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Abstract
Traditionally, Biot’s formulation is employed to model the behavior of saturated soils. The u� pw (solid displacement–

pore water pressure) formulation can be considered as the standard one, since involves a good computational performance

together with excellent accuracy for slow and moderate speed phenomena. Dynamic processes can be studied even if the

acceleration of the water is neglected, what occurs in the undrained limit. It is well-known that u� pw formulation might

display instabilities in the undrained-incompressible limit. Several techniques have been proposed to overcome this issue,

principally within an implicit time integration scheme for small strains. In this paper, a robust implementation of the

divergence of the momentum equation technique is presented for an explicit u� pw approach within the framework of

optimal transportation meshfree scheme at finite strain. Several examples are provided in order to assess the good

performance of the proposed methodology.

Keywords Explicit approach � Saturated Biot’s equations � StabilizationśUndrained-incompressible limit �
Meshfree

List of symbols

b ¼ FFT : Left Cauchy–Green tensor

b: Body forces vector

c: Cohesion (equivalent to the yield stress,

rY )

C (Time integration scheme): damping

matrix

Dsh
Dt � _h: Material time derivative of h with respect

to the solid

F ¼ ox
oX: Deformation gradient

g: Gravity acceleration vector

G: Shear modulus

h: Nodal spacing

H: Hardening modulus, derivative of the

cohesion against time.

I: Second-order unit tensor

J ¼ det F: Jacobian determinant

k: Intrinsic permeability

k: Permeability tensor

K: Bulk modulus

Ks: Bulk modulus of the solid grains

Kw: Bulk modulus of the fluid

M : Mass matrix

n: Porosity

NðxÞ, rNðxÞ: Shape function and its derivatives

p: solid pressure

pw: Pore pressure

P (Time integration scheme): external for-

ces vector

Q: Volumetric compressibility of the mixture

R: Internal forces vector
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s ¼ rdev: Deviatoric stress tensor

t: time

u: Displacement vector of the solid

U: Displacement vector of the water

vs ¼_u: Velocity vector of the solid

vws: Relative velocity vector of the water with

respect to the solid

w: Relative displacement vector of the water

with respect to the solid

Zðx; kÞ: Denominator of the exponential shape

function

a
F
, a

Q
and b: Drucker–Prager parameters

b, c: Time integration schemes parameters

b, c: LME parameters related with the shape of

the neighborhood

Dc: Increment in equivalent plastic strain

ep: Equivalent plastic strain

e: Small strain tensor

e0: Reference plastic strain

j: Hydraulic conductivity

k: Lamé constant

k: Minimizer of logZðx; kÞ
lw: Viscosity of the water

m: Poisson’s ratio

q: Current mixture density

qw: Water density

qs: Density of the solid particles

r: Cauchy stress tensor

r0: Effective Cauchy stress tensor

s: Kirchhoff stress tensor

s0: Effective Kirchhoff stress tensor

U: Plastic yield surface

/: Friction angle

w: Dilatancy angle

Superscripts and subscripts
dev: Superscript for deviatoric part
e: Superscript for elastic part

k: Subscript for the previous step

kþ1: Subscript for the current step
p: Superscript for plastic part
s: Superscript for the solid part
trial: Superscript for trial state in the plastic calculation
vol: Superscript for volumetric part
w: C superscript for the fluid part relative to the solid

one

1 Introduction

Porous media dynamics at large strain is a cutting-edge

issue in the field of computational geomechanics. In this

respect, the u� w� pw and u� w Biot formulations,

where no dynamic terms are suppressed, are of paramount

significant [27]. However, these formulations are compu-

tationally expensive compared with the u� pw formula-

tion, since the latter requires, for each node, fewer degrees

of freedom than the former ones. Although there are sev-

eral problems where it is necessary to employ a complete

formulation, since every dynamic term becomes important,

the majority of the dynamic problems in saturated soils can

be covered by the u� pw formulation without loss of

accuracy, as most of them fall within its range of appli-

cation [64].

Nevertheless, these formulations are not exempted from

numerical drawbacks depending on the spatial discretiza-

tion of the numerical method, even for the meshfree

approach herein presented. An unstable behavior in

numerical solutions of saturated porous media is usually

manifested by an over-stiffening of the mechanical solution

and a great and fictitious space variability of the water

pressure field, occasionally leading to non-uniqueness and

mesh dependence of the solutions as well as some insta-

bilities. The occurrence of this kind of pathologies is

connected with the undrained-incompressible limit of the

coupled problem. While this type of pathology in the u�
w� pw and the u� pw formulations is connected with the

undrained-incompressible limit, that is, analogous to the

incompressible limit in solid mechanics problems [46], in

the u� w, the pathology appears when the compressibility

of the fluid is some orders of magnitude higher than the

compressibility of the mixture [40]. In order to overcome

this numerical issue in the hydromechanical response of a

saturated porous media, several alternatives have been

proposed in the specialized literature.

