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A recently derived method �R. D. Rohrmann and A. Santos, Phys. Rev. E 76, 051202 �2007�� to
obtain the exact solution of the Percus–Yevick equation for a fluid of hard spheres in �odd� d
dimensions is used to investigate the convergence properties of the resulting virial series. This is
done both for the virial and compressibility routes, in which the virial coefficients Bj are expressed
in terms of the solution of a set of �d−1� /2 coupled algebraic equations which become nonlinear for
d�5. Results have been derived up to d=13. A confirmation of the alternating character of the
series for d�5, due to the existence of a branch point on the negative real axis, is found and the
radius of convergence is explicitly determined for each dimension. The resulting scaled density per
dimension 2�1/d, where � is the packing fraction, is wholly consistent with the limiting value of 1
for d→�. Finally, the values for Bj predicted by the virial and compressibility routes in the
Percus–Yevick approximation are compared with the known exact values �N. Clisby and B. M.
McCoy, J. Stat. Phys. 122, 15 �2006��. © 2008 American Institute of Physics.
�DOI: 10.1063/1.2951456�

I. INTRODUCTION

Interest in studying fluids of hard spheres in d dimen-
sions goes back at least four decades1–28 and has recently
experienced a new boom.29–60 The evaluation of virial coef-
ficients, the derivation of the equation of state for these sys-
tems, or the determination of the radius of convergence of
the virial series are among the issues that have been exam-
ined, but many questions related to these issues and others
are still open. Providing answers to these questions may shed
light on similar issues related to real fluids and therefore
efforts in this direction are called for.

The Percus–Yevick �PY� theory61 is one of the classic
integral-equation approximations of liquid-state theory.62

Apart from yielding the correct expression for the radial dis-
tribution function �rdf� to first order in the density �and hence
also the correct second and third virial coefficients�, its key
role in the theory of simple liquids was recognized very early
because the resulting integral equation is analytically solv-
able for the important case of the hard-sphere fluid
�d=3�.63,64 Furthermore, the approximation provides the ex-
act rdf �although not the exact cavity function inside the
core65� for hard rods �d=1� and has been proven to yield
exactly solvable equations in odd d dimensions.2,5 In fact,
explicit analytical solutions for d=5 and d=7 have been

obtained2,5,49,57 and, rather recently, numerical solutions for
d=9 and d=11 have been reported.58 These latter have been
derived using an alternative method to the one originally
employed by Leutheusser5 which, among other things, al-
lows one to obtain the virial coefficients and the equation of
state both from the virial and compressibility routes in a
rather straightforward procedure. Also very recently, Adda–
Bedia et al.60 have been able to reduce the PY equation for
hard disks �d=2� to a set of simple integral equations which
they then solve numerically. An interesting aspect of this
work is their claim that the method may be generalized to
any even dimension.

Due to the limited availability of virial coefficients and
to the fact that the virial series for high densities relevant to
the fluid phase seems to be in general either divergent or
slowly convergent, various series convergence accelerating
methods, such as Padé or Levin approximants, have been
used to derive approximate equations of state for
d-dimensional hard-sphere fluids. However, the radius of
convergence of the virial series is not known in general, and
hence the usefulness of such approximate equations of state
is limited by the uncertainty of its range of applicability. For
d�3 all known virial coefficients turn out to be positive but
since negative virial coefficients appear for d�4, the ques-
tion arises as to whether some higher order virial coefficients
both for d=2 and d=3 might eventually become negative.

The main purpose of this paper is to examine the ques-
tion of convergence of the virial series for fluids of
d-dimensional hard spheres by looking at approximate theo-
ries where both the virial coefficients and the equation of
state are known. We will use the procedure introduced in
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Ref. 58 to derive the equation of state of the system and the
values for the virial coefficients taking both the virial and
compressibility routes, all within the PY approximation. In
particular, we will investigate the convergence properties of
the virial series of the equations of state stemming out of
both routes for d=5, 7, 9, 11, and 13 and will show that the
radius of convergence is related to a branch point on the
negative real axis. Moreover, we will compare the PY virial
coefficients with the exact values available in the literature.
This comparison suggests that, as the dimensionality in-
creases, the true radius of convergence tends to the value
predicted by the PY theory. We will also examine the perfor-
mance of the compressibility factors obtained from both
routes with the corresponding simulation data and will show
that the virial series truncated just before the first negative
term provides an excellent approximation to the equation of
state of the fluid phase.

