant viscosity, preventing regular flow, causing corrosion, deposit
formation and mechanical wear. Dispersants are polymeric surfactant-like amphiphilic
molecules characterized by at least one hydrophobic, oil soluble ‘tail’ polymer backbone
component, often polyisobutylene (PIB), and at least one hydrophilic, polar ‘head’ unit
that adsorbs onto the surface of ultrafine carbon deposit precursors (mainly sludge soot
particles) stabilizing them by acid–base or electrostatic interactions, thereby reducing their
aggregation [7–10]. An efficient dispersant design requires tailoring the nature of the chem-
ical interactions to meet the performance characteristics of a particular engine, for which a
number of parameters need to be fine-tuned [11,12]. Despite the knowledge available, the
chemistry for production of dispersants in use today remains limited. Therefore, there are
significant opportunities for innovation. Polyisobutylene succinimide (PIBSI)-based disper-
sants, initially developed in 1965 by Le Suer and Stuart, are still the most common ashless
dispersants used in engine oil [13,14]. They are composed of a polyamine polar head, which
is connected to a long non-polar polyisobutylene stabilizing tail by a succinimide group.

The design of dispersants involves a deep understanding of which molecular architec-
ture can best provide the functions required for the target application while considering the
potential interactions of amine and imide functional groups with other additives. This task
is typically carried out through trial and error, coupled with chemical intuition, but the
process is expensive and time-consuming. In sharp contrast, artificial intelligence (AI) holds
great potential to guide the design of next generation materials because of its capability for
solving multiobjective optimization problems, thus allowing economic and time savings.
In this sense, AI-based approaches are increasingly used in the design of complex materials
[2,3,15]. In particular, several subproblems associated with the design of lubricants [16–18]
and fuels [19,20] have been addressed using machine learning techniques. More specifically,
quantitative structure–activity relationships (QSAR) modeling that has historically been
applied to computer-aided drug design can be adapted to process data from different
domains, in particular, materials design [21,22]. QSAR models establish linear or nonlinear
relationships between descriptor values that are computed from molecular structures and
experimentally measured physicochemical or biological activity properties. Then, these
QSAR models are used to design new chemical structures with the desired properties.
However, the use of these methodologies in the design of new dispersants is still incipi-
ent. In Menon et al. [23], a computational method for understanding and optimizing the
properties of complex physical systems is presented. This method is known as Hierarchical
Machine Learning (HML), which combines physical and statistical modeling. The first
implementation of HML embedded domain knowledge into polymer dispersants to probe
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their effect in a cement-based system, and it constitutes one of the few prior studies that we
have identified on the use of machine learning for the study of dispersants. Nonetheless,
it is important to mention that the blotter spot property, modeled in our present work, is
not addressed by Menon et al. Furthermore, their methodology does not incorporate a
visual analytics approach for expert users to visually evaluate potential molecules. Finally,
Jablonka et al. [15] presented an active learning algorithm for de novo polymer design
focused on simulation of dispersancy characteristics. This work showcases how simulation
and machine learning techniques can be coupled to discover materials. However, we would
like to clarify that the goals of this work differ from the present paper. While they proposed
a de novo design strategy using molecular simulations, we do not propose a generative
model method. Instead, our approach is focused on evaluating and prioritizing molecules
designed by human experts based on fundamental principles.

In this context, the primary objective of our research is to aid the design of efficient
dispersants through AI-based modeling and interactive visualizations, leading to reduced
operational expenses and faster discovery of novel dispersants. Our hypothesis is that the
polar head is mainly responsible for dispersant activity by absorbing onto the surface of
soot particles. In this sense, a question that arises is whether a computational approach,
based on machine learning and visual analytics, to determine the relationship between
the chemical structure of the polar head and a given dispersancy measure is suitable to
guide virtual screening in the design of new materials with an expected dispersancy profile.
In particular, in this paper, we describe a machine learning based tool for dispersant design
and optimization, which is focused on the prediction of a key performance property: dis-
persancy efficiency (measured using the blotter spot test) based on the molecular structure
of the polar head of molecules. Complementary strategies were developed based on a
combination of unsupervised and supervised learning, nonlinear dimensionality reduction
methods and data visualization strategies. The resulting inol was statistically validated,
and its application is illustrated by the evaluation of a series of virtual PIBSI molecules
derived from a known reference substrate, by testing the potential of the proposed tool in
virtual screening problems.

2. Materials and Methods

In this section, we present all key issues related to the data curation, computational
representation of molecules, proposed predictive modeling and design of the visual analyt-
ics tool. In this sense, two computational models were proposed as part of our tool in order
to provide different perspectives for predicting the dispersancy efficiency of molecules:
a structural similarity-based model and a Bayesian regression model. Thus, the best can-
didates for dispersants can be selected by the expert’s assessment of molecules with the
highest prediction values from each model, taking into account predictive uncertainty.