The first approach aims to stabilize the pore pressure

term by the inclusion of new terms in the formulation.

Monforte et al. [34] assessed two of these techniques:

Divergence of the momentum equation (DME) and poly-

nomial projection technique (PPP). The DME was pro-

posed for water problems by Hafez and Soliman [18] and

later improved for the u� pw formulation by Pastor [45].

On the other hand, the PPP [14] was applied to the u� pw
first by White and Borja [59] and extended by Sun et al.

[57] and by Gavagnin et al. [17], being the first one for

small strain and the latter for finite strain.

A different approach relies on an average pressure

projection. The intrinsic idea is inspired by the work of

Hughes [22] and the recent developments of the B-bar

method [16]. Furthermore, the strategy behind is analogous
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to the diamond elements one (Hauret, Kuhl and Ortiz [19]).

This approach has been extended to large strain formula-

tions by Simo et al. [54, 55] and De Souza Neto and co-

workers [11, 12], considering the F-Bar technique as a

volume averaging procedure, changing the volumetric part

of the strain tensor by a non-local one. More recently, Sun

and coworkers [56, 57] have proposed a novel alternative,

starting from the work of Moran et al. [35]. Related tech-

niques have been extended to multiphase formulations for

small and large strains in the context of the Optimal

Transportation Meshfree method [36, 37, 40–43]. Also in

the finite volume field exist several approaches that stabi-

lize the poromechanical instabilities through macroelement

techniques (see the work of Camargo et al. [8, 9]).

Furthermore, stable formulations can be also achieved

by tuning the time discretization, as the split-operator

[23, 68]. Some of these implementations employ fractional

steps techniques that provides a stabilization which allows

the employment of the same order of interpolation in mixed

formulations. This was first noticed by Schneider et al. [52]

and Kawahara and Ohmiya [25]. Zienkiewicz and

coworkers [66] explained the reasons why the fractional

step technique provides stabilization for computational

fluid dynamic problems. This technique was also applied

by Pastor et al. [46] for coupled analysis in saturated soil

problems, and extended later by Li et al. [31], being worth

mentioning the works of White and Borja [59] and Mira

et al. [33]. In the geotechnical field, fractional step tech-

niques have been proposed within several meshfree tech-

niques such as the SPH formulations proposed by Blanc

and Pastor [4] and the MPM ones proposed by Kularathna

et al. [26].

Finally, different order of interpolation for pore pressure

and displacement has been the main technique to obtain

smooth results, although it requires a stronger computa-

tional effort as requires larger number of nodes for the solid

phase than for the pore water pressure. Mira et al. [33] in

the u� pw formulation and Jeremić et al [24] within u�
U � pw formulation employed different order of interpo-

lation for the different variables.

A summary of the different stabilization techniques in

the context of small strain regime can be found in Mark-

ert et al. [32].

In this research, the explicit u� pw is employed due to

its computational benefits, which come from both the

explicit Newmark predictor-corrector scheme, which was

first developed by Navas et al. [40] for the explicit u� pw
formulation, and the intrinsic computational saving benefits

of the employment of the u� pw against the complete

formulations. Regarding the application of this formulation

in a finite deformation approach, the first works were tested

simulating the constitutive behavior of the solid phases

with linear elastic (Diebels and Ehlers [13]), Cam-Clay

(Borja et al. [5, 6]) and Drucker–Prager theories (Armero

[1]) as well as with anisotropic materials [62]. At the same

time, Ehlers and Eipper [15] applied a new elastic non-

linear constitutive model to reproduce the compaction of

the soil. Implicit schemes were employed in these works,

being necessary the linearization of the derivatives of the

u� pw equations. Furthermore, Sanavia et al. [49] con-

sidered several neglected terms in the linearization of the

previous works and extended the methodology to unsatu-

rated soils [51]. Moreover, with meshfree schemes, we find

excellent contributions to the explicit u� pw approach (see

[60, 63]) in the small strain approach. The recent work of

Navas et al. [40] shows excellent results within an explicit

scheme at large strain.

In the present research, a novel robust stabilized pre-

dictor-corrector explicit algorithm for the u� pw formu-

lation at large strain is proposed. The numerical framework

considered in order to implement this new stabilized for-

mulation is the optimal transportation meshfree (OTM)

scheme [2, 28]. The door is opened to any extension to

traditional or novel computational techniques, which can

be easily made by adapting the spatial discretization.

The rest of the paper is structured as follows. The

problem formulation is summarized in Sect. 2. The

explicit methodology, as well as the constitutive models of

the solid response, is drawn in Sect. 3. The stabilization

technique is detailed in Sect. 4. Applications to several

problems are illustrated in Sect. 5. Relevant conclusions

are depicted in Sect. 6. The definitions of all symbols used

in the equations are provided in the nomenclature

appendix.

