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a b s t r a c t

In this paper, the theoretical framework is a depth-integrated two-phase model capable of considering
many essential physical aspects such as reproducing the propagation of debris flows with soil
permeability ranging from high to low and considering the pore-water pressure evolution. In this
model, the pore fluid is described by an additional set of depth-integrated balance equations in order
to take into account the velocity of pore fluid. The model employs a frictional rheological law for
the granular material, and the interstitial fluid is treated as a Newtonian fluid. A drag law describes
the interaction between interstitial fluid and grains. The variables of permeability, porosity, and drag
force are included in the governing equations to consider the interaction between the phases. This
paper aims to extend a generalized two-phase depth-integrated model to enhance the description of
the interaction between the two phases and their respective movements. It allows us to increase
our understanding of the mechanism behind natural rapid landslides. To evaluate the developed
approach, a set of dam-break problems has been performed. These simulations provide interesting
information in simple and controlled situations on the landslide propagations with different degrees of
soil permeability and the interaction between solid and fluid phases. The extended model has also been
applied to simulate the dynamics of the Acheron rock avalanche, which is an appropriate benchmark
to examine the applicability of the model to real cases.

© 2022 The Author(s). Published by ElsevierMasson SAS. This is an open access article under the CC BY
license (http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Every year thousands of landslide-related phenomena, includ-
ng rock avalanches and debris flows, cause loss of human lives
nd destruction in their path. The analyses of this kind of natural
azard require the evaluation of stability of the source area as
ell as the prediction of propagation behaviour (runout distance,
elocities, thickness, and shape of deposit). In this study, we deal
ith the latter issue by using reliable models for reproducing the
ynamics of these flows. The main characteristics of fast landslide
n the propagation stage are (i) coupling between phases due to
ixtures of solid particles and pore fluids, (ii) the relative veloc-

ties between the solid and fluid phases, and (iii) development
f pore-water pressures in excess to hydrostatic. Once the flow

∗ Corresponding author.
E-mail addresses: saeid.moussavita@upm.es (S.M. Tayyebi),

anuel.pastor@upm.es (M. Pastor), miguel.martins@upm.es (M.M. Stickle),
ngel.yague@upm.es (Á. Yagüe), d.manzanal@upm.es (D. Manzanal),
.molinos@alumnos.upm.es (M. Molinos), pedro.navas@upm.es (P. Navas).
ttps://doi.org/10.1016/j.euromechflu.2022.06.002
997-7546/© 2022 The Author(s). Published by Elsevier Masson SAS. This is an open

4.0/).
characteristics are predicted, we can develop more precise hazard
maps and design more effective countermeasures.

Four kinds of mathematical models are commonly used to
reproduce the dynamic behaviour of debris flow, including (i)
one-phase propagation models, (ii) one-phase propagation-
consolidation models, (iii) two-phase propagation models, and
(iv) two-phase propagation–consolidation models.

One-phase models, represented by Bagnold [1], can be ap-
plied for limited cases where the soil is treated as a one-phase
non-Newtonian material, such as granular flows where the soil
permeability is high enough so that the consolidation time is
much shorter than the time of propagation and the material
behaves as drained. It is worth mentioning the pioneering paper
on granular flows by Savage and Hutter [2,3].

In one-phase propagation–consolidation models, the flowing
mass is still treated as a one-phase material. However, the role
of pore pressure evolution is taken into account. These models
have been applied by Iverson [4], Iverson and Denlinger [5] to
debris flows, and by Pastor et al. [6,7] to flow slides and debris
flows.
access article under the CC BY license (http://creativecommons.org/licenses/by/
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In two-phase propagation models, the effects of velocity differ-
ence between the phases are taken into account. But, the excess
pore-water pressure evolution is neglected by assuming that the
soil permeability is very large. Pitman and Le [8] and Pudasaini [9]
used this kind of models in an Eulerian formulation, and Pastor
et al. [10,11] used them in a Lagrangian formulation.

In two-phase propagation–consolidation models, it is assumed
that the excess pore-water pressure persists throughout the en-
tire solid skeleton of the debris flow and increases its mobil-
ity. General two-phase models considering pore-water pressures
were proposed by Bui et al. [12] for 3D models and Pastor
et al. [13] for depth-integrated models.

The existing mathematical models can basically be divided
into one-phase and two-phase propagation–consolidation models
to describe the complex dynamic behaviours of debris flows.
One-phase models are less time-consuming, while the two-phase
models produce more accurate results. However, two-phase mod-
els are computationally expensive due to employing drag laws to
consider the interactions between the phases. This paper presents
a new solution for the interaction term that significantly facili-
tates the computations of two-phase models.

This paper also evaluates the two-phase propagation-
consolidation model developed by Pastor et al. [13] to illustrate
its performance and reveal some important aspects of the model
hidden in the previous papers. The model was developed to
take into account essential physical aspects of fast landslides,
including strong coupling between solid and fluid phases, pore-
water pressure evolution, and porosity variations. Therefore, the
developed two-phase propagation–consolidation model with a
solution for the interaction term will be described and evaluated
using several benchmark exercises.

Following this introductory section, we will present the gen-
eralized two-phase model used to simulate the mechanical be-
haviour of landslides. It consists of two linear momentum balance
equations, two mass balance equations, which are completed
using a consolidation equation, a frictional rheological model, and
an interaction law. These depth-integrated mathematical equa-
tions are discretized using the Smoothed Particle Hydrodynamics
Method (SPH) for the balance equations and the Finite Difference
Method (FDM) for the consolidation equation. In this section, the
two-phase model has also been extended to achieve a precise
and effective methodology to replicate the complex behaviour of
fast landslides by including an essential physical phenomenon of
velocities evolution based on drag forces.

