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Abstract
In this paper we give an overview of some recent and older results concerning free boundary
problems governed by elliptic operators.
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1 Introduction

In this survey paper we consider free boundary problems governed by elliptic equations in
which the state variable can assume two phases and the condition across the free boundary
is expressed by an energy balance involving the fluxes from both sides (so called Bernoulli
type problems). Typical examples come from constraint minimization problems, flame
propagation as limits of singular perturbation problems with forcing term (flame propaga-
tion), [51, 64], the Stokes and Prandtl–Batchelor models in classical hydrodynamics, [7,
10], free transmission problems, [6].
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Among the several concepts of solutions, we use the notion of viscosity solution intro-
duced by Luis Caffarelli in the seminal papers [11–13], which seems to be the most
appropriate to study optimal regularity of both solutions and free boundaries in great gen-
erality. In those papers, in the homogeneous case, Caffarelli developed a general strategy
to attack the existence and the optimal regularity of both the solution and the free bound-
ary based on a powerful monotonicity formula, already proved in [5, 16, 59, 65], Harnack
principles and families of continuous perturbations.

A different approach to regularity, relying on Harnack principles and linearization, has
been introduced by De Silva in [22], for a one phase model motivated by the classical
Stokes problem in hydrodynamics, and subsequently refined in [23–25, 28], to cover a broad
spectrum of applications, in particular, for problems with distributed sources.

The main common underlying idea of both techniques to obtain the regularity of the free
boundary, frequently written simply f.b. in the sequel, is to set up an iterative improvement
of flatness argument in a neighborhood of a point where one of the two phases enjoys a
non-degeneracy condition (e.g. a linear growth).

After the quoted seminal papers by Caffarelli, the theory can be developed according to
a well established paradigm:

a) Existence and optimal regularity of solutions, e.g. viscosity or variational solutions, or
solutions obtained as a limit of singular perturbations.

b) Weak regularity properties of the f.b., such as finite perimeter and density properties
for the positivity set.

c) Strong regularity properties of the f.b. For instance Lipschitz or “flat” free boundaries
are C1 or better.

d) Higher regularity: Schauder type estimates and analyticity for both solution and f.b.

Also of great importance, we believe, is to have information on the Hausdorff measure
or dimension of the singular (nonflat) points of the free boundary. The best existing results
in this direction are obtained by De Philippis, Spolaor, Velichkov for the classical Bernoulli
problem in [31, 33]. Nothing is known in the nonhomogeneous case.

In Sections 2 to 5 of this paper we focus on f.b. problems governed by uniformly elliptic
equation, while in Section 6 we describe some recent results on nonlinear operators with
non-standard growth, see [38].

2 Free Boundary Problems Governed by Fully Nonlinear Operators

In the last years the theory for two phase problems governed by uniformly elliptic opera-
tors has reached a considerable level of completeness. Here we mostly focus on problems
governed by fully nonlinear equations with distributed sources. Our class of free boundary
problems and their viscosity solutions can be stated as follows.

Let Symn denote the space of n × n symmetric matrices and let F : Symn → R with
F(O) = 0 and such that there exist constants 0 < λ ≤ Λ with

λ‖N‖ ≤ F(M + N) − F(M) ≤ Λ‖N‖ for every M,N ∈ Symn with N ≥ 0,

where ‖M‖ = max|x|=1 |Mx| denotes the (L2, L2)-norm of the matrix M . Observe that if
F is an operator in our class then for every r > 0

Fr(M) = 1

r
F (rM) (1)

is still an operator in the same class.
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Let Ω ⊂ R
n be a bounded Lipschitz domain and f1, f2 ∈ C(Ω)∩L∞(Ω). We consider

the following two-phase inhomogeneous free boundary problem (f.b.p. in the sequel).
⎧
⎨

⎩

F(D2u+) = f1 in Ω+(u) := {u > 0},
F (D2u−) = f2χ{u<0} in Ω−(u) = {u ≤ 0}o,
u+

ν (x) = G(u−
ν , x, ν) along F(u) := ∂{u > 0} ∩ Ω .

(2)

Here ν = ν(x) denotes the unit normal to the free boundary F = F(u) at the point x, point-
ing toward Ω+(u), while the function G(β, x, ν) is Lipschitz continuous, strictly increasing
in β, and

inf
x∈Ω,|ν|=1

G(0, x, ν) > 0.

Moreover, u+
ν and u−

ν denote the normal derivatives in the inward direction to Ω+(u) and
Ω−(u) respectively.

For any u continuous in Ω we say that a point x0 ∈ F(u) is regular from the right (resp.
left) if there exists a ball B ⊂ Ω+(u) (resp. B ⊂ Ω−(u)) such that B ∩F(u) = x0. In both
cases, we denote with ν = ν(x0) the unit normal to ∂B at x0, pointing toward Ω+(u).

Definition 1 A viscosity solution of the free boundary problem (2) is a continuous func-
tion u which satisfies the first two equality of (2) in viscosity sense and such that the free
boundary condition is satisfied in the following viscosity sense:

(i) (supersolution condition) if x0 ∈ F(u) is regular from the right with touching ball B,
then, near x0,

u+(x) ≥ α〈x − x0, ν〉+ + o(|x − x0|) in B, in with α ≥ 0

and

u−(x) ≤ β〈x − x0, ν〉− + o(|x − x0|) in Bc, in with β ≥ 0,

with equality along every non-tangential direction, and α ≤ G(β, x0, ν(x0));
(ii) (subsolution condition) if x0 ∈ F(u) is regular from the left with touching ball B,

then, near x0,

u+(x) ≤ α〈x − x0, ν〉+ + o(|x − x0|) in Bc, in with α ≥ 0

and

u−(x) ≥ β〈x − x0, ν〉− + o(|x − x0|) in B, in with β ≥ 0,

with equality along every non-tangential direction, and

α ≥ G(β, x0, ν(x0)).