2 Biot’s equations: u-pw formulation

The u� pw formulation is one of the most common forms

of the Biot’s equations [3]. This theory is based on three

statements: the mechanical response of a solid-fluid mix-

ture, the continuity of flux through a differential domain of

saturated porous media and the coupling between the

aforementioned phases. The derivation of the formulation

is widely encountered in the literature. All the equations

presented hereinafter are derived from those presented by

Lewis and Schrefler [27], later proposed for the finite strain

setting by Sanavia and Navas [42, 50, 51].

Respecting the notation, bold symbols has been

employed herein for vectors and matrices as well as letters

of the Latin alphabet for scalar variables. Let u represents

the displacement vector of the solid skeleton, w the dis-

placement vector of the fluid phase with respect to the solid

and pw the pore water pressure, which is assumed positive

for compression. Terzaghi’s effective stress [58] is
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considered being defined for incompressible solid con-

stituents as:

r ¼ r0 � pwI; ð1Þ

where r0 is the effective Cauchy stress tensor, r is the total

Cauchy stress tensor (both positive in tension) and I is the

second order unit tensor. Furthermore, Ds=Dt is the mate-

rial time derivative following the movement of the solid

particles, also defined as _h.

The main assumption with respect to the full Biot’s

formulation lies on neglecting the accelerations of the fluid

phase. Thus, the linear balance equation of the mixture

reads:

div r0 � pw I½ � � q €uþ qg ¼ 0: ð2Þ

The continuity equation, also known as mass balance

equation, is employed as well:

div ð_uÞ þ div ð_wÞ þ _pw
Q

¼ 0 ð3Þ

Moreover, both linear momentum balance equation of the

fluid phase, defined through the Darcy’s theory, and the

equilibrium of the mass, can be written together in order to

reduce the number of degrees of freedom of our problem:

_pw ¼ �Q div _uþ , div qwg� qw €u� grad pwð Þ½ �: ð4Þ

In equations (2) and (4), q is the density of the mixture,

while qw and qs are the fluid and solid particle densities,

respectively. These three densities are related to each other

through the expression:

q ¼ nqw þ ð1 � nÞqs; ð5Þ

where n is the porosity defined by the ratio of volume of

voids, Vv, with respect to the total volume, VT ¼ Vv þ Vs,

where Vs is the volume of the solid grains:

n ¼ Vv

VT
¼ Vv

Vv þ Vs
: ð6Þ

The soil is considered totally saturated. Thus, Vv is equal to

the water volume. Furthermore, the volumetric compress-

ibility of the mixture, Q [64], has been calculated consid-

ering incompressible solid constituents as

Q ¼ Kw

n
; ð7Þ

where Kw is the bulk modulus of the fluid phase, usually

considered as water.

On the other hand, g represents the gravity acceleration

vector and , the permeability matrix. This matrix can be

written in terms of krw, the hydraulic conductivity, j [m/s],

and the specific weight of the water through the following

equation:

, ¼ krw
j

qwg
I: ð8Þ

krw is set as 1 when full saturation is to be considered.

3 Implementation tools

In this section, spatial and time discretization, as well as

the constitutive models employed in this research, are

briefly explained.

3.1 Spatial discretization

The optimal transportation meshfree [21, 28, 29], as one of

the most trending meshfree methods, is employed in the

present research. Its fulfillment within geotechnical multi-

phase problems [38] makes this methodology a robust

alternative to material point method or Smoothed Particle

Hydrodynamics, among others. Similarly to the first one,

OTM is based on a particle-to-node interpolation, where

the shape functions that relates both sets are based on the

work of Arroyo and Ortiz [2], who defined the Local Max-

Ent shape function (LME) of the material point with

respect to the nodal neighborhood. For the readers’

knowledge, the equation of the shape function and the

achievement of the first derivatives of the shape function,

as well as the details of every parameter, are depicted in

[2, 28].

Applying the standard Galerkin procedure to the weak

counterpart of Eqs. (2) and (4) (See [48, 51] for details),

the following equations are obtained:

Rs � Rpw �Ms €uþ f ext; s ¼ 0; ð9Þ

� Cw _uþMw €uþ f ext;w � Rw

¼ _pw;
ð10Þ

where:

Rs ¼
XNP

P¼1

VPr
0rN

Rpw ¼
XNP

P¼1

VPpwrN

Rw ¼
XNP

P¼1

VPQ, pwrN

f ext; s ¼Msg�
Z

oXs

r0nNdC

f ext;w ¼Mwgþ
Z

oXpw

pwnNdC;

while the mass and damping matrices, are written as

follows:
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Mw ¼
XNP

P¼1

Qqw,VPBmN

Ms ¼
XNP

P¼1

VPqN

Cw ¼
XNP

P¼1

QVPBmN:

In these expressions Vp is the volume associated with the

material point P while Np range from the neighborhood

points associated with P. The matrix B is the symmetric

shape function gradient operator while m the identity

matrix in Voigt notation. Thus, Bm reproduces the diver-

gence operation.