2.1. Dataset of Potential Dispersants: Data Compilation and Curation

The first step of our work was to compile a dataset from the literature with 83 poten-
tial dispersants, mostly PIB-succinimide dispersants (PIBSIs), by conducting a manually
curated data extraction process from an extensive collection of articles [7,8,24–37]. The
dispersant capacity of the candidate molecules, namely dispersancy efficiency, was selected
as the property for prediction and optimization purposes. Among the standard tests for
measuring the merit of dispersancy of engine oils, the blotter spot test (ASTM D7899) was
selected. This test is one of the oldest techniques, and provides an excellent assessment of
the lubricant’s dispersancy performance of engine oils where pollutants of diverse sources
such as soot from combustion, metal particles from wear or insoluble products resulting
from the oxidation of the oil may contaminate the lubricant.

Additionally, results from dispersancy evaluation methods based on thermal ox-
idative decomposition procedures were processed into a parameter known as reduction
factor [24,25,35,38] (i.e., R-Factor = soot reduction ratio × initial soot weight / concentration of
dispersant). This allowed us to normalize the performance of dispersants as a common
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arbitrary unit from different experimental techniques. As a result of the incorporation of
the R-factor calculation, the final dataset includes molecular structures with known blotter
spot and/or R-factor values. However, as we explain below, the experiments presented in
this work were focused on blotter spot values, since it is the most predominant property
available for the chemical structures included in the dataset.

The complete dataset of 83 molecular structures was used for the two-dimensional
visualization based on structural similarity. For model validation purposes, we keep the
53 potential dispersants for which blotter spot values are available and paired them with
the chemical structure of the polar head of the molecule. In view of the challenge presented
by the sparse data found in the literature, we had to adapt our modeling approach to work
in this regime. The scarcity of labeled data prevents us from using deep learning based
approaches [39,40]. Instead, Bayesian regression models combined with visual analytic
strategies were used, as they have proven to be beneficial in small data regimes [41,42]. The
collected data have been made publicly available (see Data Availability section).

2.2. Computational Representations of Molecules

In our dataset of potential dispersants extracted from the literature, each molecule is
represented by the SMILES code [43] corresponding to its polar head only. Then, classical
molecular descriptors were computed using Mordred (version 1.2.0) [44]. This tool allows
the calculation of 1613 molecular descriptors from two-dimensional structures and 213
from three-dimensional structures. Most of these descriptors represent topological proper-
ties calculated traversing the molecular graph underlying the chemical structure of each
compound, where nodes represent atoms and edges represent chemical bonds.

Each molecule is thus represented by a vector of numerical values corresponding to
different descriptors. This allows a tabular representation of the dataset.

Additionally, SMILES-based molecular embeddings calculated from a pre-trained
model based on recurrent neural networks (RNN) with long-short term memory cells [45]
were also obtained for each potential dispersant. The RNN-based model was trained with
millions of molecules in the tasks of “prediction of the next token” and “prediction of
masked tokens”, where in a chemical scenario, a token represents part of the SMILES code
of the molecule [46]. Therefore, latent representations of the molecules (embeddings) that
are expected to capture relevant information contained in the SMILES codes are obtained
using a pre-trained model [47].

2.3. Model Based on Structural Similarity

Our first modeling strategy aims to predict the dispersancy efficiency of new molecules
based on structural similarity with existing molecules with known dispersancy efficiency
values. The hypothesis behind this strategy is underpinned by the QSAR modeling prin-
ciple, which indicates that structurally similar compounds should exhibit similar prop-
erties [21]. In our work, we employed molecular descriptors as numerical values to
characterize the chemical structures, capturing the compounds’ topological information
and atom properties. Therefore, in this context, structural similarity refers to the similarity
of the molecular descriptors and not the overall similarity of the chemical structures. In
this regard, a distance calculation is performed on the metric space defined by the values
of the molecular descriptors that were previously identified as relevant to characterize the
dispersancy efficiency of a compound. For this reason, the selection of the descriptors used
to define this type of model plays a central role. Furthermore, as it will be explained in
detail in Section 2.6, this multidimensional metric space is projected into a two-dimensional
space to allow a more intuitive visual exploration of the model and its predictions.

2.3.1. Molecular Descriptor Selection

For this first model, we focused on classical molecular descriptors. These descriptors
refer to specific molecular properties, thus facilitating their interpretation and enabling
human experts’ intervention during the analysis and visual exploration of the results of
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the model. In particular, we focus on 2D molecular descriptors only. Then, descriptors
with undefined values, constant values and those correlated with a value greater than
0.95 were discarded. A final set of 425 molecular descriptors was obtained. Then, the first
step for designing the similarity-based model was to conduct a feature selection procedure
to identify a reduced subset of molecular descriptors statistically related to the target
property. This subset defines the underlying metric space used by the model.

The relevance of the selected descriptors in the model was established through
a two-stage process. The first stage aims at pre-selecting different subsets of molec-
ular descriptors through fully automated strategies, using machine learning methods,
and also through a selection made by experts in the chemical domain. The second
stage aims to compare the pre-selected subsets of descriptors through an exploratory
visual analysis of the relationships among them, following a human-in-the-loop method-
ology [48]. The decision to carry out the selection of descriptors in two stages for this
model is due to the need of obtaining a small subset of descriptors. This is because our
visual-oriented similarity-based model that we later use to assess candidate molecules
(Section 2.6) requires condensing the visualizations to a human-scale that facilitates the
analysis and interpretation of the molecules in terms of few descriptors. This reason will
become even more apparent when the layout of the visualizations of the model is presented.

