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Turbulence in rotating Bose-Einstein condensates
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Since the idea of quantum turbulence was first proposed by Feynman and later realized in experiments
of superfluid helium and Bose-Einstein condensates, much emphasis has been put on finding signatures that
distinguish quantum turbulence from its classical counterpart. Here we show that quantum turbulence in rotating
condensates is fundamentally different from the classical case. While rotating quantum turbulence develops a
negative temperature state with self-organization of the kinetic energy in quantized vortices, it also displays an
anisotropic dissipation mechanism and a different, non-Kolmogorovian, scaling of the energy at small scales.
This scaling is compatible with Vinen turbulence and also has been found in recent simulations of condensates
with multicharged vortices. An elementary explanation for the scaling is presented in terms of disorder in the
vortices positions.
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I. INTRODUCTION

Quantum turbulence corresponds to the chaotic and out-
of-equilibrium dynamics of quantized vortices observed in
Bose-Einstein condensates (BECs) and in superfluid helium.
Turbulence in both physical systems has been studied in
laboratory experiments [1–5] as well as theoretically and nu-
merically [6–11].

Under many circumstances, quantum turbulence is very
similar to its classical counterpart, to the point that identifying
their distinguishing features became a major research topic.
Many times both display Kolmogorov scaling E (k) ∼ k−5/3

of the kinetic energy, even though the mechanism behind
this scaling in the quantum regime is believed to be vortex
reconnection at large scales and a cascade of Kelvin waves
at small scales [7], the latter mechanism being unavailable
in classical turbulence. However, some experiments [12–14]
show another regime known as Vinen turbulence (or the “ul-
traquantum” regime), with E (k) ∼ k−1 scaling and with no
classical counterpart. In this regime a thermal counterflow
is believed to play an important role in the dynamics. This
scaling was also found in numerical simulations with coun-
terflow [15,16], but more intriguingly also more recently in
simulations of BECs with an initial array of ordered vortices
and no apparent counterflow [17,18] as well as in simulations
of homogeneous superfluid turbulence [19].

Rotating BECs display many interesting regimes that con-
nect the flow dynamics and steady states with condensed
matter physics [20], including ordered vortex lattices [21,22]
and global modes and waves which have no classical coun-
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terparts [23–25]. In spite of this, or perhaps because of its
complexity, turbulence in rotating BECs has not been thor-
oughly studied so far. A recent numerical study considered
rotating turbulence in unitary Fermi gases [26], finding differ-
ences in the dissipation mechanisms between fermionic and
bosonic superfluids. However, a detailed comparison against
classical fluids is still lacking. In classical turbulence, rota-
tion generates a significant change in the system dynamics.
The flow becomes quasi-two-dimensional, a steeper-than-
Kolmogorov spectrum E (k) ∼ k−2 develops at small scales
[27–30] in which inertial waves play a central role, and at
large scales the flow self-organizes in columns with an inverse
cascade of energy [31,32].

For a detailed discussion on the theory of classical ro-
tating turbulence, see Ref. [33]. In the limit of very rapidly
rotating incompressible flows and in infinite domains, the
flow becomes strongly anisotropic and the energy is mostly
contained in inertial waves. This allows for wave-turbulence
descriptions of the system [33,34]. In this rapidly rotating
limit, the ∼k−2

⊥ energy spectrum results only for wave vectors
in Fourier space close to the plane perpendicular to the axis
of rotation, and the energy is transferred solely from large to
small scales. The inverse energy cascade [i.e., the self-similar
preferential transfer of energy towards large-scale modes and
in particular towards two-dimensional (2D) modes] vanishes
in the limit of angular velocity � → ∞ and of the domain
height H → ∞ [33]. For moderate rotation rates � and for
finite domain heights, the inverse energy cascade can be re-
covered (see [31,32] and a rigorous wave turbulence study in
[35]). It is important to note that the latter is the regime of
interest when comparing with rotating BECs, as condensates
in experiments are constrained by an external potential and
as for very large values of � a quantum phase transition
to a different many-body state that does not have a BEC is
expected [20].
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In this work we study turbulence in rotating BECs in the
rotating frame of reference. We show that rotating quantum
turbulence is fundamentally different from its classical coun-
terpart. While it displays, as in the classical case at moderate
rotation rates, an inverse cascade of energy at large scales,
at small scales it displays an anisotropic emission of waves
and an energy scaling compatible with the ultraquantum tur-
bulence regime.