This paper is organized as follows. In the next section
and in order to make the development self-contained, we
provide a brief description of the so-called rational function
approximation �RFA� approach leading to the PY approxima-
tion for fluids of hard hyperspheres in odd dimensions. Sec-
tion III presents the numerical results of our calculations
�together with a comparison with simulation data� for the PY
compressibility factors derived via the virial and compress-
ibility routes, respectively, as well as the analysis of the be-
havior of the PY virial coefficients obtained from the same
routes to the equation of state both with respect to the con-
vergence properties of the virial series and with respect to the
exact known values. The paper is closed in Sec. IV with
some discussion and concluding remarks.

II. THE PY THEORY

In this section we provide an outline of the main steps
leading to the PY approximation for the thermodynamic and
structural properties of hard hypersphere fluids in odd di-
mensions. Instead of following the original derivation by
Leutheusser,5 we will use the RFA method introduced in Ref.
58 which the reader is urged to consult for further details.

A. General background

We begin by recalling that the static structure factor of a
d-dimensional hard-sphere fluid can be written as

S�k� = 1 + �
�2���d−1�/2

kd−2 i�G�ik� − G�− ik�� , �2.1�

where � is the particle number density and G�s� is a Laplace-
space functional given by58

G�s� = �
0

�

drrg�r��n�sr�e−sr. �2.2�

Here g�r� is the rdf and �n�t� is the reverse Bessel polyno-
mial of degree n��d−3� /2. From these structural functions
one may obtain thermodynamic quantities such as the com-
pressibility factor Z� p /�kBT and the isothermal susceptibil-
ity ��kBT��� /�p�T, both defined in terms of the temperature
T, the pressure p, and the number density � �kB being the

Boltzmann constant�. The actual relationships read

Z = 1 + 2d−1�g�	+� �2.3�

and

� = S�0� , �2.4�

where 	 is the diameter of the particles and � is the packing
fraction given by

� = vd�	d, vd =
��/4�d/2


�1 + d/2�
, �2.5�

where vd is the volume of a d sphere of unit diameter. Hence-
forth without loss of generality we will set 	=1.

In hard-particle systems, the temperature does not play
any relevant role on the structural properties introduced here.
Moreover, the thermodynamic state of such fluids can be
characterized by a variable alone, say the density or the
packing fraction. Therefore, taking into account the thermo-
dynamic relation

�−1 =
�

��
��Z� , �2.6�

the so-called virial equation of state Eq. �2.3� and the com-
pressibility equation of state Eq. �2.4� provide two alterna-
tive routes for obtaining the compressibility factor Z��� of a
hard d-sphere fluid. Since all well-known theoretical meth-
ods to obtain structural functions give approximate results
�with the exception of the exact solution for the one-
dimensional case d=1�, one typically obtains two approxi-
mate solutions: the compressibility factor from the virial
route

Zv��� = 1 + 2d−1�gc��� , �2.7�

with gc����g�1+�, and the compressibility factor via the
compressibility route

Zc��� = �
0

1

dx�−1��x� , �2.8�

with ���� given by Eq. �2.4�.
For hard-hypersphere fluids in arbitrary odd d dimen-

sions, the RFA approach provides an analytical representa-
tion of the function G�s� defined by Eq. �2.2� and related to
the structure factor Eq. �2.1�. In the simplest implementation
of the RFA approach, which is the so-called standard RFA
and coincides with the PY approximation, the function G�s�
can be written in the explicit form58

G�s� =
e−s

s2

� j=0

n+1
ajs

j

1 + ��� j=0

n+1
aj�d−j�s�

, �2.9�

with

� � �− 1��d−1�/22d−1d ! ! , �2.10�
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�m�s� �
1

sm��
j=0

m
�− s� j

j!
− e−s	 . �2.11�

The coefficients aj are in general functions of the
density. Specifically, a0��d−2� ! ! and the quantities aj with
j=1, . . . ,n+1 are solutions of the following closed set of n
+1 equations:

D2m+1 −
a2m+1

�d − 2� ! !
+ �

j=0

m−1

2jD2�m−j�−1 = 0, 0 � m � n ,

�2.12�

with the boundary condition


aj
�=0 =
�2n + 2 − j�!