In the first stage, four pre-selected subsets of descriptors were obtained, three of them
generated by applying descriptor selection methods based on machine learning techniques
and the fourth one by using expert criteria. In this regard, the three subsets obtained
through machine learning were the result of experimenting with Random Forests [49] and
Decision Trees [50] in a repeated manner with different seed values. Decision trees are
widely used as feature selection methods. Conceptually, based on the most information-
rich features, a binary division procedure is followed where each bifurcation divides the
chemical space into areas of similar target values. Random Forest is an ensemble of decision
trees, where each tree is trained with a random subset of features and randomly sampled
data instances. Both tree-based techniques calculate a score for each feature during the
learning process. Then, the most important features can be easily ranked.

From different runs with Random Forest and Decision Trees, we selected the three
subsets of descriptors that obtained the lowest error values. In each experiment, we kept
the top-8 performing descriptors. Regarding the subset obtained through expert criteria,
this was defined by an organic chemist who participated in the project. They identified
key features for the design of this type of chemical structures that are also highlighted
elsewhere in the scientific literature, such as polarity, orbital electronegativity, basicity and
percent nitrogen composition. Keeping these guidelines in mind, five molecular descriptors
related to these characteristics were selected. The detailed list with the pre-selected subsets
of descriptors is summarized in Table 1.

Table 1. Four subsets of descriptors selected for the model based on structural similarity.

Subset Feature Selection Method Pre-Selected Molecular Descriptor

1 Random Forest AATS5d, AATS5Z, SIC0, ATSC3d, ATSC5v, GATS5d,
AATS5v, GATS3d

2 Decision Tree AATS5d, ATSC5v, ATSC6Z, AATS8p, AATSC7d,
MINssCH2, PEOE_VSA9, GATS8i

3 Decision Tree AATS5d, ATSC5v, GATS8p, GATS8v, GATS1se,
MINssCH2, AATS1Z, GATS8i

4 Expert Criterion nBase, nN, MATS1se, AATSC0p, TopoPSA(NO)

In the second stage, these subsets were used as input to make the final selection
of descriptors using ViDeAn [51]. Since several subsets of candidate molecular descrip-
tors were obtained, this visual analytics tool allows for selecting descriptors following an
expert-in-the-loop strategy. ViDeAn offers different coordinated views for visual inter-
active exploration of the relationships among molecular descriptors, the target property
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and candidate descriptor subsets based on different statistical metrics. In this way, the
domain expert’s knowledge can be added to analyze the subsets of descriptors previously
obtained by automated feature selection methods. Using the latter tool and with the help
of the chemical expert, it was possible to visually explore relationships among molecular
descriptors in terms of mutual information, linear correlation and the co-occurrence that
they present in the pre-selected subsets. Furthermore, the individual relationship of each
descriptor with the target property as well as the predictive capacity estimation of a subset
of descriptors defined by the expert during data exploration was analyzed. As a result
of this exploratory analysis, the final selection of descriptors was made up of AATS5d,
ATSC5v and PEOE_VSA9.

AATS5d is the Moreau–Broto descriptor that measures the autocorrelation in the
topological structure, at topological distance 5, of the atomic property linked to the sigma
electrons of the atoms. ATSC5v is the Moreau–Broto descriptor that measures the au-
tocorrelation in the topological structure, also for topological distance 5, of the atomic
property linked to the volume of van der Waals atoms. Finally, the PEOE_VSA9 descriptor
is computed as the sum of the van der Waals surface areas of the atoms whose PEOE partial
charge (partial equalization of orbital electronegativities) is in the range of [0.05, 0.10).
More information on how these descriptors are calculated is available in Todeschini and
Consonni [52]. The three selected descriptors are used by our tool to analyze the structural
similarity among the compounds of our dataset and to visually project those molecules in a
two-dimensional space as it will be explained in detail in Section 2.6.

2.3.2. Evaluation of New Molecules

In order to evaluate potential candidate molecules during a virtual screening study, a
model based on structural similarity was carried out using a regression algorithm based
on k-nearest neighbors [53]. This method is applied on the descriptor space to identify the
most similar molecular structures in the dataset to the unseen candidate compound, and
hence infer its dispersancy value. The predicted value is obtained by local interpolation
of the associated target property values of the nearest neighbors. Then, the estimator of
Equation (1) was defined to predict a target value for a new candidate compound x from
its neighbors:

WM(x) =
k

∑
i=1

(wcoe fi · yi), where wcoe fi =
(∑k

j=1 dj)− di

2 ∑k
j=1 dj

, (1)

where k is the number of neighbors to consider, yi is the target property for each neighbor i,
and di is the distance between candidate x and neighbor i. The weight wcoe fi is inversely
proportional to the distance between the candidate compound and the neighbor i. The
Weighted Mean (WM(x)) is the estimated property value for x calculated as the weighted
average value of the target property of its neighbors.