II. METHODS

A. Rotating Gross-Pitaevskii equation

We solve numerically the Gross-Pitaevskii equation (GPE)
with a trapping potential V (r) in a rotating frame of refer-
ence. The rotating Gross-Pitaevskii equation (RGPE), which
describes the evolution of a zero-temperature condensate of
weakly interacting bosons of mass m under this conditions, is

ih̄
∂ψ (r, t )

∂t
=

[
− h̄2∇2

2m
+ g|ψ (r, t )|2 + V (r) − �Jz

]
ψ (r, t ),

(1)
where g is related to the scattering length, � is the rotation
angular velocity along z, and Jz is the angular momentum
operator. This equation can be obtained from the usual GPE by
applying the constant-speed time-dependent rotation operator
R(t,�) and redefining the order parameter in the rotating
frame as ψ = R(t,�)ψ ′, where ψ ′ is the wave function in
the nonrotating frame.

By means of the Madelung transformation [6], this equa-
tion can be mapped to the Euler equation for an isentropic,
compressible, and irrotational fluid in the nonrotating frame
of reference with an extra quantum pressure term. The trans-
formation is given by

ψ ′(r, t ) =
√

ρ(r, t )/meiS(r,t ), (2)

where ρ(r, t ) is the fluid mass density and S(r, t ) is the
phase of the order parameter such that the fluid velocity in
the nonrotating frame is v = (h̄/m)∇S(r, t ). The resulting
flow is thus irrotational except for topological defects where
the vorticity is quantized so that

∮
C v · dl = (2π h̄/m)n, with

n ∈ N, and where �0 = 2π h̄/m is the quantum of circula-
tion. In the rotating frame, the velocity is given by vR =
(h̄/m)∇S(r, t ) − �ẑ × r. Replacing this velocity in the Euler
equation or equivalently applying a Madelung transformation
to Eq. (1) results in the Euler equation for the fluid in the
rotating frame, with the extra Coriolis and centrifugal forces
(see also [36]).

Note that while classical rotating turbulence is typically
studied in incompressible regimes [28,33], BECs are diluted
gases and compressibility cannot be neglected. Nevertheless,
the weakly compressible case (which goes beyond the cases
considered in this study) could be of interest for the large-scale
dynamics of superfluid helium.

B. Waves in the nonrotating system

In the absence of rotation and for V (r) = 0, Eq. (1) be-
comes the usual GPE. If this equation is linearized around
an equilibrium with uniform mass density ρ, one finds the

Bogoliubov dispersion relation for sound waves

ωB(k) = ck
√

1 + (ξk)2/2, (3)

where c = (gρ/m)1/2 and ξ = h̄/(2gmρ)1/2 are the uniform
sound speed and coherence length, respectively [37].

In the presence of quantized vortices, using the Biot-Savart
law, one can find normal modes of the vortex deformation.
These correspond to a set of helicoidal Kelvin waves with the
dispersion relation

ωK (k‖) = 2cξ√
2r2

n

(
1 ±

√
1 + k‖rn

K0(k‖rn)

K1(k‖rn)

)
, (4)

where rn is the vortex radius, K0 and K1 are modified Bessel
functions, and k‖ is the wave number along the direction of the
vortex core. The radius rn can be estimated using theoretical
arguments or directly from the density profile in experiments
or simulations and is approximately equal to 2ξ [6,9,24].
Typically, the random orientation of quantized vortices in a
BEC results in a dependence of Eq. (4) on k instead of k‖. The
presence of rotation will align vortices preferentially along z,
making k‖ = kz. Finally, note that this dispersion relation is
the same as the classical one derived by Kelvin but dependent
on the quantum of circulation �0 = 2

√
2πcξ instead of on the

circulation associated with the total flow vorticity.