The notion of viscosity solution can also be given in terms of test functions (see [15] for
the equivalence). Given u, ϕ ∈ C(Ω), we say that ϕ touches u by below (resp. above) at
x0 ∈ Ω , if u(x0) = ϕ(x0) and

u(x) ≥ ϕ(x) (resp. u(x) ≤ ϕ(x)) in a neighborhood O of x0.

Then u ∈ C(Ω) is a viscosity solution to (2) if i) and ii) are replaced by
ii’) Let x0 ∈ F(u) and v ∈ C2(B+(v)) ∩ C2(B−(v)) (B = Bδ(x0), δ small) with

F(v) ∈ C2. If v touches u by below (resp. above) at x0, then

v+
ν (x0) ≤ G

(
v−
ν , x0, ν(x0)

)
(resp. ≥).
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2.1 Existence of Lipschitz Viscosity Solutions andWeak Regularity Properties
of the Free Boundary

A solution to (2) that involves partial differential equations that are not in divergence form
can be constructed via Perron’s method, by taking the infimum over the following class of
admissible supersolutions S .

Definition 2 A locally Lipschitz continuous function w ∈ C(Ω) is in the class S if

(a) w is a solution in viscosity sense to
{

F(D2w+) ≤ f1 in Ω+(w),

F (D2w−) ≥ f2χ{w<0} in Ω−(w);
(b) if x0 ∈ F(w) is regular from the left, with touching ball B, then

w+(x) ≤ α〈x − x0, ν〉+ + o(|x − x0|) in Bc, with α ≥ 0

and

w−(x) ≥ β〈x − x0, ν〉− + o(|x − x0|) in B, with β ≥ 0,

with

α ≤ G(β, x0, ν(x0));
(c) if x0 ∈ F(w) is not regular from the left then

w(x) = o(|x − x0|).

The last ingredient one needs is that of minorant subsolution.

Definition 3 A locally Lipschitz continuous function u ∈ C(Ω) is a strict minorant if

(a) u is a viscosity solution to
{

F(D2u+) ≥ f1 in Ω+(u),

F (D2u−) ≤ f2χ{u<0} in Ω−(u);
(b) every x0 ∈ F(u) is regular from the right, with touching ball B, and near x0

u+(x) ≥ α〈x − x0, ν〉+ + o(|x − x0|) in B, with α > 0,

and

u−(x) ≤ β〈x − x0, ν〉− + o(|x − x0|) in Bc, with β ≥ 0,

with

α > G(β, x0, ν(x0)).

The following result holds [63].

Theorem 4 Let F be concave, homogeneous of degree one, and g be a continuous function
on ∂Ω . Assume that

(a) there exists a strict minorant u with u = g on ∂Ω and
(b) the set {w ∈ S : w ≥ u, w = g on ∂Ω} is not empty.

Let

u = inf{w : w ∈ S, w ≥ u}.
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Then u ∈ C(Ω), u = g on ∂Ω and it is a (minimal) viscosity solution of (2). Moreover
u is locally Lipschitz in Ω with non degenerate positive part:

u+(x) ≥ α dist(x,F(u)) (α > 0).

Once existence of a solution is established, we turn to the analysis of the weak regularity
properties of the free boundary.

The free boundary F(u) has finite (n − 1)-dimensional Hausdorff measure. More pre-
cisely, there exists a universal constant r0 > 0 such that for every r < r0, for every
x0 ∈ F(u),

Hn−1(F(u) ∩ Br(x0)) ≤ crn−1.

Moreover, the reduced boundary F∗(u) of Ω+(u) has positive density in Hn−1-measure at
any point of F(u), i.e. for r < r0, r0 universal

Hn−1(F∗(u) ∩ Br(x)) ≥ crn−1,

for every x ∈ F(u). In particular

Hn−1(F(u) \ F∗(u)) = 0.

Using the strong regularity results below we deduce the following result.

Corollary 5 F(u) is a C1,γ surface in a neighborhood ofHn−1 a.e. point x0 ∈ F(u).

Existence of a continuous viscosity solution through a Perron method has been estab-
lished for linear operators in divergence form in [13] (homogeneous case) and in [25]
(inhomogeneous case), and for a class of concave operators in [68]. The presence of both
a right hand side and the nonlinearity of the governing equation presents several delicate
points which require new arguments, significantly when no sign condition is posed on the
right hand sides f1 and f2.

When F = F(D2u,Du), with F non concave in the Hessian matrix and even for the
linear case F = Tr(A(x)D2u)+ b(x) · ∇u, both existence and weak regularity remain open
questions.

We conclude this section by mentioning a different approach to prove existence for a
specific class of free boundary problems in divergence form that can be found for example
in [64].

3 Lipschitz Continuity and Global Solutions

The Lipschitz continuity of solutions to (2) is a crucial ingredient in the study of the reg-
ularity of the free boundary F(u). Indeed it provides compactness to carry on a blow-up
analysis around a point x0 ∈ F(u), reducing the problem to the classification of global
Lipschitz solution. For instance, if F(Du) = −Δu, f1 = f2 = 0 it is possible to classify
global solutions U as either purely two-plane functions (ν a unit direction),

U(x) = α〈x − x0, ν〉+ − β〈x − x0, ν〉−, α = G(β), β > 0

or one-phase solutions, in case we have

U− ≡ 0.

In particular, if u is a solution with 0 ∈ F(u), then via a blow-up analysis and flatness
results (see below) either u−(x) = o(|x|) or F(u) is C1,γ in a neighborhood of 0 that is,
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the only types of singular points are the ones that occur in the one-phase setting when the
negative phase is identically zero.

On points of the reduced boundary of the minimal Perron solutions, one can conclude
that in the case when the blow up is a one-phase solution, then it is in fact a one-plane
solution α〈x − x0, ν〉, hence C1,γ regularity of the reduced boundary follows from flatness
results below.

For viscosity solutions in general, when the governing equation is a fully non linear
operator more robust arguments are required.