Next, to provide some insight into the basic features of the
presented governing equations, the developed two-phase model
is applied to 1D dam-break problems, which provide interesting
information in simple and controlled situations. The influences
of interaction forces and porosity variations are considered in
the simulations. The propagation of debris flows with different
soil permeability is analysed by using different models. Then, the
effects of drag force, porosity variation, and pore-water pressure
evolution on the dynamic behaviours of each phase are discussed.
The numerical results demonstrate new features of the extended
model. Finally, the applicability of the model is evaluated through
back-analyzing of a natural rock avalanche, aiming to test the
capability of the model to reproduce the complex behaviour of
a real landslide.

2. Computational model

2.1. Mathematical model

In two-phase modelling, the interaction force’s magnitude
determines whether the solid and fluid phases separate from
each other or remain mixed. The interaction between solid and
2

fluid phases plays an important role in the dynamics of debris
flows. Therefore, a two-phase model should be applied to cap-
ture the dynamic of each phase. In this paper, the two-phase
propagation–consolidation model proposed by Pastor el at. [13] is
applied. It is based on the depth-integrated mathematical model
of Zienkiewicz and Shiomi [14]. The authors evaluated the capac-
ity of the model to reproduce a debris flow on a laboratory-scale
inclined channel [15] and a real terrain [16] by comparing the
numerical results with the measurements obtained from exper-
iments and the data obtained from in-depth field investigation,
respectively. It is capable of reproducing the propagation of debris
flows with different soil permeability ranging from high to low.
The governing equations consist of 2D shallow-water equations
including two balance equations of linear momentum and two
balance equations of mass, expressed in Eulerian form, describing
the solid and the fluid phases, and a consolidation equation
describing the evolution of pore pressure along the vertical axis,
as follows:

(i) Mass balance equations:

d̄(s)hs

dt
+ ∇ · (hsv̄s) = n̄seR (1)

d̄(w)hw

dt
+ ∇ · (hw v̄w) = n̄weR (2)

(ii) Linear momentum balance equations:

ρshs
d̄(s)v̄s

dt
= ρs∇

(
1
2
b3hhs +

∆p̄whn̄
ρs

)
−

(
1
2
ρwb3h2

− ∆p̄wh
)

∇n̄s

+ τ
(s)
B + ρsbhs + R̄h − ρsv̄sn̄seR

(3)

ρwhw

d̄(w)v̄w

dt
= ρw∇

(
1
2
b3hhw −

∆p̄whn̄
ρw

)
−

(
1
2
ρwb3h2

− ∆p̄wh
)

∇n̄w

+ τ
(w)

B + ρwbhw − R̄h − ρw v̄wn̄weR

(4)

where the internal forces consist of pressure terms, P̄s =

b3hhs/2 + ∆p̄whn̄/ρs and P̄w = b3hhw/2 + ∆p̄whn̄/ρw

acting on solid or fluid phases respectively, and a poros-
ity gradient term. ∆p̄w is the excess pore-water pressure.
An overbar over a magnitude denotes a depth-integrated
value. We denote some parameters by the sub-indexes s
for solid and w for fluid phases. External forces consist
of basal shear stress (τB), gravity force (b3 = −g), and
interaction force

(
R̄
)
. eR is an erosion coefficient. As can be

seen in Eqs. (3) and (4), in two-phase models, each phase
is characterized by its density (ρ), averaged velocity (v̄),
height (h), and averaged porosity (n̄). b is the vector of
body forces.

(iii) Consolidation equation: The interaction between solid and
the pore fluid is considerably stronger for flowing mass
consisting of low-permeability soil. Debris flow height and
porosity variations also have a considerable effect on ex-
cess pore-water pressure evolution. Therefore, pore pres-
sure description is the key to modelling such phenomena.
In depth-integrated models, the vertical structure of the
magnitudes is lost, as the only available information is their
depth-integrated values. This is why simple one-phase
models cannot describe pore pressure evolution along with
depth. It is, therefore, necessary to implement additional
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Fig. 1. SPH integration in the particle support for two-phase: (1) soil–soil (I-J) and (2) soil–water (I-K) with a 1D finite-difference mesh at each SPH node that
represents a solid particle.
w

β

equations describing how pore pressure evolves along time
and depth.

d(s)∆pw

dt
= − ρ ′

db3
d(s)h
dt

+ cv
∂2∆pw

∂x32
− Em

1
(1 − n̄)

d(s)n̄
dt

(5)

which describes pore pressure evolution and consists of
three terms, including (i) debris flow height variations,
(ii) consolidation along vertical axis, (iii) depth-averaged
porosity variations, respectively. cv is a consolidation coef-
ficient obtained by multiplying permeability (kw) by volu-
metric stiffness (kv). ρ ′

d is the effective density and
Em (= 3kv (1 − 2ν)) oedometric modulus. ν is the Poisson’s
ratio.