A cross-validation procedure was carried out for the model evaluation. For this, we
use two clustering techniques for assigning each molecular structure to a given data fold:
KMeans and Density Based Spatial Clustering of Applications with Noise (DBSCAN) [54].
KMeans is one of the most commonly used clustering techniques. The process consists of
randomly defining a number of k centroids (clusters) to seed the clustering process. Then,
the molecules are assigned to one of those k groups taking into account a distance measure
to the centroid. DBSCAN is one of the most widely used density-based clustering algorithm.
DBSCAN does not require setting the number of clusters in advance, but rather the algo-
rithm finds an optimal number of clusters based on an estimated density distribution of the
data. The algorithm requires two important parameters: the distance threshold to consider
two points as neighbors, and the minimum number of points for a region to be considered
as a cluster. As per the sampling for each fold, a specific strategy was followed to ensure
that structurally similar compounds are allocated evenly to different partitions. These
clustering techniques were applied using the Python package sklearn.cluster : KMeans and
DBSCAN [55,56]. For KMeans, a value of k = 4 was used. For DBSCAN, the parameters
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ε = 0.6 and min_samples = 3 were used for the threshold and the minimum number of
samples per cluster. Once the similar compounds are grouped together, the next step
consisted of distributing all the compounds belonging to a cluster in the different partitions
until all the compounds in the dataset were assigned.

2.4. Bayesian Regression Model

We opted for a Bayesian approach as a second predictive modeling technique, given
their ability to produce uncertainty estimates for their predictions, a key aspect in small data
regimes [41]. In particular, we used the Bayesian Additive Regression Trees (BART) [57]
model. BART is a Bayesian non-parametric model in which the unknown regression
function is modeled as a sum of decision trees in which each tree is constrained, through a
regularization prior, to be a weak learner.

In the context of regression analysis, Bayesian Additive Regression Trees aim to infer
the unknown, nonlinear functional relationship, denoted by f , between a p-dimensional
covariate vector x (representing molecular descriptors in the present case) and the output
of interest y (represented by the blotter spot value). The probabilistic framework for this
inference is expressed as

y = f (x) + ε

where the error term ε is assumed to be normally distributed with mean 0 and variance σ2,
i.e., ε ∼ N (0, σ2).

BART approximates f (x) = E(y|x) through a sum-of-trees model ∑m
j=1 g(x; Tj, Mj).

The formulation of this model begins with the specification of notation for an individual
tree model. The model for the j-th decision tree comprises a binary tree Tj that encompasses
a set of interior node decision rules and a set of b terminal nodes with associated parameters
Mj = {µ1j, µ2j, . . . , µbj}. The decision rules are binary splits of the predictor space of the
form {x ∈ A} vs {x /∈ A}whereA is usually a subset of the range of one of the dimensions
of x. The binary tree is designed such that each instance x is linked to a single terminal node
through the sequential application of decision rules. The function g(x; Tj, Mj) assigns to x
the corresponding µij value from Mj. The sum-of-trees model can be concisely expressed
as:

y =
m

∑
j=1

g(x; Tj, Mj) + ε ε ∼ N (0, σ2)

The BART model prevents overfitting by applying a regularization prior on the model
parameters (T1, M1), (T2, M2), . . . , (Tm, Mm) and σ2, ensuring that each decision tree is
a weak learner. This completes the model specification. Further details on the prior
specification can be found in Chipman et al. [57].

Given a setD = {(xi, yi)}N
i=1 of N molecules with molecular descriptors xi and known

blotter spot yi represented, the Bayesian setup induces a posterior distribution over the
model parameters p[(T1, M1), (T2, M2), . . . , (Tm, Mm), σ2|D]. Samples from this posterior
are generated using Bayesian backfitting Markov Chain Monte Carlo.

Finally, given a new unseen molecule with associated molecular descriptors z, samples
from its posterior predictive blotter spot distribution can be easily obtained passing z
through each of the generated posterior groups of m trees. The posterior predictive samples
can be utilized to make point predictions and estimate the uncertainty of the blotter spot
for the new molecule.

One of the notable advantages of the BART method is the capability to produce uncer-
tainty estimates for the predictions, which is a significant departure from non-probabilistic
methods such as Random Forest or Gradient Boosting. In our context, these uncertainty
estimates are helpful to identify potential candidates for synthesis and are crucial in our
small data regime. In particular, in an active learning setting, having estimates of uncer-
tainty in the predictions made by the model allows for building a policy for synthesizing
new targets that trades off between exploration and exploitation.
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For training this model, all the 2D molecular descriptors and molecular embeddings
were used. Features that were constant over the dataset, and those correlated with a value
greater than 0.95 were discarded. Finally, a set of 939 features, including both molecular
descriptors and embeddings, was obtained. The accuracy of various supervised learning
models, both Bayesian and non-Bayesian, was compared to ensure that the Bayesian
Additive Regression Trees perform similarly to state-of-the-art models in terms of predictive
accuracy. As the number of features is much higher than the number of observations, we
opted for sparsity-inducing models. In particular, the BART model with and without
variable selection was compared to Bayesian linear regression with a horseshoe prior [58],
random forest [49], and gradient boosting [59].

Within BART, variable selection was performed using the procedure described by
Bleich et al. [60]. This strategy makes use of the “inclusion proportions” of each predictor.
Within each posterior sample produced by BART, we can compute the proportion of times
that a split using a particular covariate as a splitting variable happens. The variable
inclusion proportion of each covariate is then estimated through the posterior mean of the
proportions across all of the posterior samples. Being able to calculate this quantity, the
selection of variables is carried out as follows:

1. The inclusion proportions of all variables in the model are calculated.
2. The response vector is randomly permuted, thus breaking the relationship between

the covariates and the response. The model is retrained with this new response vector,
and the variable inclusion proportions are recalculated. These are considered as the
existing inclusion proportions in case there is no association between the variables and
the response. This step is repeated several times to create a distribution of inclusion
proportions that we call the null distribution. This distribution will allow us to see
whether the value of the proportion of inclusion of each observed variable is too high
with respect to the expected distribution in the event that there is no association. If so,
the variable in question would be considered important.