3.2 Explicit integration

The coupled problem in the time domain is solved in this

research through the explicit central difference Newmark

time integration scheme. Let the current step k þ 1, and

assuming the solution in the previous step, k, has been

already obtained, the relationship between displacement,

velocity and acceleration, ukþ1, _ukþ1 and €ukþ1, follows the

Newmark scheme for each phase:

€ukþ1 ¼€uk þ D€ukþ1;

_ukþ1 ¼ _uk þ €ukDt þ cDtD€ukþ1;

ukþ1 ¼uk þ _ukDt þ
1

2
Dt2 €uk þ bDt2D€ukþ1;

pwkþ1
¼pwk

þ _pwk
Dt þ hDtD _pwkþ1:

ð11Þ

By considering h ¼ c ¼ 0:5 and b ¼ 0, the Predictor and

Corrector terms are read as follows:

_ukþ1 ¼ _uk þ ð1 � cÞDt €uk þ cDt €ukþ1; ð12Þ

pwkþ1
¼pwk

þ ð1 � cÞDt _pwk þ cDt _pwkþ1; ð13Þ

where the underlined terms are the predictor ones, denoted

as _ukþ� and pwkþ� , respectively.

On the other hand, the stability of this method is assured

through the Courant–Friedrichs–Lewy (CFL) condition,

being the time step, Dt, smaller than h
Vc

, where h represents

the discretization size and Vc is the velocity of the p-wave

(see [65]), defined by:

Vc ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Dþ Kf

n

� �
1

q

s

; where D ¼ 2Gð1 � mÞ
1 � 2m

: ð14Þ

It bears to emphasize several aspects about the predicted

step. About the stress, it has to be calculated in this pre-

dicted step through the predicted displacement as follows:

r0kþ� ¼ r0ðFkþ�Þ ¼ r0ðFðukþ�ÞÞ

The logarithmic strain, as the strain measure to be

employed in the deformed configuration, has to be calcu-

lated from the tensor b, the Left Cauchy–Green strain

tensor (b ¼ FFT ), which depends on the displacement on

the predicted step as well:

bkþ� ¼ bðFkþ�Þ ¼ bðFðukþ�ÞÞ

Moreover, solid velocities and water internal forces must

be evaluated in the predicted step, k þ �. In Section 4, all

these premises will be considered in a pseudo-algorithm,

written once the stabilization is taken into account.

3.3 Constitutive models for the solid phase

A brief note of the employed constitutive models is out-

lined in this Section: a hyper-elastic model for soils and

another one that involves plastic deformation which fol-

lows the Drucker–Prager failure criterion, both developed

in a finite strain approach.

As mentioned before, for elastic materials, a nonlinear

law, considering the influence of the Jacobian calculation,

the initial porosity n0 and the compaction point of the soil,

is employed (see Ehlers and Eipper [15]). This law follows

the subsequent definition of the Kirkchoff stress tensor:

s0 ¼ Gðb� IÞ þ k n2
0

J

n0

� J

J � 1 þ n0

� �
I; ð15Þ

In order to reproduce elasto-plastic behavior at large strain,

the Drucker–Prager yield criterion proposed by Sanavia

and coworkers for large strain is employed [48, 51]. The

relationship between left Cauchy–Green strain tensor b,

calculated at the current configuration, and the small strain

tensor e is made through Ortiz, Simo and coworkers’

research [10, 44, 53]:

be trialkþ1 ¼DFkþ1b
e
kþ1ðDFkÞT ; ð16Þ

ee trialkþ1 ¼ 1

2
log be trialkþ1

ð17Þ

Trial stress measures are also computed from the elastic

trial strain as:

ptrialkþ1 ¼K eevol
� �trial

kþ1
; ð18Þ

strialkþ1 ¼2G eedev
� �trial

kþ1
: ð19Þ

where G and K represent the shear and bulk moduli of the

solid, respectively. The yield conditions for the classical

and apex regions are calculated in a different manner for

the proposed yield criterion.

Once known which algorithm to employ, one of the

following expressions applies:
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Ucl ¼kstrialkþ1k � 2GDcþ 3a
F
½ptrialkþ1 � 3Ka

Q
Dc�

� bckþ1;
ð20Þ

Uap ¼ b
3a

F

ck þ H
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dc2

1 þ 3a2
Q
ðDc1 þ Dc2Þ

2
q� �

� ptrialkþ1 þ 3Ka
Q
Dc1 þ Dc2ð Þ;

ð21Þ

where Dc1 ¼ kstrialkþ1
k

2G , Dc and Dc2 are the objective functions

in the Newton–Raphson scheme for the classical or apex

regions accordingly. In Eqs. 20) and (21), H is the hard-

ening parameter of the material, ck represents the cohesion,

and aF ,aQ and b depend on the friction and dilatancy

angles as well as the shape of the yield surface. For details

of the calculation of the equivalent plastic strain, see

[48, 51].