The interested reader will find in the article by Pastor et al.
13] interesting descriptions of these mathematical equations.
he consolidation time can be obtained by using the parameters
f consolidation coefficient and saturated height (hsat) as [17]:

c =
4h2

sat

π2cv
(6)

2.2. Numerical methods

The partial differential equations of the previous section
should be discretized and transformed to a form suitable for
particle-based simulation. In the simulation model developed by
Pastor et al. [13], the balance of mass and momentum equations
have been discretized with the meshless numerical method of
Smoothed particle hydrodynamics (SPH), while the consolidation
equation has been discretized using a set of finite difference
meshes. Therefore, two sets of nodes are introduced, one to
represent the solid particles’ movement and another to represent
the fluid particles’ movement, and a 1D finite-difference mesh
for describing the pore-water pressure (pwp) along the vertical
axis, as depicted in Fig. 1. The meshless numerical method of
SPH, invented by Lucy [18] and Gingold and Monaghan [19]
to model astrophysical problems, has been successfully applied
in the area of Solid Mechanics [20,21] and particularly in the
modelling of debris flows [22–24] and fast landslides [25,26].
Concerning depth-integrated SPH models for landslide propaga-
tion, it is worth mentioning Pastor et al. (2009a) [27], McDougall
and Hungr [28], Rodríguez Paz and Bonet [29], and Goodwin
and Choi [30]. Good reviews can be found in the texts of Liu
and Liu or Li and Liu [31,32]. GIS-based SPH numerical models
have also been used for simulating the kinematics of landslides
over complex terrain [33,34]. Regarding water-related natural
landslides using SPH models, it is worth mentioning Manenti
et al. [35,36].

The results are a set of ordinary differential equations pro-
duced in discretized form with respect to time, as follows:
3

(i) Height re-initialization:

hai =

∑
j

MajWij (7)

where subscript a denotes the solid (s) or fluid (w) phase.
M is a fictitious volume and W smoothing kernel function.
The interested reader can find interesting descriptions of
these parameters in the article by Pastor et al. [37]. Sub-
scripts i and j in the above equation denote particles i and
j as shown in Fig. 1.

(ii) Linear momentum balance equation:

d̄(a)v̄ai

dt
= −

Nh∑
j=1

maj

(
P̄ai
h2
ai

+
P̄aj
h2
aj

)
∇Wij

−

(
1
2

ρw

ρa
b3h2

i −
∆p̄whi

ρa

) Nh∑
j=1

maj

(
n̄ai

h2
ai

+
n̄aj

h2
aj

)
∇Wij

+
1

ρahai
τ

(a)
B + bi +

1
ρa

R̄a −
1
hai

v̄ain̄aieR

(8)

(iii) Consolidation equation, which is more suitable for the for-
mulation of FDM:
d(s)∆pw

dt
= − ρ ′

db3
d(s)h
dt

(
1 −

x3
h

)
+ cv

∂2∆pw

∂x32

− Em
1

(1 − n̄)
d(s)n̄
dt

(9)

As an alternative, the basal excess pore-water pressure can
be approximated by solving the second term of Eq. (9) with
the Fourier series using a quarter cosines shape function, with a
zero value at the surface and zero gradients at the basal surface
and assuming that there exists no porosity variation at the basal
surface—the third term of Eq. (9) is eliminated. Thus, the time-
evolution of excess pore-water pressure at the basal surface is
given by:

d(s)∆pbw
dt

= −ρ ′

db3
dh
dt

− β∆pbw (10)

here for simplification, we introduce β as:

=
cvπ2

4h2 =
1
tc

(11)

The resulting ordinary differential equations are discretized in
time with the 4th order Runge Kutta method [38] in the SPH and
the FTCS (Forward Time Centered Space) method in the FDM. The
presented model is capable of taking into account the evolution
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of excess pore-water pressure along the vertical axis in a depth-
integrated model. This model, developed by Pastor et al. [13], can
be applied to reproduce the complex dynamics behaviour of fast
landslides containing low permeability soil with strong excess
pore-water pressure. Next, the model will be generalized using
a novel velocity-drag expression for cases with high permeability
soil and large relative velocity between the solid and fluid phases.

2.3. Rheological and constitutive laws

The governing equations presented in the previous section
ave to be complemented by suitable rheological and constitutive
quations. We need to provide the following items: (i) basal shear
tress (τB), (ii) interaction force

(
R̄
)
and an (iii) erosion coefficient

eR).
The basal shear stress (τB) is computed through Voellmy’s

riction law [39] modified to account for the effect of excess pore
ressure at the basal surface. The basal shear stress is given by:

B =

(
ρ

′

dgh − ∆pbw
) v̄i

|v̄|
tanφB + ρg

|v̄|

ξ
v̄i (12)

here h is the propagation height, φB the basal friction angle,
¯ the depth-averaged flow velocity, ξ the turbulence coefficient,
nd ∆pbw the excess pore-water pressure at the basal surface
hich is computed by using consolidation Eq. (10).
To couple the two sets of conservation equations, the in-

eraction forces are defined to cover the contributions of both
olid and fluid phases in the mixture. The interaction between
wo constituents is described by a term implemented in the
inear momentum balance equations. It plays an important role
n modelling two-phase debris flows as its effects on the dynamic
ehaviour of both solid and fluid phases are significant. Here, we
ntroduce R̄s as the internal force on the solid particles due to
he relative velocity of the fluid phase, and R̄w as the force on
he fluid phase caused by the solid particles. Then, the following
elation can be written:

¯ = R̄(s)
= (1 − n̄) R̄s = −R̄(w)

= −n̄R̄w (13)

A wide range of drag force expressions can be found in the
iterature [40–43]. These expressions are capable of describing
he interaction between grains and pore fluid in two-phase mod-
ls. They control porosities, velocities, and the relative movement
etween the solid and fluid phases.
The Darcy law is a simple interaction model which has a linear

elationship with the relative velocity. In this law, the interaction
orce is given by:

¯ = Cd (v̄w − v̄s) (14)

here Cd is the drag coefficient and plays an important role in
the dynamics of debris flow propagation. It determines the forces
needed to avoid the relative movement between the phases, and
consequently, reduce the relative velocity between them. A large
value of Cd is equivalent to assume that a big drag force is applied
from the granular phase to the fluid phase of the mixture, which
produces less relative movement and separation.