2n+1−j�n + 1 − j� ! j!
. �2.13�

The coefficients Dl are linear combinations of the �aj� given
by D0=1 and

Dl =
1

l!
− ���

m=0

n+1

am�
j=1

l
�− 1� j+d−m

�j + d − m� ! �l − j�!
, l � 1,

�2.14�

and the quantities 2m with 0�m�n are given in terms of
the coefficients aj by means of the recursion relation

2m =
a2m+2

�d − 2� ! !
− D2m+2 − �

j=0

m−1

2jD2�m−j�, 0 � m � n .

�2.15�

Here we have adopted the conventions aj =0 if j�n+1 and
� j=0

m
¯ =0 if m�0. In summary, when the �2m� obtained

from Eq. �2.15� are inserted into Eq. �2.12�, and use is made
of Eq. �2.14�, one gets a closed set of n+1= �d−1� /2 alge-
braic equations for a1 ,a2 , . . . ,an+1. The number of math-
ematical solutions �including complex ones� is 2n=2�d−3�/2

and the physical solution is obtained as the one yielding the
correct low density limit given by Eq. �2.13�.

The contact value of the rdf and the isothermal suscep-
tibility obtained by the PY theory �or, equivalently, by the
standard RFA method� are

gc��� = an+1�1 + ���
j=0

n+1
�− 1�d−j

�d − j�!
aj ,	−1

�2.16�

���� = 1 − 2��d − 2� ! ! �Dd + �
j=0

n

2jDd−2−2j� , �2.17�

with the factors Dl and 2m given by Eqs. �2.14� and �2.15�,
respectively. With these results introduced into Eqs. �2.7� and
�2.8� one obtains the compressibility factors Zv��� and Zc���
as derived within the PY theory from the virial and com-
pressibility routes, respectively.

B. Virial expansions

The virial expansion of the equation of state is an expan-
sion in powers of the density or the packing fraction,

Z��� = 1 + �
j=2

�

Bj�
j−1 = 1 + �

j=2

�

bj�
j−1, �2.18�

and its range of validity is limited by the convergence prop-
erties of the series. Notice that

bj = Bjvd
1−j . �2.19�

Since gc��=0�=1, Eq. �2.3� yields

b2 = 2d−1. �2.20�

A more elaborated analysis of the virial equation shows that
b3=22d−1y1�1� /y1�0�, where y1�r� represents the overlap vol-
ume of two hyperspheres of unit radius and centers separated
by a distance r. In particular, for d=odd, one finds58

b3 = 22d−1�1 −
�2n + 3� ! !

2n+2 �
j=0

n+1
�− 4�−j

�2j + 1�j ! �n + 1 − j�!	 .

�2.21�

The application of the PY theory yields two virial expan-
sions, one for Zv��� and another for Zc���. The virial coef-
ficients in the virial route are given by

bj
�v� =

2d−1

�j − 2�!

��

j−2gc���
�=0, �2.22�

whereas in the compressibility route one has

bj
�c� =

1

j!

��

j−1�−1���
�=0, �2.23�

with gc��� and ���� given by Eqs. �2.16� and �2.17�, respec-
tively, and where �� denotes the derivative with respect to �.
In practice, what one does is to solve Eq. �2.12� in a recur-
sive way for the coefficients in the density expansion of
a1 , . . . ,an+1. The solutions are exact rational numbers and
from them one gets bj

�v� and bj
�c� also as exact rational num-

bers.

III. RESULTS

In this section, we present the results that follow from
the previous derivations. Three aspects will be analyzed. We
first deal with the virial coefficients. Then, we examine the
issue of the convergence properties of the virial series, and
finally, we compare the resulting compressibility factors with
simulation data.