4 Stabilization of the water phase

The necessity of stabilization in the developed u� pw
formulation lies on the work of Zienkiewicz and Taylor

[67]. Assuming incompressible constituents, the Biot

modulus Q is larger than the compressibility of the solid

skeleton. Traditionally, the usual condition required for the

u� pw problem is given by nu � npw (see, for instance,

Pastor et al [45]). However, this condition, although nec-

essary, must be fulfilled in any assembly of elements of the

mesh [45, 67]. See [20] for a detailed study of the stability

conditions of the three-field formulation.

The pore pressure term in the algebraic equation has

been traditionally the one which suffers the aforementioned

oscillations. Thus, the majority of the available techniques

have this term as the target one, departing from the stabi-

lization techniques employed in the context of Computa-

tional Fluid Dynamics. Brezzi and Pitkaranta [7] proposed

to add to the pressure term, the so-called Kpp position in the

implicit mixed solid u� p formulation, the stabilizing

term:

h

Z

X
rNð ÞT �rN dX; ð22Þ

which is equivalent to the one proposed by Hughes et al

[23]. This term, when working with the u� pw implicit

saturated formulation, is analogous to the Kpwpw term, i.e.,

the pore pressure position of the continuity equation,

Eq. (4) (see Pastor et. al. [45] for details).

Based on Petrov-Galerkin theory; the added term is

proportional to the product of the linear momentum equa-

tion by
h2

2 l
rN. Indeed, both techniques are proportional to

h, the mesh size in Finite Element approaches or the nodal

distance in meshfree methodologies. This fact leads to an

interesting issue when the mesh is refined: the proposed

term tends to zero and, thus, the consistency is preserved.

The methodology to be explained hereinafter is inheritor

of the work of Hafez and Soliman [18] proposed to stabi-

lize the Navier–Stokes equations and the one proposed by

Pastor et. al. [45], which adapted the former one to the

hydromechanical problem in quasi-static conditions

(u� pw formulation). That work was later extended to a

formulation valid for the full Biot equations by Monforte

et. al. [34]. All these works are based on adding the

divergence of the momentum equation to the mass balance

equation.

In our case, in the explicit scheme, Eq. (10) may suffer

numerical instabilities in the undrained limit. If , tends to

zero, Mw, f ext;w, and Rw� tend to be much smaller than C _u.

It leads to the situation that the pore pressure velocity

depends only on the solid velocity, what means that no

influence of the pore water phase affects the results. Due to

this fact, spurious pore pressure oscillations are obtained.

Moreover, in the incompressible limit, the increase in the

compressibility of the mixture, Q, aggravates this situation

since tends to increase the obtained result.

Thus, the objective is to add a new term, which is equal

to zero in order to avoid nonphysical results, but avoids

leaving the pore pressure value just in the hands of the

velocity of the solid phase. Following the aforementioned

works ( [34, 45]), in our proposal, the divergence of the

linear momentum balance equation of the mixture, Eq. (2),

will be employed. This equation, multiplied by the

parameter a= a(h), yields:

a r � r � r0ð Þ � r � rpwð Þ � qr � €u½ � ¼ 0; ð23Þ

taking into account the divergence of the volumetric forces

is equal to zero. If the solid skeleton behavior is elastic,

which can be perfectly assumed even if the material plas-

ticizes, the divergence of the solid displacement can be

expressed in terms of the volumetric stress invariant, p0,
and the bulk modulus, K, as:

r � u ¼ � p0

K
: ð24Þ

From the same assumption, the divergence of the internal

forces can be expressed as (see Pastor et. al. [45] for

details):

r � r � r0ð Þ ¼ � kþ 2G

K
r � rp0ð Þ; ð25Þ

where k and G are the Lamé constant and shear modulus of

the soil skeleton.

On the other hand, the displacement of the water is

negligible if small permeability is employed, which is the

case of the undrained limit, the goal of the proposed sta-

bilization technique. Thus, from the integration on time of
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the equation (3) and plugging definition (24), we can

obtain:

pw
Q

¼ p0

K
: ð26Þ

Thus, considering Eq. (25), the divergence of the internal

forces of both fluid and solid phases yields:

r � r � r0 � rpwð Þ ¼ � kþ 2G

Q
r � rpwð Þ � r � rpwð Þ

¼ � Qþ kþ 2G

Q
r � rpwð Þ:

ð27Þ

Taking into account Eqs. (23) and (27), the divergence of

momentum of the mixture can be rewritten as:

aQ �r � rpwð Þ � qr � €u½ � ¼ 0: ð28Þ

We have considered the incompressible limit, where k and

G are much smaller than the bulk modulus of the water

phase, Q.