In this paper, the interaction force between the two phases
s modelled through the Anderson and Jackson law [40]. This
aw was used by Pitman and Le [8] for cases with large relative
elocity. It is given by:

¯ =
n̄ (1 − n̄)
VT n̄m (ρs − ρw) g (v̄w − v̄s) (15)

n which the interaction force R̄ depends on the terminal velocity
VT ). m is related to the Reynold number of the flow (1 for linear
nd 2 for quadratic).
4

As can be seen in Eq. (8), the phase velocities are related
through an interaction term:

d(s)v̄s

dt
= · · · +

1
(1 − n̄) ρs

R̄ (16)

d(w)v̄w

dt
= · · · −

1
n̄ρw

R̄ (17)

Considering Eq. (14), the above equation can be rewritten as:

d(s)v̄s

dt
= · · · +

1
(1 − n̄) ρs

Cd (v̄w − v̄s) (18)

d(w)v̄w

dt
= · · · −

1
n̄ρw

Cd (v̄w − v̄s) (19)

Introducing Cs = Cd/ (1 − n) ρs, Cw = Cd/nρw , and α = Cs/Cw ,
he above equations can be rewritten as:

d
dt

(
v̄s
v̄w

)
= · · · + Cw

(
−α

1
α

−1

)(
v̄s
v̄w

)
(20)

The above first-order linear differential equation is solved with
the eigenvalue method, and the following solution for velocity–
drag expression can be obtained:

v̄s =
1

1 + α
[(v̄s0 + α ¯vw0) + α (v̄s0 − ¯vw0) exp (−Cw (1 + α) ∆t)]

(21)

w̄ =
1

1 + α
[(v̄s0 + α ¯vw0) − (v̄s0 − ¯vw0) exp (−Cw (1 + α) ∆t)]

(22)

here, considering Eq. (8), v̄s0 and ¯vw0 can be obtained as follows:

d̄(α)v̄s0i

dt
= −

Nh∑
j=1

msj

(
P̄si
h2
si

+
P̄sj
h2
sj

)
∇Wij

−

(
1
2

ρw

ρs
b3h2

i −
∆p̄whi

ρs

) Nh∑
j=1

msj

(
n̄si

h2
si

+
n̄sj

h2
sj

)
∇Wij

+
1

ρshsi
τ

(α)

B + bi −
1
hsi

v̄s0in̄sieR

(23)

d̄(α)v̄w0i

dt
= −

Nh∑
j=1

mwj

(
P̄wi

h2
wi

+
P̄wj

h2
wj

)
∇Wij

−

(
1
2
b3h2

i −
∆p̄whi

ρw

) Nh∑
j=1

mwj

(
n̄wi

h2
wi

+
n̄wj

h2
wj

)
∇Wij

+
1

ρwhwi
τ

(α)

B + bi −
1
hwi

v̄w0in̄wieR

(24)

It is a simple solution for Eq. (20) and contributes to the
expressions of depth-averaged linear momentum balance Eq. (8)
associated with an interaction force term. The velocities evolution
of solid and fluid phases can be computed by using the above
equations. Fig. 2 shows the results of the velocity evolution in
the case of medium-permeability soil (VT = 0.1 m/s , n̄ = 0, ρs =

2000, ρw = 1000, and m = 1) by assuming that the initial veloc-
ities of solid and fluid phases are 0 m/s and 1 m/s, respectively.
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Fig. 2. Velocity evolution of solid and fluid phases with respect to time.
Table 1
The proposed velocity-drag expressions with their limits and conditions.

nL < n < 1 − nL n → 1 n → 0

0 < Cw < ∞ Eqs. (21) and (22) Eq. (25) Not consistent

Cw → ∞ v̄w = v̄s =
α

1+α
(v̄s0 + αv̄w0)

v̄s = v̄w0

v̄w = v̄w0
Eq. (26)

Cw → 0
v̄s =

1
1+α

[(v̄s0 + αv̄w0) + α (v̄s0 − v̄w0)] = v̄s0

v̄w =
1

1 + α
[(v̄s0 + αv̄w0) − (v̄s0 − v̄w0)] = v̄w0

v̄s = v̄s0

v̄w = v̄w0
Not consistent
l
a
w
i
a
e
L
e

t
f
o
s
i
S
w
c
(
s
q
s

3

3

s
o
b
r
m
t
c
t

In the new velocity-drag expression given in Eqs. (21) and (22),
he drag force plays an important role in the two-phase model
nd is capable of equilibrating the velocity difference between the
hases, as shown in Fig. 2.
In some cases, the soil permeability is very high, and pore-

luid flows out the solid skeleton. In these cases, the proposed
ormulation of velocity evolution cannot be used after the poros-
ty reaches a lower limit (nL). Once we reached this point, the
mpact of drag forces on both phases should be different. To
vercome these solid and fluid limit, we propose the following
ormulations:

(i) For fluid limit (n ≥ 1 − nL):

v̄s = ¯vw0 + (v̄s0 − ¯vw0) exp (−Cd∆t)
v̄w = ¯vw0

(25)

(ii) For solid limit (n ≤ nL)

v̄s = v̄s0

v̄w = v̄s0
(26)

(iii) For nL < n < 1 − nL: the general velocity-drag expressions
given in Eqs. (21) and (22).