A. Virial coefficients

Because the PY theory is exact to the first order in den-
sity, the virial coefficients b2 and b3 �Eqs. �2.20� and �2.21��
are exactly reproduced by both routes. Higher virial coeffi-
cients are, however, different for each route, as shown in
Table I for 4� j�10, where the known exact values are also
included for the sake of comparison. The normalized differ-
ences �bj

�v,c�−bj� / 
bj
 between the approximate virial coeffi-
cients bj

�v� and bj
�c� and the exact values43,48,59 bj are shown in

Fig. 1 as functions of the space dimension for 4� j�10. As
one can see from the results in this figure, all known �exact�
coefficients in d=2 and d=3 lie between bj

�c� and bj
�v� in the
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form bj
�v��bj �bj

�c�, but this is not so in higher dimensions.
A transition behavior seems to take place at d=5 since in that
case one has bj �bj

�c��bj
�v� for j=7 and 9, while bj �bj

�c�

�bj
�v� for j=8 and 10. For d�7, however, the trends seem to

be bj
�v��bj �bj

�c� for j=even�4 and bj
�c��bj �bj

�v� for j
=odd�5. The top panels of Fig. 1 seem to indicate that the
relative deviations of the PY values with respect to the exact
ones tend to decrease and stabilize with increasing d, espe-
cially in the case of bj

�c�. Of course, a confirmation of all
these trends would require the knowledge of the exact virial
coefficients for higher orders j and higher dimensionalities d.
The fact that b4

�v��b4�b4
�c� for all d implies that Zv���

�Z����Zc��� for asymptotically low densities. On the
other hand, since both Zv��� and Zc��� are for any ��1,58

i.e., even for densities higher than the close-packing value
�cp, it can be reasonably expected that Z����Zc���
�Zv��� beyond a certain density, although this possibly hap-
pens in the metastable region. A precursor of this effect
might be the relation of b5

�c��b5�b5
�v� for d�7.

The assessment of the performance of the PY virial co-
efficients with respect to the exact results may also profit
from a different representation of the data. This is shown in
the four panels of Fig. 2, where we have plotted the ratio
b2bj−1 /bj as a function of j for 3� j�20 �with both bj

�v� and
bj

�c� and the values from Refs. 43, 48, and 59� for d=2, 3, 5,
7, and 9. As we will discuss below, the magnitude of this
ratio is related to the radius of convergence of the virial
series. In this instance, the regularity of the results for the
lower j’s observed for d=2 and d=3 is lost in higher dimen-
sions. It is interesting to note that for d=7 and 9 the exact
values of b2bj−1 /bj for the higher j’s �7� j�10� lie very

TABLE I. Exact and PY values for the virial coefficients bj /b2
j−1 for 4� j

�10 and several dimensionalities. The exact values are taken from Refs. 43,
48, and 59, while the PY values for hard disks �d=2� are obtained from
Ref. 60.

Exact PY �v� PY �c�

d b4 /b2
3 b4

�v� /b2
3 b4

�c� /b2
3

2 0.53223180 0.5008 0.5378
3 0.2869495 0.25 0.296875
5 0.07597248 0.04785156 0.08905029
7 0.00986495 −0.007499695 0.021550816
9 −0.008581 −0.018590778 0.000373515
11 −0.011334 −0.016933400 −0.005004249
13 −0.009523 −0.012604546 −0.005256304
15 −0.006934 −0.008614616 −0.004146893
d b5 /b2

4 b5
�v� /b2

4 b5
�c� /b2

4

2 0.33355604 0.2948 0.3433
3 0.110252 0.0859375 0.12109375
5 0.0129551 0.01294708 0.01638031
7 0.0070724 0.01235023 0.00511681
9 0.007439 0.01172436 0.00404299
11 0.006176 0.00873948 0.00320718
13 0.004307 0.00566100 0.00221818
15 0.002705 0.00337395 0.00138891
d b6 /b2

5 b6
�v� /b2

5 b6
�c� /b2

5

2 0.1988425 0.1667 0.2090
3 0.03888198 0.02734375 0.04492188
5 0.0009815 −0.00286007 0.00145829
7 −0.0035121 −0.00817700 −0.00186533
9 −0.004794 −0.00820391 −0.00229461
11 −0.00395 −0.00583856 −0.00179806
13 −0.002580 −0.00347797 −0.00113940
15 −0.001472 −0.00186395 −0.00063735
d b7 /b2