3. In particular, Bleich et al. [60] described three variable inclusion rules described
therein. Out of these three rules, the one with the lowest mean squared error was
selected using cross-validation.

2.4.1. Evaluation of New Molecules

Given a new candidate molecule described by features x, the Bayesian model produces
samples from the posterior predictive dispersancy, denoted as p(y|x). The metrics that we
utilize to evaluate this molecule are defined as follows:

• Mean predictive dispersancy: the expected value of the posterior predictive distribu-
tion defined as E(y|x) =

∫
y · p(y|x)dy;

• Predictive standard deviation: the standard deviation of the posterior predictive

distribution defined as
√∫

[y−E(y|x)]2 · p(y|x)dy;
• The expected improvement: if we denote the best dispersancy value observed within

the training set as y∗, the expected improvement of a candidate molecule with features
x is defined as

∫
max(y− y∗, 0) · p(y|x)dy. As argued in [61], expected improvement

balances exploration and exploitation and is our chosen metric to decide which targets
will end up being synthesized;

• Probability of improvement: the probability that a candidate molecule with features x
has a dispersancy value higher than y∗ that is

∫
I(y > y∗) · p(y|x)dy, where I is the

indicator function.

All of these metrics can be easily approximated through Monte Carlo using samples
from the posterior predictive distribution provided by the BART model.

Finally, to gain some interpretability, BART is used to compute partial dependence
plots. These plots serve to illustrate how each of the descriptors affects dispersancy, on
average. Additionally, to provide an interpretation of the features obtained from SMILES
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embeddings, molecular descriptors highly correlated with each of the embedding-based
variables are highlighted.

2.5. Applicability Domain

An important aspect of predictive modeling is determining the reliability of predic-
tions [62,63]. In this sense, the Applicability Domain (AD) of a model is defined by the
chemical subspace of the compounds on which the model has been trained and where
the predictions are expected to be accurate [63,64]. Thus, for a new compound, we can
determine the prediction reliability by evaluating its AD. In this section, we explain how
it is computed for the modeling approaches defined in our tool. The proposed AD met-
ric (Equation (2)) measures the ratio between the average distance of the k neighboring
molecules to the new candidate (avgDist(X)) and the average distance of each of the m
molecules in the dataset and their k neighboring molecules (avgDistNeighDB). A value of
1 for the AD means that the candidate compound has a k-nearest neighbor distance that
is comparable to the average k-nearest neighbor distance for the rest of the molecules in
the dataset. Any value lower (greater) than 1 means that the candidate compound is closer
(farther apart) to the neighboring compounds than the rest of the compounds in the dataset.
The equations are formalized as follows:

AD(x) =
avgDist(x)

avgDistNeighDB
(2)

avgDist(x) = ∑k
i=1 di

k

avgDistNeighDB =
∑m

j=1 avgDist(xj)

m
,

where x is the candidate molecule being screened, di is the distance between the candidate
x and its neighbor i, and xj is each of the m molecules in the dataset.

2.6. Design of the Visual Analytics Tool

The two machine learning methods described in the previous sections need to be made
accessible to the chemical expert. In this regard, a visual analytics strategy is proposed.
Visual analytics [65] is a discipline that enables lay users to explore data and to use complex
AI methods by means of interactive visualizations.

We designed two main interfaces that correspond to each of the modeling approaches.
The first interface is the frontend for the similarity-based analysis method, and it is shown
in Figure 1. This interface facilitates the visual analysis of the entire dataset, and it also
allows for adding novel compounds to be analyzed with respect to the other compounds
in the dataset. On the left-hand side (Figure 1A), a scatterplot with a two-dimensional
projection of the compounds of our dataset is shown. This is achieved by means of
the dimensionality reduction techniques t-Distributed Stochastic Neighbor Embedding
(tSNE) [66] and Uniform Manifold Approximation and Projection (UMAP) [67]. Both
techniques measure distances between data observations in a high-dimensional space and
transform those distances to points in a low-dimensional space, usually two-dimensional,
so that low-dimensional pairwise distances are related to the distances in the original space.

The main difference between these methods is in the way that distances are computed.
tSNE is an algorithm designed for the visualization of high-dimensional data. It first
constructs a probability distribution (Gaussian) over the pairs of samples in the original
space, in such a way that similar samples are assigned a high probability, while very
different samples are assigned low probability. Similarly, the method projects the points
from the high dimensional space to a low dimensional space and constructs a Student’s
t-distribution over pairs of samples in the reduced space. These last two steps are iterated
until both spaces, the original and the reduced one, present similar distributions. On
the other hand, UMAP is a dimensionality reduction algorithm that builds topological
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representations of the data both in the original dimension and in the reduced dimension.
In the case of high-dimensional data, the topological structure seeks to approximate the
manifold on which, it is assumed, the data are located. The topological representation
of the low-dimensional data is initialized with random values. Once the topological
representations of the data in high and low dimensions have been constructed, the position
of the points in the low dimension is optimized to minimize the cross entropy between
both topological representations. The projected spaces were obtained using Python’s
sklearn.manifold and umap packages that provide implementation of the t-SNE and UMAP
methods, respectively [68,69]. For both cases, the default parameters were used, except
for t-SNE’s perplexity, which was set to 18 to compensate for the small data context. This
parameter is related to the trade-off between the local and global preservation of distances
in the data. In this sense, to set the perplexity value, experiments were carried out with
different values ranging from 5 to 30, selecting one that showed a good cluster structure.

