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Machine-Learned Likelihood (MLL) is a method that, by combining modern machine-learning
techniques with likelihood-based inference tests, allows estimating the experimental sensitivity
of high-dimensional data sets. Here we extend the MLL method by including the exclusion
hypothesis tests and study it first on a toy model of multivariate Gaussian distributions, where
the true probability distribution functions are known. We then apply it to a case of interest in
the search for new physics at the LHC, in which a 𝑍 ′ boson decays into lepton pairs, comparing
the performance of MLL for estimating 95% CL exclusion limits with respect to the prospects
reported by ATLAS at 14 TeV with a luminosity of 3 ab−1.
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1. Introduction

Modern machine learning (ML) has become a fundamental tool in experimental and phe-
nomenological analyses of high-energy physics. In order to estimate the experimental sensitivity to
potential new-physics signals at colliders, it was shown in Ref. [1] that the calibration of classifiers
trained to distinguish signal and background samples under the relevant hypotheses ensures to
properly estimate the likelihood ratio and consequently can be used to compute a statistical signifi-
cance. In Ref. [2], a simplification of Ref. [1] has been proposed, the so-called Machine-Learned
Likelihoods (MLL), which computes the expected experimental sensitivity by means of the use
of ML classifiers, utilizing the entire discriminant output. A single ML classifier estimates the
individual probability densities and subsequently one can calculate the statistical significance for a
given number of signal and background events (𝑆 and 𝐵, respectively) with traditional hypothesis
tests. By construction, the output of the classifier is always one-dimensional, so we reduce the
hypothesis test to a single parameter of interest, the signal strength 𝜇. On the one hand, it is
simply and reliably applicable to any high-dimensional problem. On the other hand, by using all
the information available from the ML classifier, it does not require defining working points like
traditional cut-based analyses. The ATLAS and CMS collaborations incorporate similar methods
in their experimental analyses, but consider only the classifier output as a good variable to bin and
fit the binned likelihood formula (see, for instance, Ref. [3]).

The MLL method developed in Ref. [2] only includes the calculation of the discovery hypothesis
test, although the expressions needed to calculate the exclusion limits were provided. In this work
we extend the MLL method by adding the exclusion hypothesis test and applying it to two cases
of interest: the case where the true probability distributions functions (PDFs) are known, through
a toy model with multivariate Gaussian distributions; and an LHC study of Sequential Standard
Model (SSM) [4] 𝑍 ′ bosons decaying into lepton pairs. We also compare the MLL performance
for estimating 95% CL exclusion limits to the prospects reported by the ATLAS collaboration for a
LHC center-of-mass energy of

√
𝑠 = 14 TeV with a total integrated luminosity of L = 3 ab−1 [5].

2. Method

In this section, we present the corresponding formulae for the estimation of exclusion sensitiv-
ities with the Machine-Learned Likelihood method, first introduced in Ref. [2]. We also summarize
the main features of the method which allows dealing with data of arbitrarily high dimension, while
using the traditional inference tests to compare a null hypothesis (signal-plus-background) against
an alternative one (background-only).

Following the statistical model in Ref. [6], we can define the likelihood L of 𝑁 independent
measurements with an arbitrarily high-dimensional set of observables 𝑥 as

L(𝜇, 𝑠, 𝑏) = Poiss
(
𝑁 |𝜇𝑆 + 𝐵

) 𝑁∏
𝑖=1

𝑝(𝑥𝑖 |𝜇, 𝑠, 𝑏) , (1)

where 𝑆 (𝐵) is the expected total signal (background) yield, Poiss stands for a Poisson probability
mass function, and 𝑝(𝑥 |𝜇, 𝑠, 𝑏) is the probability density for a single measurement 𝑥, where 𝜇

defines the hypothesis we are testing for.
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We can model the probability density containing the event-by-event information as a mixture
of signal and background densities

𝑝(𝑥 |𝜇, 𝑠, 𝑏) = 𝐵

𝜇𝑆 + 𝐵
𝑝𝑏 (𝑥) +

𝜇𝑆

𝜇𝑆 + 𝐵
𝑝𝑠 (𝑥) , (2)

where 𝑝𝑠 (𝑥) = 𝑝(𝑥 |𝑠) and 𝑝𝑏 (𝑥) = 𝑝(𝑥 |𝑏) are, respectively, the signal and background probability
densities for a single measurement 𝑥, and 𝜇𝑆

𝜇𝑆+𝐵 and 𝐵
𝜇𝑆+𝐵 are the probabilities of an event being

sampled from said probability densities.
To derive upper limits on 𝜇, and in particular considering models with 𝜇 ≥ 0 and our choice

for the statistical model in Eq. (1), we need to consider the test statistic for exclusion limits [8]:

𝑞𝜇 =


0 if 𝜇̂ > 𝜇 ,

−2 Ln L(𝜇,𝑠,𝑏)
L( 𝜇̂,𝑠,𝑏) if 0 ≤ 𝜇̂ ≤ 𝜇 ,

−2 Ln L(𝜇,𝑠,𝑏)
L(0,𝑠,𝑏) if 𝜇̂ < 0 ,

(3)

where 𝜇̂ is the parameter that maximizes the likelihood in Eq. (1)
𝑁∑︁
𝑖=1

𝑝𝑠 (𝑥𝑖)
𝜇̂𝑆 𝑝𝑠 (𝑥𝑖) + 𝐵 𝑝𝑏 (𝑥𝑖)

= 1 . (4)

Since 𝑝𝑠,𝑏 (𝑥) are typically not known, the base idea of our method presented in Ref. [2] is to
replace these densities for the one-dimensional signal and background manifolds obtained with a
ML classifier. As it is well known, after training the classifier with a large and balanced dataset, the
classification score 𝑜(𝑥) that maximizes the binary cross-entropy approaches [1, 7]

𝑜(𝑥) = 𝑝𝑠 (𝑥)
𝑝𝑠 (𝑥) + 𝑝𝑏 (𝑥)

, (5)

as the classifier approaches its optimal performance. Then, the dimensionality reduction is intro-
duced by dealing with 𝑜(𝑥) instead of 𝑥, using

𝑝𝑠 (𝑥) → 𝑝𝑠 (𝑜(𝑥)) , and 𝑝𝑏 (𝑥) → 𝑝𝑏 (𝑜(𝑥)) , (6)

where 𝑝𝑠,𝑏 (𝑜(𝑥)) are the distributions of 𝑜(𝑥) for signal and background, computed by evaluating
the classifier on a set of pure signal or background events, respectively. Notice that this allows us
to approximate both signal and background distributions individually, retaining the full information
contained in both densities, without introducing any working point. We highlight again that these
distributions are one-dimensional, and therefore can always be easily obtained by binning 𝑜(𝑥) and
incorporated into in Eq. (3)

𝑞𝜇 =


0 if 𝜇̂ > 𝜇

2(𝜇 − 𝜇̂)𝑆 − 2
∑𝑁

𝑖=1 Ln
(
𝐵𝑝̃𝑏 (𝑜(𝑥𝑖 ) )+𝜇𝑆 𝑝̃𝑠 (𝑜 (𝑥𝑖 ) )
𝐵𝑝̃𝑏 (𝑜(𝑥𝑖 ) )+𝜇̂𝑆 𝑝̃𝑠 (𝑜 (𝑥𝑖 ) )

)
if 0 ≤ 𝜇̂ ≤ 𝜇

2𝜇𝑆 − 2
∑𝑁

𝑖=1 Ln
(
1 + 𝜇𝑆 𝑝̃𝑠 (𝑜 (𝑥𝑖 ) )

𝐵𝑝̃𝑏 (𝑜 (𝑥𝑖 ) )

)
if 𝜇̂ < 0;

(7)

as well as into the condition on 𝜇̂ from Eq. (4)
𝑁∑︁
𝑖=1

𝑝𝑠 (𝑜(𝑥𝑖))
𝜇̂𝑆 𝑝𝑠 (𝑜(𝑥𝑖)) + 𝐵 𝑝𝑏 (𝑜(𝑥𝑖))

= 1 . (8)
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The test statistic in Eq. (7) is estimated through a finite dataset of 𝑁 events and thus has a
probability distribution conditioned on the true unknown signal strength 𝜇′. For a given hypothesis
described by the 𝜇′ value, we can estimate numerically the 𝑞𝜇 distribution. When the true hypothesis
is assumed to be the background-only one (𝜇′ = 0), the median expected exclusion significance
med [𝑍𝜇 |0] is defined as

med [𝑍𝜇 |0] =
√︃

med [𝑞𝜇 |0] , (9)

where we estimate the 𝑞𝜇 distribution by generating a set of datasets with background-only events.
Then, to set upper limits to a certain confidence level, we select the lowest 𝜇 which achieves the
required median expected significance.

Concerning the method a final comment is in order, binning is not the only way to extract the
PDFs 𝑝𝑠,𝑏 (𝑜(𝑥)). Instead, a non-parametric method such as Kernel Density Estimators (KDE) can
be used without binning 𝑜(𝑥), as we are going to probe in a forthcoming update of this work [9].