6 b7
�v� /b0

6 b7
�c� /b2

6

2 0.1148728 0.09194 0.1233
3 0.01302354 0.00830078 0.015625
5 0.0004162 0.00245853 0.00063127
7 0.0025386 0.00655314 0.00138425
9 0.003716 0.00676771 0.00164806
d b8 /b2

7 b8
�v� /b2

7 b8
�c� /b2

7

2 0.0649930 0.04988 0.07107
3 0.0041832 0.00244140 0.00518799
5 −0.0001120 −0.00173717 −0.00022064
7 −0.0019937 −0.00576280 −0.00107878
9 −0.003222 −0.00621239 −0.00133333
d b9 /b2

8 b9
�v� /b2

8 b9
�c� /b2

8

2 0.0362193 0.02677 0.04025
3 0.0013094 0.00070190 0.00166321
5 0.0000747 0.00134572 0.00017676
7 0.0016869 0.00542528 0.00091218
9 0.003029 0.00615464 0.00117921
d b10 /b2

9 b10
�v� /b2

9 b10
�c� /b2

9

2 0.0199537 0.01424 0.02248
3 0.0004035 0.00019836 0.00051880
5 −0.0000492 −0.00108546 −0.00012788
7 −0.001514 −0.00537523 −0.00081922
9 −0.00306 −0.00645733 −0.00111652

FIG. 1. �Color online� Normalized differences between the virial coeffi-
cients bj

�v� �triangles� and bj
�c� �circles� and the exact values �Refs. 43, 48,

and 59� bj as functions of the space dimension for 4� j�10. The data for
d=2 have been obtained from Ref. 60. The lines have been drawn to guide
the eye.
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close to the PY values. Whether this good agreement is ac-
cidental or not cannot be assessed before exact values of bj

for j�11 and/or d�11 are known.

B. Radius of convergence of the virial series

Now we turn to the question of the convergence proper-
ties of the virial series. The radius of convergence of the
virial series for each dimension d, �0=limj→�
bj−1 /bj
, is de-
termined by the modulus of the singularity of Z��� closest to
the origin in the complex � plane. In order to inhibit the
influence of d on the characteristic density values, we will
sometimes choose b2� �rather than � or �	d� to measure the
density. In Fig. 3 we display the PY compressibility factor
Zv��� as a function of b2� for d=5, 7, 9, and 11. In the
figure, apart from showing Zv��� in the physical domain of
positive densities �thick solid line, shaded region�, we have
provided its analytic continuation to negative values of �.
The thin solid line shows such a continuation. It turns out
that there exists a certain negative value �=−�0 such that
Zv��� keeps being real in the interval −�0���0. However,
at �=−�0 Zv��� merges with an unphysical root �dashed
line� and both roots become a pair of complex conjugates for
��−�0 �the two dotted lines represent their imaginary
parts�. This shows that Zv���, as well as Zc���, possesses a
branch point at �=−�0. This is the singularity on the real
axis closest to the origin. If no other singularity lying in the
complex plane is closer to the origin, then �0 is the radius of
convergence of the series. Figure 4 provides the radius of
convergence of the virial series for Zv��� and Zc���, this time
by representing again b2bj−1

�v,c� /bj
�v,c� as a function of j for 3

� j�150 and d=3, 5, 7, 9, 11, and 13. As is well known, the
radius of convergence predicted by the PY theory is �0=1

for d=3. On the other hand, for d�5 the radius of conver-
gence is �0�1 and coincides with the value �0 correspond-
ing to the branch point on the negative real axis shown in
Fig. 3. The values of �0, b2�0, and of the scaled density per
dimension13 �̂0=2�0

1/d are shown in Table II for odd dimen-
sions in the interval 3�d�13. It can be observed that the
values of �̂0 are consistent with the limit �̂0→1 as d→�
conjectured by Frisch and Percus.13 This agreement, along
with the behavior observed in Fig. 2, supports the reliability
of the radius of convergence predicted by the PY theory, at
least for high dimensions.