Figure 1. Interface for the model based on structural similarity distances using t-SNE. (A) 2D
projection of our compounds. (B) Scatterplot matrix. (C) Filtering of compounds. (D) Neighborhood
for new compounds. The nodes in green represent the compounds with ‘high’ blotter spot values,
i.e., those above the predefined threshold (set as 80 in this plot). The five most structurally similar
compounds to the candidate compound are highlighted using a red outline, and their information
is summarized in the table included below the t-SNE plot. On the right, scatterplots for pairwise
analysis of descriptors are shown, where the descriptor values of the five nearest-neighbors of the
candidate are highlighted using a red outline.

In the scatterplots generated by these projections, dots correspond to compounds and
their size is proportional to the blotter spot value. The location of the dots depends on
the dimensionality reduction method used for projecting from the original dimensional
space defined by the molecular descriptor values onto a two-dimensional space. For this
projection, the tool allows for using either t-SNE or UMAP. When a dot is hovered over,
contextual information is shown such as name, dispersancy score (as Blotter spot or R
factor), and a visualization of the chemical structure of the compound using SMILES
Drawer [70].

On the right-hand side of the interface (Figure 1B), the compounds are visualized
using a scatterplot matrix [71], which shows all pairwise combinations of the original
molecular descriptor values so that all bivariate relationships between descriptors can be
analyzed. These two latter visualizations are coordinated [72], which is a well-known visual
information resource to explore data from different perspectives. This is accomplished
by brushing and selecting compounds from the main scatterplot, which grays out the
compounds on the scatterplot matrix. In this way, the chemical expert can focus the
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bivariate analysis on a subset of compounds chosen by the user. At the top (Figure 1C),
there are some filtering options that toggle visibility for compounds that have: blotter
spot values defined only, R factor values defined only, or all compounds. There is also an
interactive filter that enables the highlighting of compounds above a certain dispersancy
value. All compounds with blotter spot values below the chosen threshold are grayed out.

Finally, it is also possible to add unseen compounds that are intended to be screened
and evaluated in a visual manner (Figure 1D). Once a new SMILES code is entered, it is
possible to identify the nearest neighbors of the dataset as detailed in Section 2.3.2. The
nearest neighbors are highlighted—in the main scatterplot and in the scatterplot matrix—
using a red outline. A tabular view of the neighbors with their descriptor values is shown
at the bottom, while the predicted value and applicability domain estimate based on the
similarity-based analysis are displayed just above the table.

On a different tab, the interface enables the chemical expert to use the BART method
described in Section 2.4; in addition, it sheds light on the inner workings and the impact
of each descriptor. Once a sequence of comma-separated SMILES codes is entered in the
main text area (Figure 2A), and the Predict button is clicked, the molecular descriptors
and molecular embeddings described in Section 2.2 are computed for those chemicals.
Once the descriptors and embeddings are computed, then BART is used to predict the
target distribution of the Blotter spot value for the entered compounds. This information is
summarized with a table (Figure 2B) that contains for each row:

• SMILES of the compound for prediction;
• Mean value of the posterior predictive distribution as described in Section 2.4.1;
• Median value of the posterior predictive distribution;
• 95% prediction interval as described in Section 2.4.1;
• Expected improvement of the predicted blotter spot value with regard to the highest

blotter spot of the training dataset as described in Section 2.4.1;
• Probability of improvement with respect to the highest blotter spot of the training

dataset as described in Section 2.4.1;
• Applicability domain measured as described in Section 2.5.

The user can interact with any of the predicted compounds by clicking on the corre-
sponding row to render two new graphical elements, i.e, a histogram (Figure 2C) and a
bar plot (Figure 2D). The histogram shows a sample of the posterior distribution for the
predicted blotter spot value. The bar plot shows the importance of each feature—either
molecular descriptor or molecular embedding—as described in Section 2.4.1. The chemical
expert can gain insights on the contribution of each feature by two additional plots. The
first one is the Partial dependence plot (PDP), which shows for any chosen feature how the
dispersancy value changes on average (black line) at different deciles of the feature value,
marginalizing over the values of the rest of the features. Similarly, the plot also displays 95%
percent intervals at different deciles (blue lines). For instance, for the molecular descriptor
AATS5d (Figure 3), values of this feature ranging in the [0, 0.3] percentile ([1.7, 2.0] in the
AATS5d descriptor) show an average blotter spot value of around 80, while values of this
feature in the [0.6, 1] percentile ([2.1, 2.3] in the AATS5d descriptor) generate dispersancy
blotter spot values around 75.