For convenience, we have provided the limits and conditions
or the proposed expressions in Table 1.

The model presented in this work has been implemented
n a code, using the programming language of Fortran, called
‘GeoFlow-SPH’’, developed at the Polytechnic University of
adrid by an expert research team for more than a decade. It
as previously been applied to theoretical [44], experimental [15],
nd real case histories [45]. Many researchers [11,46,24,47] in
ifferent institutions have been using and validating the numeri-
al code. In this study, all the proposed velocity-drag expressions
ith their conditions given in Table 1 have been implemented in

he code.

5

The GeoFlow-SPH code contains various empirical erosion
aws, including (i) Hungr erosion law [48], which is based on an
lgorithm that the total volume of debris increases in accordance
ith a specified rate, and (ii) Egashira erosion law [49], which

s based on flume tests. The interested reader will find in the
rticle by Pirulli and Pastor [50] interesting descriptions of these
rosion laws. Pastor et al. [51] recently developed an arbitrary
agrangian–Eulerian (ALE) model to consider pore-water pressure
xisting in the eroded materials.
Before starting the following section, it is important to note

hat a few realistic simplifying assumptions, which are acceptable
or many engineering purposes, are considered in the model to
btain the approximate solutions. The fluidized soil will be as-
umed to consist of a solid skeleton and a fluid phase (two-phase),
n which the fluid fills completely the voids (fully saturated:
r = 1). In most cases, the fluid phase is inviscid and it is either
ater or a mixture of water with very fine soil particles such as
lay, which can be considered a fluid. The porosity lower limit
nL) is considered as 0.01. In this study, we use the variable
moothing length formula proposed by Benz [52], and the re-
uired properties of each point are determined using the cubic
pline kernel [53]).

. Case studies

.1. Dam-break problems

1D dam-break exercises provide interesting information and
ome insight into developed models. They show the main aspects
f the model in a simple and controlled situation [54,35]. We start
y explaining how the results of the dam break problems will be
epresented to facilitate the interpretation. In depth-integrated
odels, the particles cannot be defined along the vertical axis. In

hese models, the flowing mass is divided into a finite number of
olumns represented by particles. To facilitate the visualization,
wo partial heights corresponding to the solid h and fluid
( s)
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(hw) phases will be plotted in each model. The sum of these
partial heights is the total height (h) of the mixture. As shown
in Fig. 3, the phases are simulated in different layers. However,
these phases interact with each other through a drag law that
depends on the variables of porosity and permeability of the
soil.

Let nw = n and ns = (1 − n) be the fraction of volume occu-
pied by the water and solid particles, respectively. The heights of
the solid phase (hs) and fluid phase (hw) are given by:

hs = n̄sh
hw = n̄wh

(27)

The initial conditions of the two-phase dam-break problem
ver a horizontal plane are presented in Fig. 3, where the initial
eights of the debris flow are hs = 4 m and hw = 6 m, and
he length is 10 m. The densities of solid and fluid particles
re ρs = 2000 kg/m3 and ρw = 1000 kg/m3, respectively,
n initial porosity (n̄0) of 0.6, for which the mixture density is

ρ = 1400 kg/m3. The 1D channel, with a length of 160 m,
ontains a dam situated at a distance of 10 m. The material is
ontained between a wall on the right side and a dam situated
t the left side at the initial time. Once the dam is suddenly
emoved, the material liquefies, and the debris flow propagates
long the horizontal plane.
It is important to note that in these simulations, it has been

ssumed that the granular soil has a basal frictional angle (φ)
of 45◦ and the turbulence coefficient (ξ) of 100 m/s2. To obtain
the interaction force

(
R̄
)
, we applied Anderson drag law (see

Eq. (15)) by assuming that the terminal velocity (VT ) be equal
to 0.01 m/s, 0.1 m/s, and 3 m/s, corresponding to the cases
having low, medium, and high-permeability soil, respectively, and
m = 1. In these dam-break problems, the propagation time is
approximately 13 s. Using Eq. (6), the consolidation times are
obtained as 272 s, 27 s, and 0.04 s, corresponding to the cases
having low, medium, and high-permeability soil, respectively. In
these dam break problems, the SPH-FD model, using Eqs. (7)–(9),
has been carried out to estimate the run-out distance and the
deposition heights the debris flows during the propagation stage.

First set of dam break problems: When consolidation time is
much shorter than propagation time, the pore pressures dissipate
rapidly, and the material behaviour can be described as drained.
As examples, we can mention granular flows, rock avalanches and
debris flows consisting of soils with high permeability.

In Fig. 4, the curved lines result from the propagation mod-
elling in which pore-water pressure is not considered. They co-
incide with the results of the models capable of considering
pore-water pressure evolution (dashed lines). In these cases with
high-permeability soil, it can be observed how the solid phase
stops (brown curved and dashed line) while the water (blue

curved and dashed line) continues flowing. As can be seen in

6

Fig. 4, the excess pore-water pressure does not present any con-
siderable influence on debris flow with high-permeability soil. In
these cases, the excess pore-water pressure is not generated due
to the high permeability of the soil and the flow’s high velocity.
The consolidation process does not occur during the propagation
stage.