C. Compressibility factors

We now turn to the compressibility factor. In Fig. 5, we
present a comparison between the PY values for Zv��� and
Zc��� and some of the available simulation
data6,21,49,51,53,54,56,59,66,67 for various dimensions. It follows
from this figure that as d increases, Zc��� becomes a rather
accurate approximation for the simulation results. Note,
however, that the simulation data for d=9 are restricted to
the density region where Zv����Zc���.

Comparison between the density range in Fig. 5 and the
values of �0 tabulated in Table II shows that the good agree-
ment between Zc and Z for d=5 and d=7 extends to �
��0, i.e., well beyond the radius of convergence of Zv and
Zc. This might cast doubts on the practical usefulness of the
virial coefficients to predict the equation of state of hard
hyperspheres in the fluid region with ���0. However, as the
following discussion shows, we have observed that this is
not the case. Let us denote by j� the order of the virial coef-

FIG. 2. �Color online� Ratio b2bj−1 /bj as a function of j for 3� j�20 and
d=2, 3, 5, 7, and 9; bj

�v� �triangles�, bj
�c� �circles�, and the exact values �Refs.

43, 48, and 59� bj �squares�. The dash-dotted line is the limiting value of this
ratio for both PY virial coefficients when j→�. The insets in the cases d
=5, 7, and 9 show in more detail how the limiting value is approached.

FIG. 3. �Color online� Compressibility factor Zv��� in the physical domain
of positive densities �thick solid line and shaded region� and its analytic
continuation for ��0 �thin solid line� as a function of b2� for d=5, 7, 9,
and 11. At the negative value �=−�0 Zv��� merges with an unphysical real
root �dashed line� and both roots become a pair of complex conjugates for
��−�0 whose imaginary parts are represented by the two dotted lines. The
boxed numbers are the corresponding values of −b2�0.
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ficient preceding the first negative coefficient, i.e., bj �0 for
j� j� but bj�+1�0. Analogously one can define jv

� and jc
� in

connection with bj
�v� and bj

�c�, respectively. For instance, at
d=5 one has �see Table I� j�= jc

�=8 and jv
� =6, while j�= jc

�

=6 and jv
� =4 at d=7. Let us now define the truncated virial

series

Z���� = 1 + �
j=2

j�

bj�
j−1, �3.1�

with similar definitions of Zv
���� and Zc

����. Since the first
neglected term is negative, it follows that, at least for low
densities, Z����, Zv

����, and Zc
���� are upper bounds of Z���,

Zv���, and Zc���, respectively. Furthermore, we have
checked �for d=5, 7, 9, 11, and 13� that Zv

���� and Zc
���� are

excellent estimates of Zv��� and Zc���, respectively, much
better in the region ���0 than any other truncated virial
series. Does this property extend to Z���� as well? Compari-
son between Z���� and simulation data of Z��� for d=5 and
7 indicates that this is indeed the case. In Fig. 6, we have
represented the approximate compressibility factors Zv

����,
Zc

����, and Z���� for d=5 and 7, and compared such approxi-
mations with simulation values.21,49,67 Again the superiority
of the approximate PY compressibility factor obtained via
the compressibility route over the one obtained via the virial
route is apparent. More interesting, however, is the fact that
if one considers the similar approximation Z���� �i.e., using
the exact virial coefficients�, the agreement between this ap-
proximation and the simulation data is strikingly good over
the whole fluid phase region where these data are available,
especially in the case of d=5. In fact, since as already
pointed out, the PY theory leads to the exact �positive� b2

and b3 �irrespective of whether one takes the virial or the
compressibility routes� given that. Since for d�9 both the
exact fourth virial coefficient and the PY b4

�v� are negative, it
turns out that these dimensions j�= jv

� =3 and the truncated
expansions Z����=Zv

����=1+b2�+b3�2 coincide. Further-
more, since the PY coefficient b4

�c� also becomes negative for
d�11, all three truncated expansions for the compressibility
factor become the same for d�11.