Pastor and coworkers proposed that the parameter a may

depend on the density of the mixture and the critical time

step, which is the time step that is able to capture the P

wave of the saturated media. The main components of this

reference time step are the characteristic P-wave velocity,

Vc, and the element size, h:

a ¼ s0

Dt2crit
q

¼ s0

h

qVc
: ð29Þ

Finally, as Eq. (28) is equal to zero, we can add directly to

Eq. (4) without losing physical meaning:

_pw ¼� Q div _u� Q , div qwgð Þ
þ Q ð, qw � aqÞ div €uð Þ þ Q ð,� aÞ div ð grad pwÞ:

ð30Þ

Rewriting Eq. (30) in a matrix form, the stabilized system

of equations yields:

Rs � Rpw �Ms €uþ f ext; s ¼0 ð31Þ

�C _uþMw� €uþ f ext;w � Rw� ¼ _pw ð32Þ

where the � terms are the stabilized terms that are built as:

Rw� ¼
XNP

P¼1

Qð,� aÞVPpwrN

Mw� ¼
XNP

P¼1

Qð,qw � aqÞVPBmN

ð33Þ

4.1 Explicit stabilized pseudo-algorithm

The explicit scheme is similar to the one proposed by

Navas et al. [39] with the introduction of the stabilization

terms. Following, the pseudo-algorithm of the whole model

is proposed, being the superscript p employed for material

point calculations.

1. Explicit Newmark Predictor (c ¼ 0:5, b ¼ 0)

ukþ1 ¼uk þ Dt _uk þ 0:5Dt2 €uk;

_ukþ� ¼ _uk þ ð1 � cÞDt €uk;
pwkþ� ¼pwk

þ ð1 � cÞDt _pwk
:

2. Update position of Nodes and Material points

xkþ1 ¼xk þ Dukþ1;

xpkþ1 ¼xpk þ
XNb

a¼1

Duakþ1N
aðxpkÞ:

3. Calculation of the deformation gradient and related

parameters

DFkþ1 ¼I þ
XNb

a¼1

Duakþ1 �rNaðxpkÞ;

Fkþ1 ¼DFkþ1Fk;

V ¼JV0 ¼ detFV0;

n ¼1 � 1 � n0

J
:

4. Update density and mass. Construct lumped mass

qkþ1 ¼ nkþ1qw þ ð1 � nkþ1Þqs:

5. Remapping nodes and material neighbors.

6. Calculation of stresses r0kþ� and internal forces, Rs
kþ�

and Rw
kþ�, through the constitutive model.

7. Computing €ukþ1 from Eq. (31):

€ukþ1 ¼ Ms½ ��1 Rs
kþ� � Rw

kþ� þ f ext; skþ1

	 


8. Calculate _pwkþ1 from Eq. (32):

_pwkþ1 ¼ �C _ukþ� þMw� €ukþ1 þ f ext;wkþ1 � Rw�
kþ�

9. Explicit Newmark Corrector

_ukþ1 ¼ _ukþ� þ cDt €ukþ1;

pwkþ1
¼ pwkþ� þ cDt _pwkþ1

:

5 Verification examples

Three different verification examples are considered in this

section. The first verification case deals with a consolida-

tion process in a saturated column of soil subjected to a

Acta Geotechnica

123



bilinear loading at the surface The second one allows us to

verify also the 2D component behavior, analyzing the

behavior of the pore water pressure distribution along a 2D

stratum when it is loaded by a strip footing. Finally, the

third verification case assesses the failure of a vertical wall

of saturated soil, aiming to analyze the performance of the

proposed stabilization technique in a traditional geotech-

nical problem.

5.1 Consolidation of a column of soil

In this problem, an idealization of a semi-infinite stratum of

soil through a 2D column is employed. The height and

width of the column are HT ¼ 10m and L ¼ 1m, respec-

tively. Horizontal displacement is forbidden in the vertical

boundaries, while vertical displacement is blocked in the

rigid base. In addition, the top boundary is considered

perfectly drained (pw ¼ 0). This geometry and boundary

conditions are depicted in Fig. 1. Also, the load ramp

considered is presented.

Sabetamal et al. [47] proposed a particular mesh in order

to be able of a proper capturing of the wave provoked by

the load. The upper meter of the stratum is discretized with

a 0.25 m.; meanwhile, a discretization of 0.5 m. size is

employed for the rest of the stratum. A similar discretiza-

tion is employed in this research within the OTM

configuration.