Although the molecular embeddings were shown to be useful for prediction, they
lack interpretability. Therefore, we aimed at incorporating a bar plot that ranks the top 10
molecular descriptors that best correlate with the chosen molecular embedding (Figure 2F).
For instance, for the molecular embedding X758, we notice that the molecular descriptor
SlogP_SA4, which is based on Wildman–Crippen LogP value, highly correlates with this
descriptor. This allows for determining that this molecular embedding encodes information
related to the hydrophobicity of the compound. A short video highlighting the main
functionalities of the tool can be found in the Supplementary Material section.
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Figure 2. Interface for the model using BART. The table summarizes the performance of the entered
molecules (A,B). The histogram shows the posterior probability for the compound clicked from
the table (C). Feature importance, a partial dependency plot and correlation of a descriptor with
other descriptors are also shown (D–F). For instance, we can see in the partial dependence plot that
the Blotter spot value tends to increase for larger values of the selected variable (the embedding
X758), while the correlation bar chart shows that this embedding correlates highly with the descriptor
SlogP_VSA4.

Figure 3. Partial dependence plot for AATS5d. This plot facilitates the understanding of how the
dispersancy value is affected as a given descriptor is modified.

3. Results and Discussion

This section presents the results corresponding to the statistical validation of the
predictive models included in our tool and discusses, through the resolution of a use case,
how it can be applied in a virtual screening problem.

3.1. Evaluation of the Models

We performed an evaluation of our models through cross validation [73,74]. The
performance metrics used for this purpose are Mean Absolute Error (MAE) and Root Mean
Squared Error (RMSE). The structural similarity-based model was statistically evaluated
via 5-fold cross-validation. As discussed in Section 2.3.2, two methods, namely Kmeans
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and DBSCAN, were used to split the data by structural diversity in order to propose an
evaluation consistent with the approach of the proposed model. In this regard, once the
k most similar molecular structures were obtained in terms of the descriptor space, the
Weighted Mean (WM) was calculated for each compound in the test set. The metric used
to measure the distances between the molecular structures was the normalized Euclidean
distances distance, and the number of neighbors was set to five (k = 5). The performance
obtained is reported in Table 2.

Table 2. MAE and RMSE for k-nearest neighbors broken down by the clustering method used for
sampling the folds.

Data Sampling MAE RMSE

KMeans 3.89± 1.21 5.45± 1.65
DBSCAN 3.84± 1.19 5.37± 1.78

For the Bayesian regression model, RMSE and MAE were estimated via repeated
5-fold cross-validation with 10 repetitions. Unlike the evaluation of the model based on
structural similarity, here we choose to do a random data splitting given the higher number
of covariates that are present in this model. Table 3 shows the results obtained. The best
performing model was Random Forest. However, its performance is comparable with
that of Gradient Boosting and BART with feature selection. As discussed in Section 2.4,
Bayesian approaches provide probabilistic forecasts that allow for quantifying uncertainty
in the predictions, which is of paramount importance in our application domain. This is
the reason we selected BART with variable selection as the final model, albeit its slightly
lower performance compared to that of Random Forest and Gradient Boosting.

Table 3. MAE and RSME of different models estimated through repeated 5-fold cross validation.

Algorithm MAE RMSE

Bayesian Regression + horseshoe prior 6.38± 0.51 8.34± 0.65
BART 6.02± 0.36 7.61± 0.38

BART + Variable Selection 5.50± 0.34 7.56± 0.47
Random Forest 5.10± 0.26 6.78± 0.17

Gradient Boosting 5.34± 0.39 7.11± 0.52

3.2. Virtual Screening Using the Visual Analytics Tool

The models used for predicting blotter spot effectively allow for capturing interesting
patterns within the dataset. However, to achieve high prediction performance, interpretabil-
ity is compromised. There are two sources that preclude any possible form of rationalization
of the criteria used by the algorithm: the black-box nature of the models used and the
abstract nature of the molecular descriptors (both the traditional ones and the embeddings).
To help explaining the inner workings of the model, we can use partial dependence plots
(PDPs), as the ones in Figure 3. PDPs allow for quantifying the dependency between the
predicted blotter spot and a set of descriptors of interest, marginalizing over the values of all
other descriptors. However, this does not help with the fact that some molecular descriptors
are still too abstract to provide us with a useful understanding about the decisions made by
the model.

In an attempt to further examine the predictive potential of our model and understand
its inner workings, we proceeded to evaluate a series of virtual PIBSI molecules derived
from a known reference substrate. In particular, PIBSI-TEPA was selected as a starting
point for its simplicity and used to design similar derivatives which might reveal logical
trends in the predictions. For that purpose, we computed the mean posterior predictive
blotter spot of each derivative and compare it with that of PIBSI-TEPA (which was obtained
experimentally and has value yPT = 85%). In addition, to give a measure of strength of
the tendencies that may arise, we computed the posterior probability of the derivative
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having a higher (lower) dispersancy than the PIBSI-TEPA that is
∫
I(y ≷ yPT) · p(y|x)dy.

This integral was approximated through Monte Carlo using the sample from the posterior
predictive distribution provided by the BART model. The results are illustrated in Figure 4.