IV. DISCUSSION

The preceding results lend themselves to further consid-
eration. One might have reasonably wondered whether the
trend observed for all the known virial coefficients bj both in
d=2 and d=3, namely the fact that they are bracketed by bj

�v�

and bj
�c�, would remain valid for all virial coefficients in these

dimensions and also hold for the higher dimensions. The
following reasoning indicates that for any d�1 there must
be at least one virial coefficient that does not comply with
the above trend. Since both Zv��� and Zc��� only diverge for
�=1 and the true Z��� must have a divergence at the close-

TABLE II. The radius of convergence �0 of the virial series in the PY
theory, and the associated quantities b2�0 and �̂0=2�0

1/d for fluids at d=3, 5,
7, 9,11, and 13.

d �0 b2�0 �̂0

3 1 4 1.58740105
5 0.056624327 0.90598923 1.12623911
7 0.010886779 0.69675386 1.04854495
9 0.002394546 0.6130038 1.02289857
11 0.000557016 0.570384 1.01204491
13 0.000133287 0.545943 1.00678503

FIG. 4. �Color online� Ratio b2bj−1 /bj as a function of j for 3� j�150 and
d=3, 5, 7, 9, 11, and 13, bj

�v� �triangles�, and bj
�c� �circles�. The dash-dotted

line is the limiting value of this ratio for both PY virial coefficients when
j→�, and from such value one can immediately get the radius of conver-
gence of the virial series.

FIG. 5. �Color online� Compressibility factors Zv��� �dashed line� and Zc���
�continuous line� of the PY theory as functions of the packing fraction � for
d=3, 5, 7, and 9, and simulation data �Refs. 21, 49, 59, 66, and 67� �filled
circles�.
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packing fraction �cp�1, then at a smaller packing fraction
�although possibly in the metastable fluid region�, Z��� must
lie above Zv��� and Zc���. This crossing should manifest
itself in the behavior of the virial coefficients even if the
radius of convergence of the virial series is smaller �or very
much smaller� than the packing fraction at which the cross-
ing occurs. According to our findings, the bracketing bj

�v�

�bj �bj
�c� is lost already for b5 at d=7, where one has bj

�c�

�bj �bj
�v�, and it seems that this will happen for all higher

odd j’s but not for even ones. We also find that the relative
deviations of the PY virial coefficients with respect to the
true coefficients tend to stabilize with increasing dimension-
ality.

Concerning the radius of convergence of the virial series,
two key aspects should be pointed out. The first one is that,
as our present results clearly confirm, in the PY theory and
for d�5 the singularity closest to the origin is a branch point
located on the negative real axis and corresponds to a pack-
ing fraction �0 much smaller than the one delimiting the fluid
phase region. The second observation is that the PY values
for the ratio b2bj−1 /bj for the higher j’s lie very close to the
exact values. Furthermore, the resulting scaled density per
dimension �̂0 is wholly consistent with the limiting value of
one for d→�. Hence, on one hand, the scenario of an alter-
nating series for the true virial series by Clisby and McCoy48

�perhaps even for d=3� is reinforced and, on the other, one
may conjecture that its radius of convergence will also be
close to the one in the PY theory. In connection with the
latter point it is instructive to compare the PY values of the
radius of convergence �0 with known bounds. In 1964, Leb-
owitz and Penrose68 derived the lower bound b2�0

�0.07238, which is clearly verified by the values of Table II.
They also showed that no phase transitions exist for values
of b2� less than 1 /2�1+e��0.135, which is again consistent
with the PY predictions for �0 and the scenario48 of a leading
singularity on the positive real axis at the freezing density
� f ��0. Recently, Clisby and McCoy43 estimated the value
b2�=0.5 for the radius of convergence of the sum of the
Ree–Hoover diagrams. It is quite interesting to notice that

the values of b2�0 predicted by the PY approximation �see
Table II� seem to tend from above precisely to 0.5, i.e.,
limd→�b2�0=0.5.

As a final point, it is worth mentioning that the regularity
observed for the ratio �Zv−Z� / �Zc−Zv� in d=3 and d=5,
which leads to the Carnahan–Starling69 equation of state in
the former case and something similar in the latter,35 seems
not to hold for d=7, even if the low density values �which
are subjected to great uncertainties� are ignored. The recent
simulation data of Bishop et al.59 are also for low density and
with error bars comparable to Zc−Zv so that further conclu-
sions on this matter are precluded at this stage.
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