3. Application examples

3.1 Known true PDFs: multivariate Gaussian distributions

To show the power of our method, we start with a toy model in abstract space (𝑥1, 𝑥2). Events
are generated by Gaussian distributions N2(𝒎,𝚺), so generative functions 𝑝𝑠,𝑏 (𝑥) are known for
validation. We set no correlation between 𝑥1 and 𝑥2 (i.e., covariance matrices 𝚺 = I2×2) and
𝒎 = +0.3(−0.3) for 𝑆 (𝐵).

We trained a supervised per-event classifier, XGBoost, with 1M events per class (balanced
dataset), to distinguish 𝑆 from 𝐵. The classifier output can be found in the left panel of Figure 1,
while in the right panel we show the results for the MLL exclusion significance considering an
example with a fixed background of ⟨𝐵⟩ = 50k and different signal strengths. We also include
the significance calculated using the true probability density functions in Eq. (3), and the results
employing a binned Poisson log-likelihood of the original 2-dimensional space (𝑥1, 𝑥2), which is
possible to compute in this simple scenario. Results with the MLL approach are close to the true
PDF scenario and the Binned-Poisson method. It is important to highlight that the ML output is
always one-dimensional regardless of the dimensionality of the data and can be easily binned or
extracted with non-parametric methods.

In Figure 2 (left panel) we present the exclusion significance for higher dimensional data
generated with N𝑑𝑖𝑚(𝒎,𝚺), 𝚺 = I𝑑𝑖𝑚×𝑑𝑖𝑚, and 𝒎 = +0.3(−0.3) for 𝑆 (𝐵). Once again, results
with MLL method approach the ones with the true generative functions, while Binned-Poisson
Likelihood becomes intractable. A common alternative to using the ML output is to choose a
working point to define a signal-enriched region and to calculate the significance with the naive
formula 𝑆/

√
𝐵, which is exceeded by the MLL limits in all cases.

3.2 SSM 𝑍 ′ boson decaying into lepton pairs at the HL-LHC

Finally, we focus on a simple collider example, the search of a SSM 𝑍 ′ boson decaying into
lepton pairs at the HL-LHC. We compare our results with ATLAS prospects for 95% CL exclusion
limits at

√
𝑠 = 14 TeV and 3 ab−1 [5] in the right panel of Figure 2. Masses above 7 TeV could be

excluded with our method, exceeding the ATLAS prospect for this search.
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Figure 1: Left panel: classification score, 𝑜(𝑥), for a binary classifier using the XGBoost algorithm.
Right Panel:: Exclusion significance calculated with various methods for the 𝑑𝑖𝑚 = 2 example for fixed
background, ⟨𝐵⟩ = 50k, and different signal strengths ⟨𝑆⟩. Red lines show the results implementing the MLL
method with XGBoost used to estimate the probability density for single events and green lines when using
the true multivariate distributions. The black dotted line represents the result of the usual counting method,
𝑆/
√
𝐵, in the entire range of interest (only one bin), and the light blue curve is the result of a binned counting

experiment.
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Figure 2: Left Panel: Exclusion significance calculated with various methods as a function of 𝑑𝑖𝑚. For
every case, the background and signal strengths were fixed, ⟨𝐵⟩ = 50k and ⟨𝑆⟩ = 500. Solid lines show
the results implementing the method described in this work with XGBoost used to estimate the probability
density for single events (red), and the true multivariate distributions (green). The dashed curves represent
the result of the usual counting method (only one bin, 𝑆/

√
𝐵), but for a subsample of the original data found

with XGBoost assuming several working points, WP= 0.75, 0.5, 0.25 to obtain signal enriched regions. The
black dashed line also represents the result of the usual counting procedure but considering the entire dataset
(equivalent to WP= 0). Right Panel: Exclusion significance for the 𝑍 ′

𝑆𝑆𝑀
with MLL method. The red-shaded

area includes the variation in the MLL significance caused by the mass variation introduced by the systematic
uncertainty estimated by ATLAS for the invariant mass, as a naive estimation of the impact of systematics.
Masses above 7 TeV could be excluded from our method.
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4. Conclusions

Machine-Learned Likelihood method allows to obtain exclusion (and discovery) significances
for additive new physics scenarios. It uses a single classifier and its full one-dimensional output,
which allows the estimation of the 𝑆 and 𝐵 PDFs needed for statistical inference, avoiding also the use
of working points. The binning of the output is always possible, irrespective of the dimensionality
of the problem (unlike the Binned Likelihood method), although we emphasize that with our method
it is not strictly necessary to bin in order to extract the signal and background PDFs. The results
presented in this proceeding (part of a work in progress to be submitted soon [9]) improve results
obtained by traditional techniques in toy models and a realistic 𝑍 ′ analysis, approaching (when
possible) the ones computed with true generative functions.
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