The one-phase models treat the soil as a dry granular material
(black curved line and red dashed dot) due to the assumption that
the fluid phase’s acceleration is very small. Therefore, it is not a
sufficient model for the cases of high-permeability soil. Still, it can
be applied to landslides if the relative movement of water and
solid can be neglected. On the other hand, two-phase models are
capable of considering solid and fluid phases separately and take
into account the difference of velocities in both phases.

Debris flows, particularly those consisting of high-
permeability soil, can be analysed by two-phase models without
needing to consider pore pressure. In this type of debris flows,
an advantage of using two-phase models is their capability to
simulate the fluid behaviour of the mixture when passing through
the solid skeleton.

Second set of dam break problems: In this case, the time scale
f pore-pressure dissipation is similar to the time scale of prop-
gation. The intermediate case requires accurate modelling of
ore pressure changes in the mixture. The pore-water pressure
ersisted during propagation until the debris flow reached the
eposition area. Therefore, quantitative modelling of excess pore
ressure time-space evolution is a fundamental issue to assess
hese cases. As shown in Fig. 5, a notable change of front evolution
emonstrates the considerable effect of the excess pore-water
ressure on the case with medium permeability. Besides, the solid
nd fluid phases of the mixture may have different velocities.
ccordingly, two-phase modelling should be applied to consider
he velocities of both solid and fluid phases and their mutual
nteraction.

Third set of dam break problems: If the consolidation time is
uch larger than the propagation time, the behaviour is de-
cribed as ‘‘undrained’’, such as a flow of slurries with a high
ater content, where the dissipation time is much longer than
he propagation time.

As shown in Fig. 6, interaction forces between phases play an
mportant role in the two-phase case with low-permeable soil.
he front propagation of the solid and fluid phases (brown curved
ine and blue dashed line, respectively) coincides.

The flows simulated by the two-phase model have longer
ravel distances compared to the one-phase cases due to the rhe-
logical parameters selected; otherwise, they will coincide with
ne another. In one-phase models, the results are more sensitive
o the value of frictional angle. On the other hand, employing
ore input parameters in two-phase models always allows better
atching between the simulation results and measurements. The
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Fig. 4. Comparison of the front propagation of debris flows consisting of high-permeability soil obtained with different models. (For interpretation of the references
to colour in this figure legend, the reader is referred to the web version of this article.)
Fig. 5. Comparison of the front propagation of debris flows consisting of medium-permeability soil obtained with different models.
Fig. 6. Comparison of the front propagation of debris flows consisting of small-permeability soil obtained with different models.
interested reader will find in the article by Pastor et al. [37]
interesting applications of the one-phase dam-break problem.
Haddad et al. [44] and Pastor et al. [22] compared the results
of the one-phase depth-integrated SPH model and an analytical
solution [55,56] obtained from dam-break exercises.

We provide the profiles of total height and porosity at different
time steps for three dam break problems with different soil
permeability. As shown in Fig. 7-a, the initial porosities n of the
( 0)

7

mixtures are 0.6 and are evolving during the propagating stage.
As depicted in Fig. 7, a large volume of fluid has abandoned the
solid skeleton in the simulations with high permeability. Once the
porosity value approaches unity, it indicates that the dominant
phase is the fluid. In this stage, the porosity reaches the upper
limit, and Eqs. (25) or (26) are deployed to compute the drag
forces between the phases. The figure clearly shows the drag
forces between phases are not strong enough to mobilize the
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Fig. 7. (a) Initial configuration of the-dam break problems with the initial porosity profile. (b–c) Profiles of the propagation heights with their porosity profiles for
the debris flows consisting of high-permeability soil at different time steps.
solid particles. Consequently, in these cases, porosity increases
and reaches the value of 1 once water is abandoning the solid
skeleton.

It is interesting to solve the same problem this time with
a debris flow consisting of medium-permeability soil. Results
of total heights together with the evolution of the porosity are
shown in Fig. 8. In this case, the phases move relatively close to
each other during the propagation, and a lower amount of fluid
abandons the solid skeleton.

Finally, to complete the numerical simulations, the propaga-
tion heights, accompanied with their respective porosity profile,
of the third scenario with low permeability have been depicted
in Fig. 9. As shown in the figure, the velocities of both phases are
very close to each other, and the porosity remains constant during
propagation.

3.2. Acheron rock avalanche

In the previous papers, the two-phase model developed by
Pastor et al. [13] was validated by simulating two real cases of
the Sham Tseng San Tsue debris flow [13] and Yu Tung debris
flow [16] occurred in Hong Kong in 1999 and 2008, respectively.
This paper tests the two-phase model, incorporated with the pro-
posed velocity-drag expression, by reproducing the propagation
of a real case of rock avalanche that we have accessed to its
reliable data.

The Acheron rock avalanche occurred in Canterbury, New
Zealand, approximately 1100 years BP [57,58] based on radio-
carbon dating analysis. An earthquake may have triggered the
landslide as it is located close to fault zones. This example is

based on the reliable information found in the package provided,

8

which included (i) a digital terrain model, (ii) initial thickness
and (iii) impacted area, showing the extension of the deposit. It
is very important to note that the impacted area and deposition
shape is one of the important characteristic of landslide in order
to assess potential risks and design possible countermeasures.
The extended model was applied to simulate the dynamics of
the Acheron rock avalanche, which is an appropriate benchmark
problem due to the availability of reliable information including
topography, estimated deposition thickness and observed impact
area, depicted in Fig. 10.