First, a cumulative replacement of the amino groups in the PIBSI-TEPA by oxygen
caused the predicted blotter spot dispersancy to decrease down to a minimum when all
the internal amines were removed (Figure 4, S1–S3). The stark influence of basic amino
groups over other common heteroatoms has been consistently observed throughout the
literature [7,9]. Therefore, this result stands in agreement with well-known empirical trends.
The slight recovery in the dispersant activity when replacing the terminal nitrogen by an
OH group could be interpreted as the acidic proton offsetting the loss of NH2 (Figure 4, S4).

Figure 4. Virtual screening of PIBSI-TEPA derivatives. The values following the product number
indicate the difference between the mean posterior predictive blotter dispersancy and PIBSI-TEPA’s
experimental value used for training (85%). The percentage in parenthesis expresses the certainty
of the Bayesian model for placing the prediction above (for cases in which the predictive mean is
above 85%, represented in green) or below (for cases in which the predictive mean is below 85%,
represented in red) the PIBSI-TEPA reference.

Along these lines, the groups of Mekewi and Abdel Azim [28,29,38] studied homo-
logue series of designer PIBSI dispersants varying in their number of ethyleneamino sub-
units. The studies revealed a consistently high degree of correlation between the number
of amino monomers and the blotter spot value. This tendency was also accurately captured
by our model as we probed a series of PIBSI-TEPA homologues. Polyethyeleneamino
chains shorter than TEPA proved to be less effective than the reference substrate with a
difference of up to 12 percentage points in blotter spot (Figure 4, S5–S7). On the contrary,
a penta-ethyeleneamino scaffold did not lead to any appreciable change in the predicted
dispersancy, while further attaching an additional monomer resulted in a slight improve-
ment (Figure 4, S8–S9). This shows that the model computes amino groups as a positive
contribution altogether, and suggests that the activity will further increase proportionally
with more amines integrated into the polar head. Nonetheless, it is worth mentioning
that our current model has not been trained with limiting factors such as the detrimental
effect of nitrogen-rich compounds in the seal performance of elastomers. Therefore, too
optimistic predictions for large polyamine moieties should be considered with caution.

The conformational flexibility of the polar head for maximizing the interaction with the
randomly distributed acidic binding sites on the surface of soot particles has been proposed
to be another decisive factor for a high particle-dispersant affinity [7]. In practice, this
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implies that polar heads with a long and linear configuration are expected to have a higher
dispersancy efficiency compared to their branched analogs. To examine the performance
of our model in this regard, on the one hand, stretched TEPA derivatives were tested
by inserting additional methylene groups to each repeating subunit (Figure 4, S10–S12).
Interestingly, a positive response was observed when the chain length was sufficiently
extended. On the other hand, as the ethyleneamino units of the TEPA were rearranged
to create branches, the predictions entailed severe penalties as the ramification increases
(Figure 4, S13–S15). Based on this analysis, it appears that the algorithm has coherently
captured the essence of this mechanistic aspect.

Finally, encouraged by the consistency of the predictions with known experimental
observations, we further explored subtle structural changes to obtain information towards
designing an improved dispersant candidate. For instance, we probed the influence of
each NH group from PIBSI-TEPA by simulating selective N-methylations. This revealed
a higher sensitivity of NH groups towards the loss of dispersancy the closer they are to
the succinimide linkage (Figure 4, S16–S19). At the terminal NH2 site, a decrease in the
activity was only observed when converted into a tertiary amine (Figure 4, S20). The
low impact of mono-alkylation at this site could then be exploited by introducing a large
hydrophobic group, known to benefit dispersancy [75], and we, consequently, expected
our model to have learned this feature. Indeed, both a long hydrocarbon chain and a bulky
tertiary alkyl fragment led to a notable increase in the predicted blotter spot (Figure 4,
S21–S22). Structures such as the former are of special interest, since it can be prepared
through a presumably simple synthetic process using available feedstock chemicals. As
additional information, a view of compound S21 evaluated with the structural similarity-
based model using t-SNE can be seen in Figure 1. The model obtained a predicted value
of 85 with an AD of 0.69. Information of the five most similar compounds to S21 in the
database, including PIBSI-TEPA, is summarized in the table below the t-SNE plot.

4. Conclusions

The use of AI is having a growing impact on the design of new molecular compounds.
Although it does not replace some of the traditional wet-lab experimentation steps, it
is playing a key role in accelerating discovery of new materials such as dispersants. In
this work, we have illustrated how a structural similarity-based model and a Bayesian
regression model can be successfully combined for the virtual screening of dispersants in the
challenging context of a small data problem. We present a dataset of 53 potential dispersants
constructed from the literature and design a variety of models to predict the dispersancy
efficiency property. In addition, a visual analytics tool for exploring interactively the data
and models has been presented. This tool aims to facilitate the involvement of chemical
experts with the outputs produced by the machine learning models, contributing in this
way to the interpretability of the results. Finally, a brief study was presented to illustrate
the analysis that a chemical expert can follow with the tool to perform virtual screening of
a molecular structure. In this sense, the performance of our models was evaluated with a
virtual screening of representative polar head designs, which revealed a high consistency
with well-known empirical trends in the blotter spot predictions. In summary, our AI
methodology would provide useful insights to material designers beyond the limits of a
classical Edisonian approach to materials discovery.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/polym15051324/s1, Video S1: Visual Analytics Tool for Dispersancy
Efficiency.
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