The objective of the present section is the verification of

the methodology in the undrained-incompressible limit. A

stratum of soil suffers the application of a pressure which

follows the curve of Fig. 1B. The load is applied gradually

until reaching Pmax at t0 ¼ 7:5 s. Following, the l when the

load is kept constant until 7.5 s. The water and solid

parameters are presented in Tab. 1, being the nonlinear

elastic material of Eq. (15) employed for the solid model of

the problem.

The solutions obtained, with and without the stabiliza-

tion technique, are shown in Fig. 2 for the two cases. In this

figure, the pore pressure distribution, when the whole load

is applied (7.5 s), is plotted. The typical positive–negative

pattern of an unstable pore pressure distribution is observed

for the unstabilized case. Also, spurious maximum values,

close to 500 Pa, are observed in this case; meanwhile, the

maximum value of the stabilized case is close to the total

amount of load, 100 Pa. Also, in Fig. 2, the pore pressure

distribution obtained with a quadratic finite element

scheme can be observed. A similar pattern can be appre-

ciated between the proposed approach and the quadratic

finite element one. However, oscillations close to the top of

the column appear in the distribution obtained with the

finite element approach. These oscillations are not present

in the results obtained with the proposed approach.

If this pore pressure is plotted along the depth, Fig. 3,

the oscillations are seen for the unstabilized case in the 3

first meters of the stratum of the column. The stabilization

technique allows to mitigate this unrealistic behavior,

smoothing out the solution without losing physical infor-

mation. Although the pore pressure distribution obtained

with the quadratic finite element approach improves the

unstabilized result, it still presents some oscillations close

to the top of the column.

5.2 Strip footing load

The following example is based on a saturated stratum

loaded by a vibrating strip footing. Fig. 4 presents the

geometry, boundary conditions as well as the history load

of the aforementioned footing. This verification case was

firstly studied by Li et al. [30] through the finite element

method and later with the Material Point Method by Zhao

and Choo [61]. The permeability of the soil stratum in the

present work is similar to the one considered by Zhao an

(A) (B)

Fig. 1 Geometry, load and boundary conditions of the column of soil

problem

Table 1 Parameters of the consolidation problem

E [MPa] 4.0 Kw [MPa] 2:2 	 104

m 0.2857 Ks [MPa] 1034

n 0.363 qw [kg/m3] 1000

k [m/s] 1.0e-5 qs [kg/m3] 2700
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Choo, which is lower than the original one. The traditional

Neo-Hookean model is employed. The material parameters

are depicted in Fig. 4. It is worth mention that comparison

against these works is not possible since no damping

parameter is employed in the present research. However, it

is possible to capture similar trends that were observed in

the previous works. Moreover, they considered an

incompressible pore water phase, whereas compressibility

of the pore water is taken as 1e10 Pa in the present work.

First, the spatial distribution of the pore pressure shows

oscillations, since it lies on the incompressible-undrained

limit (Fig. 5). The values are not so severer than in the

previous example, since no negative values are achieved. It

can be due to the 2D configuration of the problem or the

dynamic behavior of the load. However, unrealistic peak

values are obtained.

The phenomenon is studied at t=0.1 s. In Fig. 5, the

distribution of the pore pressure is depicted for the unsta-

bilized and stabilized solutions and also the quadratic finite

element scheme. The unstabilized profile shows a spurious

oscillation, which is alleviated in the stabilized and the

finite element solutions. The difference between the sta-

bilized and the finite element solutions lies in the peak,

which is more pronounced for the finite element one. This

peak is quickly alleviated along the depth in both cases,

being quicker in the finite element approach than in the

stabilized solution. The value of the peak can be observed

in Fig. 6. In this figure, the distribution of the pore pressure

along the depth is depicted, located under the edge of the

strip footing. While the stabilized solution and the quad-

ratic one show a smooth transition, with a peak of around 3

MPa, the unstabilized solution oscillates around the correct

solution providing unreal values, with a peak of 4 MPa.

Next, the time evolution of the pore water pressure at

two different locations (A and B in Fig. 4, i.e., a shallow

and a deep location) is analyzed.

As it can be appreciated in Fig. 7, the main difference

can be encountered in the location at point A, shallow zone.

Effectively, in Fig. 7A, there is an important overestima-

tion of the peak values that is mitigated along the depth, as

it can be observed in Fig. 7B. Although the overall trend is

not greatly affected with depth, several peaks appear. In the

Fig. 2 Pore pressure distribution, when the whole load is applied (7.5

s.) for A Unstabilized, B Stabilized and C Quadratic Finite Element

cases

Fig. 3 Pore pressure along depth, when the whole load is applied (7.5

s.) for A Unstabilized, B Stabilized and C Quadratic Finite Element

cases

Fig. 4 Geometry, material parameters and boundary conditions of a

square domain of water saturated porous material loaded by a strip

footing
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present case, as the material is Neo-Hookean, these peaks

scarcely affect the final result. However, with different

constitutive materials, as in the following application case,

the found peaks would alter the final result.