The Acheron Rock Avalanche was back-analyzed by Mergili
et al. [59] using the r.avaflow code. The same geotechnical pa-
rameters are used here to simulate the rock avalanche with the
extended model. The densities of solid and fluid particles have
been taken as ρs = 2700 kg/m3 and ρw = 1000 kg/m3, respec-
tively, and an initial porosity of 0.2, for which the mixture density
is ρ = 2350 kg/m3. The simulation model applies the Voellmy
friction law (15) with a basal friction angle of 17◦. Turbulence
coefficient is disregarded in this particular case.

It is important to note that the numerical results of the de-
veloped model are more sensitive to the variables of terminal
velocity (VT ), stiffness of the mixture (kv), and consequently,
the consolidation coefficient (Cv). Therefore, the characteristic
times of propagation and consolidation are the key aspects of the
proposed model. The numerical analysis was performed using a
1 m × 1 m Digital Terrain Model (DTM). The initial mass was
schematized into two sets of 2100 SPH computational points,
one representing solid particles and the other representing fluid
particles, 1 m spaced.

In this real case study, no information has been provided about
consolidation parameters mentioned in the previous
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Fig. 8. (a) Initial configuration of the-dam break problems with the initial porosity profile. (b–c) Profiles of the propagation heights with their porosity profiles for
the debris flows consisting of medium-permeability soil at different time steps.
Fig. 9. (a) Initial configuration of the-dam break problems with the initial porosity profile. (b–c) Profiles of the propagation heights with their porosity profiles for
the debris flows consisting of low-permeability soil at different time steps.
t
t
t
d
a

paragraph. Therefore, the modelers have to choose or back-
calculate these values. In this model, consolidation Eq. (10) is
applied to approximate the vertical distribution of excess pore-
water pressure.

To back-analysis the debris avalanche, first, we assume that
the flow consists of low-permeability soil. Regarding this scenario
with low-permeability soil, we have chosen the values of 5 ×
 i

9

10−4 m/s and 4 × 108 N/m2 for the terminal velocity (VT ) and
he mixture stiffness (kv), respectively. In Fig. 11, we provide a
opographical map showing the rock avalanche path and posi-
ions of the mass flow produced by the developed model at two
ifferent time steps. The trimline, which delineates the impacted
rea, based on the provided information [57,58] has also shown
n Fig. 11-a:d.
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Fig. 10. The topography of the Acheron rock avalanche, including (a) the source area with the estimated release thicknesses in metres (contour lines) and (b) the
observed impact area (green area). Data source: Mergili et al. [59]. (For interpretation of the references to colour in this figure legend, the reader is referred to the
web version of this article.)
Fig. 11. The propagation of Acheron rock avalanche, consisting of low-permeability soil, accompanied by the numerical results of flow-depth in metres (contour
lines) at times (a) 50 and (b) 100 s.
Consolidation time can be computed through Eq. (6) and is
obtained as 200 s. As depicted in Fig. 11-b, the propagation time
is 100 s, indicating that the pore-water pressure was preserved
in the body of the flow during the propagation stage. Such these
cases were represented by the third set of dam-break problems
provided in the previous section. In Fig. 11-b, we can observe
that the model overestimates the run-out distance of the debris
avalanche. One important aspect of fast landslides with low-
permeability soil is pore-water pressure generation due to strong
coupling between solid and pore-fluid phases, which increases
flows’ velocity and run-out distance.

In the second scenario, we have modelled the flow by assum-
ing that it consists of medium-permeability soil, choosing VT =

1 × 10−4 m/s. This model was represented by the second set
f dam-break problems provided in the previous section. In this
ase, the propagation and dissipation times are very close, ob-
ained as 90 s. As shown in Fig. 12-b, the deposit shape obtained
10
from the simulation does not match well with the observed
deposit shape yet.

Regarding the last case with high permeability, the value of
0.01 m/s was chosen for the terminal velocity (VT ). Consolidation
and propagation times are obtained as 10 s and 90 s, respectively,
indicating that the pore-water pressure dissipates more rapidly,
corresponding to high-permeability soil cases represented by the
first set of dam-break problems provided in the previous section.

As shown in Fig. 13, the propagation material could well
spread in all the observed impacted areas and cover almost the
whole trimline. Therefore, the proposed model choosing high-
permeability granular particles successfully reproduced the rock
avalanche’s propagation, deposition area shape and run-out dis-
tance. Therefore, using the proposed velocity-drag expressions,
the presented model in this study can be applied to different
case studies with different ranges of soil permeability, excess
pore-water pressure, and relative velocity.
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Fig. 12. The propagation of Acheron rock avalanche, consisting of medium-permeability soil, accompanied by the numerical results of flow-depth in metres (contour
ines) at times (a) 40 and (b) 90 s.
Fig. 13. The propagation of Acheron rock avalanche, consisting of high-permeability soil, accompanied by the numerical results of flow-depth in metres (contour
lines) at times (a) 45 and (b) 90 s.
Fig. 14 shows the evolution of a front particle’s positions and
he highest relative pore-water pressure at different times. At the
nitial time, the relative pore-water pressure was taken as 1, indi-
ating that the source materials were fully liquefied. As shown in
ig. 14, the dissipation rate of pore-water pressure is the lowest
n the first scenario with low soil permeability and the highest
n the last scenario with high soil permeability. The runout dis-
ances of the cases with low, medium, and high soil permeability
re 3047 m, 2910 m, and 2730 m, respectively. The significant
ifferences in these runout distances (minimum 137 m) indicate
he importance of considering pore-water pressure in landslide
ropagation modelling.