3.1 Lipschitz Continuity

In [29] De Silva and Savin proved the following result under the assumptions that G behaves
like t for t large.

Theorem 6 Let u be a viscosity solution to (2) f1 = f2 = 0, and assume that G ∈
C2([0, ∞)) and

G′(t) → 1, G
′′
(t) = O(1/t) as t → ∞. (3)

Then

‖∇u‖L∞(B1/2) ≤ C
(
1 + ‖u‖L∞(B1)

)

with C = C(n, λ, Λ, G) universal.

The heuristic behind the proof is that “big gradients” force the free boundary condition
to become a no-jump condition for ∇u and then interior C1,α estimates for fully nonlinear
equations provide gradient estimates.

The dependence on G in the constant above is determined by the rate of convergence in
the limit (3). In particular (3) can be relaxed to G′ ∈ [1 − δ, 1 + δ] for large values of t . If
F is homogeneous of degree 1, then it suffices to require G(t)/t → c0 as t → ∞ for some
constant c0.

The method of the proof still works in the presence of a non-zero right hand side.
In dimension n = 2 these results can be improved significantly.

3.2 Classification of Global Solutions

In [30] De Silva and Savin proved the following Liouville theorem for global Lipschitz
solutions.

Theorem 7 Let f1 = f2 = 0 and u be a globally Lipschitz viscosity solution to (2) in R
n.

Assume that

F is concave (or convex) and homogeneous of degree 1.

Then either u is a two plane-solution

u = α〈x − x0, ν〉+ − β〈x − x0, ν〉− with α, β > 0, α = G(β),

or

u− ≡ 0,

which means that u solves the one-phase problem for F .
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As in the case of the Laplacian, the main consequence of Theorem 7 is that it reduces the
question of the regularity of the free boundary for the two-phase problem to the classifica-
tion of global blow-up solutions to the one-phase problem. In particular, if u is a solution to
(2) with 0 ∈ F(u), then either u−(x) = o(|x|) or F(u) is C1,γ in a neighborhood of 0.

Theorem 7 can be extended to more general operators F(D2u,∇u, u) if appropriate
assumptions are imposed on F . For example this result holds when the problem is governed
by quasilinear equations of the type

n∑

i,j=1

aij

( ∇u

|∇u|
)

uij = 0,

with uniformly elliptic coefficients aij ∈ C1(Sn−1). In [29] Lipschitz continuity of
solutions to such a problem is also established.

The proof requires somewhat involved and technical arguments. One of the main steps
consists in obtaining a weak Evans–Krylov type estimate for a nonlinear transmission prob-
lem. One major difficulty is that F(u) is not known to be better than C1,α even in the
perturbative setting.

The idea of proof of Theorem 7 is to show a “reversed” improvement of flatness for the
solution u, which means that if u is sufficiently close to a two plane solution at a small scale
then it remains close to the same two-plane solution at all larger scales.

3.3 Different Operators

When the two phases are governed by two different operators, few results are known. In
[6], Amaral and Teixeira consider the case of divergence form operators, with f1, f2 ∈ Lp ,
p > n/2 and Aj merely measurable. They prove that local minimizers of the associated
energy functional have a universal Hölder modulus of continuity.

In [14], Caffarelli, De Silva and Savin obtained Lipschitz continuity and classification
of global Lipschitz solutions, that is Theorems 6 and 7, for a two-phase problem driven
by two different operators with measurable coefficients under very general free boundary
conditions u+

ν = G(u−
ν , ν, x), in dimension n = 2. We remark that Theorem 6 cannot hold

in this generality in higher dimensions. Indeed, say for n = 3, it is not difficult to construct
two homogeneous functions of degree less than one, that solve two different uniformly
elliptic equations in complementary domains in R

3 and satisfy the free boundary condition
for a specific G.

4 C1,α Regularity of the Free Boundary

4.1 The Homogeneous Case

The regularity theory for the Laplace operator in the homogeneous case has been developed
by Caffarelli in the two seminal papers [11, 12].

In particular the “Lipschitz implies C1,γ ” part is contained in [11] while the flat implies
Lipschitz part is shown in [12]. The flatness condition in [12] is stated in terms of “ε-
monotonicity” along a cone of directions Γ (θ0, e) of axis e and large opening θ0. Precisely,
a function u is said to be ε-monotone (ε > 0 small) along the direction τ in the cone
Γ (θ0, e) if for every ε′ ≥ ε,

u(x + ε′τ) ≤ u(x).
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Geometrically, the ε-monotonicity of u can be interpreted as ε-closeness of F(u) to the
graph of a Lipschitz function.

In those papers Caffarelli set up a general strategy to attack the regularity of the free
boundary. Let us briefly describe the central idea of the proof in [11].

Starting from a Lipschitz graph, one shows that in a neighborhood of F(u) the level sets
of u are still Lipschitz graphs, locally in the same direction. Then one improves the Lip-
schitz constant (i.e. the flatness) of the level sets of u away from the free boundary. Here
Harnack inequality applied to directional derivatives of u plays a major role. Then the task is
to carry this interior gain up to the free boundary. To this aim, Caffarelli introduces a power-
ful method of continuity based on the construction of a continuous family of deformations,
constructed as the supremum of a harmonic function over balls of variable radius (supcon-
volutions). Finally, by rescaling and iterating the last two steps, one obtains a geometric
decay of the Lipschitz constant, which amounts to the C1,γ regularity of F(u).

After 10 years Feldman [41] considered different anisotropic operators with constant
coefficients and extends to this case the results in [11].

P. Y. Wang managed to extend the results in [11, 12] to a class of concave fully non
linear operators (see [66, 67]). One year later Feldman in [42] considered a class of non
concave fully non linear operators of the type F(D2u,Du). He showed that Lipschitz free
boundaries are C1,α thus extending to this case the results in [11] see also [57].