The differences between the quadratic and the stabilized

solutions are depicted clearer in point B, where the quad-

ratic one is able to dissipate pore pressure more efficiently

than the proposed solution.

Fig. 5 Pore pressure distribution at time t=0.1 s for both A Unstabi-

lized and BStabilized cases

Fig. 6 Pore pressure along depth under the edge of the footing at time

t=0.1 s for both A Unstabilized and B Stabilized cases

Fig. 7 Pore pressure evolution at locations A and B of the Fig. 4

along the time
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5.3 Vertical cut

In this final application, the proposed stabilization tech-

nique is applied to model a drainage process induced by a

strip rigid footing over a square domain of a hyper-

elastoplastic saturated soil. The failure of the material,

leaded by the applied load, takes the shape of a typical

vertical cut with an inclined shear band. A similar problem

was previously assessed by Sanavia et al. [49, 50] in a

quasi-static regime and by Navas et al. [41, 42] for a

dynamic approach, considering different dilatancy angles

in order to see the performance of the soil depending on the

properties. In this case, only the case of friction angle 20


and dilatancy 0
 is studied. The geometry and material

properties are shown in Fig. 8A gradual displacement of

1 m at the boundary C4 is applied along the 10 s of the

simulation, being the employed time step 1 ms. A nodal

spacing of 0.833 m., forming a regular 12	12 nodal dis-

cretization, is considered.

Pore pressure results are depicted, at the final stage, in

Fig. 9. For the stabilized simulation, it was reached the

final time of 10 s. However, for the non-stabilized case, the

simulation breaks out at 1 s due to the influence of the

spurious pore water pressure distribution over the solution

process. In the third row, the solution obtained with a T6-

P3 finite element technology, without stabilizing, is also

shown. The results are similar to the stabilized one. In the

referred bibliography, we found distributions of pore

pressure similar to the stabilized one, taking into account

that, in this case, the permeability was lowered to reach

undrained conditions. Despite this fact, the trend of the

behavior of the soil is well captured. Contrary, the unsta-

bilized one presents the typical oscillations that become

bigger due to the plastic behavior of the soil.

Fig. 8 Geometry, material parameters and boundary conditions of a

square domain of water saturated porous material

Fig. 9 Pore pressure (in Pa) distribution in the square domain at the

final of the simulation
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Regarding the relation with the development of the shear

band, the three solutions are shown in Fig. 10. It can be

observed how the stabilized one and the quadratic one are

similar to those reached by Sanavia and coworkers for the

case / ¼ 20
 and w ¼ 0
. Nevertheless, as we mentioned

before, the spurious pore water pressure spatial distribution

affects the spatial distribution of plastic zones and the

subsequent development of the shear band mechanism.

6 Conclusions

The stabilization of the explicit Newmark predictor–cor-

rector solution of the Biot’s u� pw formulation is provided

in this manuscript. This formulation has been at large strain

within the optimal transportation meshfree method,

although it can be extended to some other well-known

meshfree schemes, such as smooth particle hydrodynamics

or material point method. The stabilization is achieved

through the addition of a stabilization term, which comes

from the divergence of the momentum equation.

The proposed methodology was previously demon-

strated to work in a robust way in dynamic problems of

saturated soils, mainly under drained conditions, but in this

research, it has been extended to the undrained-incom-

pressible limit. Furthermore, the methodology accounts

with the potential strength of an explicit scheme. Elastic

and plastic materials have been tested, showing excellent

results, mainly with the second one, since the spurious peak

values are catastrophic by means of unreal plasticizing of

the material.

The first example has demonstrated the performance of

the proposed methodology in the traditional Terzaghi’s

scheme. The second one extends this elastic scheme to 2D

conditions in order to visualize the propagation of the

waves along the domain. Harmonic loading has been

employed to assess the behavior of the pore pressure along

the time. Finally, a typical plastic problem has been ana-

lyzed. Under the light of the proposed stabilization tech-

nique, the expected shear band is attained. However,

without stabilizing the problem, the plastic zone dissipates

creating spurious plastic zones along the domain, being

impossible the formation of the shear band. The wide range

of applications allows us to validate the proposed

methodology under dynamic conditions.

The present research opens the door of the explicit

simulations of saturated soils by some other meshfree

methods. Next steps will present this formulation in the

material point method. Moreover, this methodology is

feasibly transferable to unsaturated conditions by adding

the influence of the degree of saturation and the air phase.

Because of the nature of the explicit scheme, this formu-

lation arises easily from the proposed in this paper.

Fig. 10 Equivalent plastic strain distribution in the square domain at

the final of the simulation
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