. Conclusion

This paper aims to present a generalized two-phase model,
eveloped by the authors, capable of reproducing the complex
11
dynamics behaviour of rapid landslides. The extended model is
based on the mixture theory, in which balance equations of mass
and linear momentum are established for each phase. The com-
putational framework is based on mesh-free smoothed particle
hydrodynamics (SPH). Although the two-phase model has been
simplified to the depth-integrated type, the vertical structure of
pore-water pressure is described through a consolidation equa-
tion implemented to the governing equations. To compute the
vertical distribution of pore-water pressure, the consolidation
equation is discretized with a 1D finite-difference mesh (SPH-FD
model). The model employs a frictional rheological law capable
of considering the evolution of basal pore-water pressure for the
granular material, and the interstitial fluid is neglected due to its
low value compared to the friction generated by the solid phase.
A drag law is used to describe the interaction between grains
and pore fluid in two-phase models and control the relative
movement between the solid and fluid phases.



S.M. Tayyebi, M. Pastor, M.M. Stickle et al. European Journal of Mechanics / B Fluids 96 (2022) 1–14

p

c
b
p
a
i
w
e
t
c

s
p
t
p
t
b
t
l
s
h
d
b

t
t
b
o
r
t
p

a
n
d
d
q
f
e
b
m

s
r

Fig. 14. Comparison of the front propagations and the relative pore-water pressure at each time step for the Acheron rock avalanche with different particle
ermeability (D: Displacement, pwp: pore-water pressure).
Thus, in this paper, a depth-integrated two-phase mathemati-
al model has been extended to take into account the interaction
etween phases more precisely by considering three essential
hysical aspects, including soil permeability, porosity variation,
nd drag force. In the presented model, (i) the soil permeability
s a key parameter to describe the time-space evolution of pore-
ater pressure, (ii) the porosity variation implemented in both
quations of linear momentum and consolidation plays an impor-
ant role, and (iii) the new drag–velocity formulation facilitates
omputing of velocities of both phases.
Three different dam-break problems have been simulated to

tudy the dynamic behaviours of fast landslides with different soil
ermeability. In these exercises, the new velocity-drag formula-
ion has also been tested. The flowing mass in the first dam-break
roblem represents granular flows such as rock avalanches where
he permeability is high enough so that the consolidation time
ecomes much shorter than the time of propagation, and the ma-
erial behaves as drained. The flow of the second dam-break prob-
em represents a debris flow consisting of medium-permeability
oil. In the third dam-break problem, a flow of slurries with a
igh water content was represented. In this case, the time of
issipation is much higher than the propagation time, and flow
ehaviour can be assumed to be undrained.
Besides, the extended model was capable of visualizing how

he interstitial fluid phase and the solid skeleton move relative
o each other. Different scenarios have been considered for dam-
reak problems, and the front propagation along time for each
f the scenarios has been provided. The results indicated that
un-out distance is strongly affected by the time-space evolu-
ion of the excess pore-water pressure, which depends on soil
ermeability and porosity variations.
The model was later used to simulate the Acheron rock

valanche that occurred in New Zealand in ancient history. The
umerical results were compared to the field data, and it evi-
ences that the model was capable of reproducing the run-out
istance and deposition shape of the real case by using ade-
uate back-calculated consolidation parameters. In particular, the
ollowing input variables have been tuned to minimize the differ-
nces between the numerical results and the available measures:
asal friction angle, Voellmy turbulent coefficient, oedometric
odulus, and porosity.
The results obtained with the extended model have been

atisfactory and have shown us its potential. The simulations have
evealed that this approach is suitable for rapid landslides in
12
which solid particles and pore-fluid may have different velocities.
The model is capable of including velocities of both solid and
fluid phases and the interaction between them. Therefore, the de-
veloped two-phase propagation–consolidation model with a new
solution for the interaction terms provides a good combination
between accuracy and computational effort.

List of symbols

b3 Gravity force (b3 = −g) [m/s2]
b Vector of body forces [m/s2]
Cd Drag coefficient [Ns/m4]
cv Consolidation coefficient [m2/s]
Em Oedometric modulus [N/m2]
eR Erosion coefficient [m/s]
h Propagation height [m]
hsat Saturated height [m]
kv Elastic volumetric stiffness [N/m2]
kw Permeability tensor [m4/Ns]
M Fictitious volume [m3]
m Exponent for drag (1 for linear and 2 for

quadratic)
[–]

ms Mass of solid particle [m3]
mw Mass of fluid particle [m3]
n̄ Averaged porosity [–]
nL Lower limit of porosity [–]
P̄s A pressure term acting on solid phase [m3/s2]
P̄w A pressure term acting on fluid phase [m3/s2]
R̄ Interaction force [N/m3]
R̄(s)

Force on the solid phase caused by the
fluid phase

[N/m3]

R̄(w)
Force on the fluid phase caused by the
solid phase

[N/m3]

R̄s Force on a solid particle caused by a fluid
particle

[N/m2]

R̄w Force on a fluid particle caused by a solid
particle

[N/m2]

Sr Degree of saturation [%]
tc Consolidation time [s]
VT Terminal velocity [m/s]
v̄ Averaged velocity [m/s]
W Smoothing kernel function [–]
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∆pw Excess pore-water pressure [Pa]
∆pbw Excess pore-water pressure at the basal

surface
[Pa]

ν Poisson’s ratio [–]
ξ Turbulence coefficient [m/s2]
ρ Density [kg/m3]
ρd

′

Effective density
(
ρ̄

′

= ρ − ρw

)
[kg/m3]

τB Basal shear stress [N/m2]
φB Basal friction angle [◦]
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