The first papers dealing with variable coefficient operators are by Cerutti, Ferrari, Salsa
[17] and by Ferrari [37] and Argiolas, Ferrari [9]. They considered respectively, linear
elliptic operators in non-divergence form and a rather general class of fully nonlinear oper-
ators F(D2u,Du, x), with Hölder continuity in x, including Bellman’s operators. One of
the main difficulty in extending the theory to variable coefficients operator is the fact that
directional derivatives do not satisfy any reasonable elliptic equation.

A refinement of the techniques in [17] leads to the following results (see [40]), where the
drift coefficient is merely bounded measurable, with two different operators

Fi(D
2u,Du) = Tr

(
Ai(x)D2u

)
+ bi(x) · ∇u, i = 1, 2

governing the two phases.

Theorem 8 Let u be a weak solution of our free boundary problem in Ω = B1 = B1(0),
the unit ball centered at the origin. Suppose 0 ∈ F(u) and that

i) Ai ∈ C0,a(B1), 0 < a ≤ 1, bi ∈ L∞(B1).
ii) 0 < α1 ≤ u+(x)

dist(x,F (u))
≤ α2.

iii) G(0) > 0.

There exist 0 < θ < π/2 and ε > 0 such that, if for 0 < ε < ε, F(u) is contained in an
ε-neighborhood of a graph of a Lipschitz function xn = g(x′) with

Lip(g) ≤ tan
(π

2
− θ

)

then F(u) is a C1,γ -graph in B1/2.
The same conclusion holds if B+

1 (u) = {(x′, xn) : xn > f (x′)} ∩ B1 where f is a
Lipschitz continuous function.

Condition ii) expresses a linear behavior of u+ at the free boundary while being trapped
in a neighborhood of two Lipschitz graph with small Lipschitz constant is another way to
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express a flatness condition. Thus, flatness plus linear behavior of the positive part imply
smoothness.

This theorem has been extended to the same class of fully nonlinear operators considered
in [37] by Argiolas and Ferrari in [9]. Note that, in principle, all these results do not need
the a priory assumption of Lipschitz continuity of the solution, that comes as a consequence
of the regularity of the free boundary.

4.2 The Nonhomogeneous Case

In this section we describe the strategy to investigate free boundary problems with right
hand side. Based on a Harnack type theorem and linearization, this technique avoids the use
of supconvolutions, that in presence of distributed sources produces several complicacies.
The method can be very well adapted to nonhomogeneous two-phase problems to prove that
flat (see below) or Lipschitz free boundaries of (2) are C1,γ . We assume that f1 = f2 = f .

We have (we will always assume that 0 ∈ F(u)):

Theorem 9 Let u be Lipschitz viscosity solution to (2) in B1. Assume that f is bounded and
continuous in B+

1 (u) ∪ B−
1 (u). There exists a universal constant δ̄ > 0 such that, if

{xn ≤ −δ} ⊂ B1 ∩ {u+(x) = 0} ⊂ {xn ≤ δ}, (δ-flatness) (4)

with 0 ≤ δ ≤ δ̄, then F(u) is C1,γ in B1/2.

Condition (4) expresses that the zero set of u+ is trapped between two parallel hyper-
planes at δ-distance from each other for a small δ, which is a kind of flatness (δ-flatness).
While this looks like a somewhat strong assumption, it is indeed a natural one since it is sat-
isfied for example by rescaling a solution around a point of the free boundary where there is
a normal in some weak sense (regular points), for instance in the measure theoretical one.
Thus, for the minimal Perron solution Hn−1−a.e. points on F(u) are of this kind. More-
over, starting from a Lipschitz free boundary, Hn−1−a.e. points on F(u) are regular, by
Rademacher Theorem.

When F is (positively) homogeneous of degree one (or when Fr(M) = 1
r
F (rM) has a

limit F ∗(M), as r → 0, which is always homogeneous of degree one), we also have:

Theorem 10 (Lipschitz implies C1,γ ) Let u be a Lipschitz viscosity solution to (2) in B1.
Assume that f is bounded and continuous in B+

1 (u) ∪ B−
1 (u). If F(u) is a Lipschitz graph

in a neighborhood of 0, then F(u) is C1,γ in a (smaller) neighborhood of 0.

Theorem 10 follows from Theorem 9 via a blow-up argument and a Liouville type result
for global viscosity solutions to a two-phase free boundary problem, for the details see the
original paper [24].

As already pointed out the proof of Theorem 9 follows the strategy developed in [22].
The main difficulty in the analysis in this two-phase problem comes from the case when
u− is degenerate, that is very close to zero without being identically zero. In this case the
flatness assumption does not guarantee closeness of u to an “optimal” (two-plane or one-
plane) configuration. Thus one needs to work only with the positive phase u+ to balance
the situation in which u+ highly predominates over u− and the case in which u− is not too
small with respect to u+.

In particular, the proof is based on a recursive improvement of flatness, obtained via a
compactness argument, provided by a geometric type Harnack inequality, which linearizes



F. Ferrari et al.

the problem into a limiting one. The limiting problem turns out to be a transmission problem
in the nondegenerate case and a Neumann problem in the other case. The information to set
up the iteration towards regularity is precisely stored in the analysis of this problem.

Let us heuristically show how the free boundary condition

|∇u+| = G(|∇u−|)
linearizes in the nondegenerate case. Let Uβ(t) = αt+ − βt−, α = G(β), it is possible to
show that for any ε > 0, if δ > 0, depending on ε is small enough, the condition (4) implies
the following one

Uβ(xn − ε) ≤ u(x) ≤ Uβ(xn + ε) in B1,

with 0 < β ≤ L, and L = Lip(u). After rescaling we may assume that

|f | ≤ ε2 min{α, β}.
This suggests the renormalization

ũε(x) =

⎧
⎪⎪⎨

⎪⎪⎩

u(x) − αxn

αε
, x ∈ B+

1 (u) ∪ F(u),

u(x) − βxn

βε
, x ∈ B−

1 (u)

or

u(x) =
{

αxn + εαũε(x), x ∈ B+
1 (u) ∪ F(u),

βxn + εβũε(x), x ∈ B−
1 (u).

(5)

Recalling (1), we have

Fαε(D
2ũε) = f

αε
∼ ε in B+

1 (u)

and

Fβε(D
2ũε) = f

βε
∼ ε in B−

1 (u).

On F(u),

|∇u+| = α|en + ε∇ũε(x)| ∼ α
(

1 + ε(ũε)xn + ε2|∇ũε|2
)

and

G(|∇u−|) = G (|βen + εβ∇ũε|) ∼ G
(
β

(
1 + ε(ũε)xn + ε2|∇ũε|2

))

∼ G(β) + εG′(β)
(
β(ũε)xn + εβ|∇ũε|2

)
+ ε2.

Letting ε → 0, we get formally for “the limit” ũ the following problem:

F±(D2ũ) = 0 in B±
1/2 ∩ {xn �= 0} (6)

and the transmission condition (linearization of the free boundary condition)

α
(
ũxn

)+ − βG′(β)
(
ũxn

)− = 0 on B1/2 ∩ {xn = 0},
where F+(M), F−(M) are limits (of sequences) of operators of the form

Fαε(M) and Fβε(M),

while (ũxn)
+ and (ũxn)

− denote the en-derivatives of ũ restricted to {xn > 0} and {xn < 0},
respectively.

Thus, at least formally, we have found an asymptotic problem for the limits of the
renormalizations ũε . The crucial information we were mentioning before is contained in
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the following regularity result that we state for the fully nonlinear case (see [27] when
distributed sources are present). Consider the transmission problem, (ã �= 0)

⎧
⎨

⎩

F+(D2ũ) = 0 in B+
1 ∩ {xn �= 0},

F−(D2ũ) = 0 in B−
1 ∩ {xn �= 0},

ã(ũxn)
+ − b̃(ũxn)

− = 0 on B1 ∩ {xn = 0}.
(7)

Theorem 11 Let ũ be a viscosity solution to (7) in B1 such that ‖ũ‖∞ ≤ 1. Then ũ ∈
C1,γ (B̄±

1 ) and in particular, there exists a universal constant C̄ such that

|ũ(x) − ũ(0) − (∇x′ ũ(0) · x′ + p̃x+
n − q̃x−

n )| ≤ C̄r1+γ in Br (8)

for all r ≤ 1/2, with ãp̃ − b̃q̃ = 0.

Transferring the estimate (8) to ũε and then reading it in terms of flatness for u through
formulas (5), one deduce that if 0 < r ≤ r0 for r0 universal, and 0 < ε ≤ ε0 for some ε0
depending on r ,

Uβ ′
(
x · ν1 − r

ε

2

)
≤ u(x) ≤ Uβ ′

(
x · ν1 + r

ε

2

)
in Br, (9)

with |ν1| = 1, |ν1 − en| ≤ C̃ε, and |β − β ′| ≤ C̃βε for a universal constant C̃.
Rescaling and iterating (9) one deduces uniform pointwise C1,γ estimates in neighbor-

hood of the origin.

5 Higher Regularity

In view of the results in Section 5, under suitable flatness assumptions, the free boundary
F(u) is locally C1,γ and the same conclusion holds if F(u) is a graph of a Lipschitz func-
tion. Therefore u is a classical solution, i.e. the free boundary condition is satisfied in a
pointwise sense. Concerning higher regularity, the result one aims to prove should be the
following one.

“Theorem”. Assume some reasonable starting regularity on F(u) and let k be a nonneg-
ative integer. Suppose that fi ∈ Ck,γ (B1), i = 1, 2, and G is C2+k . Then F(u) ∩ B1/2 is
Ck+2,γ ∗

. Moreover, if fi , i = 1, 2, are C∞ or real analytic in B1, then F(u) ∩ B1/2 is C∞
or real analytic, respectively.

The state of the art is the following. In the seminal paper [46], the authors used a zero
order hodograph transformation and a suitable reflection map, to locally reduce a two-phase
problem to an elliptic, coercive nonlinear system of equations. The existing literature on the
regularity of solutions to nonlinear systems developed in [3, 61] can be applied as long as
the solution u is C2,α for some α > 0 up to the free boundary (from either side).

As noted in the recent work [48], in the case when the governing equation in (2) is
linear and in divergence form, the initial assumption to obtain the above theorem is actually
u ∈ C1,α . It is not evident that the case of linear nondivergence uniformly elliptic equations
can be treated in a similar manner. On the other hand, the case when the leading operator is
a fully nonlinear operator definitely requires the solution to have Hölder second derivatives
(from both sides).

In [26] we consider the case of nondivergence linear operators with the purpose to
develop a general strategy that would apply to a larger class of problem, to include also
fully nonlinear operators. The application to the latter case would be rather straightforward
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once C2,α estimates for the limiting problem (7) were available. However for fully nonlinear
operators, this remains an open problem. The main result in [26] is the following.

Theorem 12 Let F be a linear uniformly elliptic operator in nondivergence form, withC0,γ

coefficients and let u be a (Lipschitz) viscosity solution to (2) inB1. Assume that eitherF(u)

is locally the graph of a Lipschitz continuous function or there exists a universal constant
η > 0 such that,

{xn ≤ −η} ⊂ B1 ∩ {u+(x) = 0} ⊂ {xn ≤ η},

then F(u) is C2,γ ∗
in B1/2 for a small γ ∗ universal, with the C2,γ ∗

norm bounded by a
universal constant.

Hence, the initial proposal, stated in the theoretical expected “Theorem”, may be
considered achieved by the following corollary contained in [26].

Corollary 13 Let u be a viscosity solution of (2) when F := Tr(A(x)D2u(x)), and A is
a smooth uniformly elliptic matrix of coefficients. Assume that F(u) is Lipschitz and let
k be a nonnegative integer. Suppose that fi ∈ Ck,γ (B1), i = 1, 2, and G is C2+k . Then
F(u) ∩ B1/2 is Ck+2,γ ∗

. Moreover, if fi , i = 1, 2, are C∞ or real analytic in B1, then
F(u) ∩ B1/2 is C∞ or real analytic, respectively.

Other related higher regularity results can be found in [32, 47]. The overall strategy
for the proof of Theorem 12 follows the ideas described in the previous section. However,
reaching the C2,γ regularity requires a much more involved process because of the possible
degeneracy of the negative part. Indeed this causes a delicate interplay between the two
phases. Ultimately the main source of difficulties is due to the presence of a forcing term of
general sign in the negative phase. Indeed, if f2 ≥ 0, the Hopf maximum principle would
imply nondegeneracy (also) on the negative side, making the two-phases of comparable size
and considerably simplifying the final iteration procedure. It is worth noticing, that however
even in this easier scenario (and in particular in the homogeneous case), if one wants to
attain uniform estimates with universal constants, then one must employ the more involved
methods developed in [26] for the degenerate case.

6 Nonlinear Operators with Non-standard Growth

In the second part of this survey we present some recent results concerning a one-phase free
boundary problem governed by the p(x)-Laplacian. More precisely, let

Δp(x)u = div(|∇u|p(x)−2∇u),

where p is measurable and 1 < p(x) < +∞ a.e. in a domain Ω . We recall that if p :
Ω → [1, ∞) is a measurable bounded function, the variable exponent Lebesgue space
Lp(·)(Ω) is defined as the set of all measurable functions u : Ω → R for which the modular
�p(·)(u) = ∫

Ω
|u(x)|p(x) dx is finite. The Luxemburg norm on this space is defined by

‖u‖Lp(·)(Ω) = ‖u‖p(·) = inf{λ > 0 : �p(·)(u/λ) ≤ 1}.
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This norm makes Lp(·)(Ω) a Banach space. In addition, setting pmax = esssup p(x) and
pmin = essinf p(x), the following relation holds between �p(·)(u) and ‖u‖Lp(·) :

min

{(∫

Ω

|u|p(x) dx

)1/pmin

,

(∫

Ω

|u|p(x) dx

)1/pmax
}

≤ ‖u‖Lp(·)(Ω)

≤ max

{(∫

Ω

|u|p(x) dx

)1/pmin

,

(∫

Ω

|u|p(x) dx

)1/pmax
}

.

Moreover, the dual of Lp(·)(Ω) is Lp′(·)(Ω) with 1
p(x)

+ 1
p′(x)

= 1.

W 1,p(·)(Ω) denotes the space of measurable functions u such that u and the distributional
derivative ∇u are in Lp(·)(Ω). The norm

‖u‖1,p(·) := ‖u‖p(·) + ‖|∇u|‖p(·)

makes W 1,p(·)(Ω) a Banach space. The space W
1,p(·)
0 (Ω) is defined as the closure of the

C∞
0 (Ω) in W 1,p(·)(Ω).

Assume that Ω ⊂ R
n is a bounded domain, p ∈ C1(Ω), f ∈ C(Ω) ∩ L∞(Ω) and

g ∈ C0,β(Ω), g ≥ 0. Then our problem reads
{

Δp(x)u = f in Ω+(u) := {x ∈ Ω : u(x) > 0},
|∇u| = g on F(u) := ∂Ω+(u) ∩ Ω .

(10)

In addition we assume that
∇p ∈ L∞(Ω)

and that
1 < pmin ≤ p(x) ≤ pmax < ∞.

This kind of problems arise naturally from limits of a singular perturbation problem with
forcing term as in [52], where the authors analyze solutions to (10), arising in the study
of flame propagation with nonlocal and electromagnetic effects. On the other hand, (10)
appears by minimizing the energy functional

E(v) =
∫

Ω

(
|∇v|p(x)

p(x)
+ Q2(x)χ{v>0} + f (x)v

)

dx (11)

studied in [54], see [20] as well. We refer also to [55], where (10) appears in the study of an
optimal design problem.

In general, partial differential equations with non-standard growth have been receiving a
lot of attention and the p(x)-Laplacian is a model case in this class. A list of applications
of this type of operators includes the modelling of non-Newtonian fluids, for instance, elec-
trorheological [62] or thermorheological fluids [8]. Also non-linear elasticity [70], image
reconstruction [1, 18] and the modelling of electric conductors [71], to cite some of them.

We are interested in the regularity of the free boundary for viscosity solutions of (10),
following the strategy introduced in [22]. The same technique was applied to the p-Laplace
operator (p(x) ≡ p in (10)), with p ≥ 2, in [56].

Problem (10) was originally studied in the linear homogeneous case in [4], associated to
(11). These techniques were generalized to the linear case with f �≡ 0 in [43, 50] and, in
the homogeneous case, to a quasilinear uniformly elliptic situation [5], to the p-Laplacian
[21], to an Orlicz setting [58] and to the p(x)-Laplacian with p(x) ≥ 2 [36]. For the case
(10) with 1 < p(x) < ∞ and f �≡ 0 we refer to [53].

We will present results on problem (10) obtained in [38]. In order to do so, we start with
some definitions and preliminaries.
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Recall that we have assumed that 1 < pmin ≤ p(x) ≤ pmax < ∞, with p(x) Lipschitz
continuous in Ω , and f ∈ L∞(Ω). We say that u is a weak solution to Δp(x)u = f in Ω if
u ∈ W 1,p(·)(Ω) and, for every ϕ ∈ C∞

0 (Ω), there holds that

−
∫

Ω

|∇u(x)|p(x)−2∇u · ∇ϕ dx =
∫

Ω

ϕ f (x) dx. (12)

The notion of viscosity solution to (10) is given as follows.

Definition 14 Let u be a continuous nonnegative function in Ω . We say that u is a viscosity
solution to (10) in Ω , if the following conditions are satisfied:

1. Δp(x)u = f in Ω+(u) in the weak sense (i.e., in the sense of (12)).
2. For every ϕ ∈ C(Ω), ϕ ∈ C2(Ω+(ϕ)). If ϕ+ touches u from below (resp. above) at

x0 ∈ F(u) and ∇ϕ(x0) �= 0, then

|∇ϕ(x0)| ≤ g(x0) (resp. ≥ g(x0)).

We point out the difference between the notion of viscosity solution for free boundary
problem (10) in Definition 14 and the one for free boundary problem (2) in Definition 1
(Section 2). Namely, equation Δp(x)u = f is satisfied here in weak the sense of (12).
However, the program followed in [38] required to deal with viscosity solutions of this
equation—in the sense of [19]—as well.

The equivalence between weak and viscosity solutions of Δp(x)u = f was proved in
[44, 45, 60] in the case of the p-Laplacian (i.e., for p(x) ≡ p) and in [49] in the case of the
homogeneous p(x)-Laplacian (i.e., for f ≡ 0). For the inhomogeneous p(x)-Laplacian the
following result was proven in [38]:

Theorem 15 Assume that f ∈ C(Ω) ∩ L∞(Ω), p ∈ C1(Ω) with 1 < pmin ≤ p(x) ≤
pmax < ∞ and ∇p ∈ L∞(Ω). Let u ∈ W 1,p(·)(Ω)∩C(Ω) be a weak solution to Δp(x)u =
f in Ω . Then u is a viscosity solution to Δp(x)u = f in Ω .

As a consequence, we have:

Proposition 16 Let u be a viscosity solution to (10) in Ω . Then the following conditions
are satisfied:

1. Δp(x)u = f in Ω+(u) in the viscosity sense, that is:

(ia) for every ϕ ∈ C2(Ω+(u)) and for every x0 ∈ Ω+(u), if ϕ touches u from above
at x0 and ∇ϕ(x0) �= 0, then Δp(x0)ϕ(x0) ≥ f (x0), that is, u is a viscosity
subsolution;

(ib) for every ϕ ∈ C2(Ω+(u)) and for every x0 ∈ Ω+(u), if ϕ touches u from below
at x0 and ∇ϕ(x0) �= 0, then Δp(x0)ϕ(x0) ≤ f (x0), that is, u is a viscosity
supersolution.

2. For every ϕ ∈ C(Ω), ϕ ∈ C2(Ω+(ϕ)). If ϕ+ touches u from below (resp. above) at
x0 ∈ F(u) and ∇ϕ(x0) �= 0, then

|∇ϕ(x0)| ≤ g(x0) (resp. ≥ g(x0)).

We now describe the main result in [38]. Namely, flat free boundaries of viscosity
solutions to (10) are C1,α . In the forthcoming work [39] it is shown that Lipschitz free
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boundaries of viscosity solutions are C1,α . Concerning this last paper, we just say that,
remarkably, the regularity step from Lipschitz to C1,α presents new and interesting aspects,
requiring deeper techniques.

Precisely, the main result in [38] is the following

Theorem 17 (Flatness implies C1,α) Let u be a viscosity solution to (10) in B1. Assume
that 0 ∈ F(u), g(0) = 1 and p(0) = p0. There exists a universal constant ε̄ > 0 such that,
if the graph of u is ε̄-flat in B1, in the direction en, that is

(xn − ε̄)+ ≤ u(x) ≤ (xn + ε̄)+, x ∈ B1,

and

‖∇p‖L∞(B1) ≤ ε̄, ‖f ‖L∞(B1) ≤ ε̄, [g]C0,β (B1)
≤ ε̄,

then F(u) is C1,α in B1/2.

In Theorem 17 the constants ε̄ and α depend only on pmin, pmax and n.
We remark that Theorem 17 is crucial in the companion paper [39] to prove that Lipschitz

free boundaries of viscosity solutions of (10) are C1,α .
The proof of Theorem 17 is based on an improvement of flatness, obtained via a com-

pactness argument (provided by a Harnack type inequality) which linearizes the problem
into a limiting one. We point out that the development of new tools was necessary in
order to implement this strategy for the inhomogeneous p(x)-Laplace operator. In fact,
the p(x)-Laplacian is a nonlinear operator that appears naturally in divergence form from
minimization problems, i.e., in the form divA(x,∇u) = f (x), with

λ|η|p(x)−2|ξ |2 ≤
n∑

i,j=1

∂Ai

∂ηj

(x, η)ξiξj ≤ Λ|η|p(x)−2|ξ |2, ξ ∈ R
n.

This operator is singular in the regions where 1 < p(x) < 2 and degenerate in the ones
where p(x) > 2.

Some important results for this type of operators are available in the literature only for
weak solutions (in the sense of (12)). These results are Harnack inequality, [69], and C1,α

estimates, [34, 35]. This is the motivation for the choice of Definition 14. However, the
proof of Theorem 17 relies on solutions of inhomogeneous p(x)-Laplace equation in the
viscosity sense. Then, Theorem 15 becomes essential.

On the other hand, the nondivergence nature of the viscosity solutions requires the con-
struction of suitable barriers. It turns out that barriers of the type w(x) = c1|x − x0|−γ − c2
are appropriate for the inhomogeneous p(x)-Laplace operator, although the proof is deli-
cate, due to the nonlinear singular/degenerate nature of the operator, its x dependence and
the presence of the logarithmic term that appears in the nondivergence form of the operator.
Precisely, the following key result was proved in [38]:

Lemma 18 Let x0 ∈ B1 and 0 < r̄1 < r̄2 ≤ 1. Assume that 1 < pmin ≤ p(x) ≤ pmax < ∞
and ‖∇p‖L∞ ≤ ε1+θ , for some 0 < θ ≤ 1. Let c0, c1, c2 be positive constants and c3 ∈ R.
There exist positive constants γ ≥ 1, c̄, ε0 and ε1 such that the functions

w(x) = c1|x − x0|−γ − c2,

v(x) = q(x) + c0

2
ε(w(x) − 1), q(x) = xn + c3
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satisfy, for r̄1 ≤ |x − x0| ≤ r̄2,

Δp(x)w ≥ c̄, for 0 < ε ≤ ε0, (13)

1

2
≤ |∇v| ≤ 2, Δp(x)v > ε2, for 0 < ε ≤ ε1. (14)

Here γ = γ (n, pmin, pmax), c̄ = c̄(pmin, pmax, c1), ε0 = ε0(n, pmin, pmax, r̄1, c1), ε1 =
ε1(n, pmin, pmax, r̄1, c0, c1, θ).

Another essential tool leading to the proof of Theorem 17 is given by the following
Harnack type inequality, obtained in [38], whose p-Laplace version (i.e., for p(x) ≡ p

constant) and with p ≥ 2, is contained in [56].

Lemma 19 Assume that 1 < pmin ≤ p(x) ≤ pmax < ∞ with p(x) Lipschitz continuous in
Ω and ‖∇p‖L∞ ≤ L, for some L > 0. Let x0 ∈ Ω and 0 < R ≤ 1 such that B4R(x0) ⊂ Ω .
Let v ∈ W 1,p(·)(Ω) ∩ L∞(Ω) be a nonnegative solution to

div
(
|∇v + e|p(x)−2(∇v + e)

)
= f in Ω,

where f ∈ L∞(Ω) with ‖f ‖L∞(Ω) ≤ 1 and e ∈ R
n with |e| = 1. Then, there exists C such

that

sup
BR(x0)

v ≤ C

[

inf
BR(x0)

v + R

(

‖f ‖
1

pmax−1
L∞(B4R(x0))

+ C

)]

.

The constant C depends only on n, pmin, pmax, ‖v‖L∞(B4R(x0)) and L.

Let us also mention that the fact that weak solutions to the inhomogeneous p(x)-
Laplacian are locally of class C1,α plays a critical role in the results in [38]. We point
out that sharp conditions about the regularity of solutions of some elliptic equations with
non-standard growth can be found in [2] and [34].

Finally, the overall strategy of the proof of the Theorem 17 in [38] follows closely the
one in [22] and, after a suitable rescaling, it relies on the following

Lemma 20 (Improvement of flatness) Let u satisfy (10) in B1 and

‖f ‖L∞(B1) ≤ ε2, ‖g − 1‖L∞(B1) ≤ ε2, ‖∇p‖L∞(B1) ≤ ε1+θ , ‖p − p0‖L∞(B1) ≤ ε,

(15)
for 0 < ε < 1, for some constant 0 < θ ≤ 1. Suppose that

(xn − ε)+ ≤ u(x) ≤ (xn + ε)+ in B1, 0 ∈ F(u). (16)

If 0 < r ≤ r0 for r0 universal, and 0 < ε ≤ ε0 for some ε0 depending on r , then

(x · ν − rε/2)+ ≤ u(x) ≤ (x · ν + rε/2)+ in Br, (17)

with |ν| = 1 and |ν − en| ≤ C̃ε for a universal constant C̃.

We schematize below the main steps of its proof.
Step 1: Compactness. Fix r ≤ r0 with r0 universal (chosen in Step 3). Assume by con-

tradiction that there exists a sequence εk → 0 and a sequence uk of solutions to (10) in B1
with right hand side fk , exponent pk and free boundary condition gk satisfying (15) with
ε = εk , such that uk satisfies (16), i.e.,

(xn − εk)
+ ≤ uk(x) ≤ (xn + εk)

+ for x ∈ B1, 0 ∈ F(uk), (18)

but uk does not satisfy the conclusion (17) of the lemma.
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Set

ũk(x) = uk(x) − xn

εk

, x ∈ Ω1(uk).

Then, (18) gives
− 1 ≤ ũk(x) ≤ 1 for x ∈ Ω1(uk). (19)

With a compactness argument and a sharp application of Ascoli–Arzelà theorem it is
possible to prove that there exists a convergent subsequence to a function ũ.

Step 2. Limiting solution. A delicate argument, involving our assumption (15), shows that
the function ũ solves, in the viscosity sense, the following linearized problem

{
Lp0 ũ = 0 in B1/2 ∩ {xn > 0},
ũn = 0 on B1/2 ∩ {xn = 0}. (20)

Here 1 < pmin ≤ p0 ≤ pmax < ∞, ũn denotes the derivative in the en direction of ũ and

Lp0u := Δu + (p0 − 2)∂nnu.

We point out that, if ũ is a continuous function on B1/2∩{xn ≥ 0}, we say that ũ is a viscosity
solution to (20), if given a quadratic polynomial P(x) touching ũ from below (resp. above)
at x̄ ∈ B1/2 ∩ {xn ≥ 0},
(i) if x̄ ∈ B1/2 ∩ {xn > 0} then Lp0P ≤ 0 (resp. Lp0P ≥ 0), i.e. Lp0 ũ = 0 in the

viscosity sense in B1/2 ∩ {xn > 0};
(ii) if x̄ ∈ B1/2 ∩ {xn = 0} then Pn(x̄) ≤ 0 (resp. Pn(x̄) ≥ 0).

Step 3: Improvement of flatness. From the previous step, ũ solves (20) and from (19),

− 1 ≤ ũ(x) ≤ 1 in B1/2 ∩ {xn ≥ 0}. (21)

On the other hand it is well known that if ũ is a viscosity solution to (20) in B1/2 ∩{xn ≥
0}, then ũ ∈ C2(B1/2 ∩{xn ≥ 0}) and it is a classical solution to (20). Then, using the bound
(21) we find that, for the given r ,

|ũ(x) − ũ(0) − ∇ũ(0) · x| ≤ C0r
2 in Br ∩ {xn ≥ 0}

if r0 ≤ 1/4, with C0 universal. Now the iterative argument is the same that has been applied
in the linear case, [22, 23].
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