C. Waves in the rotating system

The presence of rotation modifies the system behavior.
Above a threshold in �, �c = (5h̄/2mR2

⊥) ln(R⊥/ξ ) (where
R⊥ is the condensate radius), the flow tries to mimic a solid-
body rotation [20]. As a result of the quantization, the flow
can only accomplish this by generating a regular array of
quantized vortices such that their total circulation equals that
of the rotation. The array is known as the Abrikosov lattice,
forcing the system into a 2D state. To obtain a solid-body-
like rotation, the density of vortices per unit area must be
nv = �/

√
2πcξ . Tkachenko [23] found that for an infinite

system [V (r) = 0] this lattice must be triangular to minimize
the free energy. When perturbed, this lattice has normal modes
called Tkachenko waves. For the triangular lattice the modes
follow the dispersion relation

ω2
T = 2C2

ρm

c2k4

4�2 + [4(C1 + C2)/ρm]k2
, (5)

where C1 is the compressional modulus and C2 the shear
modulus of the vortex lattice [38]. There are two Thomas-
Fermi limits for this expression. The so-called rigid limit
corresponds to small � compared to the lowest compression
frequency ck0, where k0 corresponds to the fundamental mode
of the trap. The soft limit corresponds to � larger than ck0, but
smaller than mc2/h̄. In this regime, the vortex radius is smaller
than the intervortex distance and compressibility cannot be
neglected. This is the regime we consider in this study, whose
dispersion relation can be approximated as (γ ≈ 4) [38]

ω
(s)
T =

[(
1 − γ

√
2�ξ

c

)
ξc3

8
√

2�

]1/2

k2. (6)

Both the Abrikosov lattice and Tkachenko waves were
experimentally observed in previous studies, such as [1].
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Although there are no laboratory studies of rotating quan-
tum turbulence in BECs, vortex lattices were observed as
metastable states in numerical simulations of rotating classical
turbulence in finite domains [32].

The Kelvin dispersion relation also suffers a modification
in the presence of rotation. For a single quantized vortex in
the rotating frame it becomes

ω
(r)
K = � + ωK (k‖). (7)

For many vortices, the presence of the vortex lattice also af-
fects this dispersion relation; expressions taking into account
this effect can be found in [24].

D. Energy, momentum, and vortex length

From the energy functional that defines the RGPE, the
total energy can be decomposed as E = Ek + Eq + Ep +
EV + Erot, with kinetic energy Ek = 〈ρv2〉/2, quantum energy
Eq = (h̄2/2m2)〈(∇√

ρ )2〉, internal (or potential) energy Ep =
(g/2m2)〈ρ2〉, trap potential energy EV = 〈V ρ〉, and rotation
energy Erot = −�〈ψ∗Jzψ〉. In all cases, the angular brackets
denote volume average. Using the Helmholtz decomposition√

ρv = (
√

ρv)(c) + (
√

ρv)(i) [6], where the superindices c
and i denote the compressible and incompressible parts, re-
spectively [i.e., such that ∇ · (

√
ρv)(i) = 0], the kinetic energy

can be further decomposed into the compressible E c
k and

incompressible E i
k kinetic energy components. It is worth

pointing out that this decomposition is used in classical
compressible flows [39]. For each energy, using Parseval’s
identity, we can build spatial spectra and spatiotemporal
spectra [9].

Another quantity of interest is the incompressible momen-
tum spectrum P(i)(k) [6]. It has been seen empirically that in
many flows and for sufficiently large wave numbers, P(i)(k)
can be obtained from the momentum spectrum per vortex
unit length of a single quantized vortex P(i)

s (k), summing it
as many times as the number of vortices in the system times
their lengths [6,10]. Thus, the total vortex length Lv can be
estimated as

Lv

2π
=

∫ kmax

kmin
P(i)(k)dk∫ kmax

kmin
P(i)

s (k)dk
, (8)

where kmin is a cutoff (kmin = 10 in this study, as the contri-
bution from smaller wave numbers is dominated by the trap
geometry) and kmax is the maximum resolved wave number.
From Lv , the mean intervortex distance is � = (V/Lv )1/2,
where V is the condensate volume.

E. Numerical simulations

We solve Eq. (1) under an axisymmetric potential V (r) =
mω2

⊥(x2 + y2)/2, in a cubic domain with periodic boundary
conditions along the rotation axis. The choice of the ax-
isymmetric potential corresponds to the elongated limit of a
cigar-shaped trap and is chosen to limit the contamination of
the trap geometry in the computation of axisymmetric turbu-
lent quantities. We use a Fourier-based pseudospectral method
with N3 = 5123 spatial grid points and the 2/3 rule for
dealiasing, and a fourth-order Runge-Kutta method to evolve
the equations in time, using the parallel code GHOST, which is

publicly available [40], in a cubic domain of size [−π, π ]L ×
[−π, π ]L×[−π, π ]L so that the edges have length 2πL. To
accommodate the nonperiodic potential and angular momen-
tum operator Jz = x∂y − y∂x in the Fourier base in x and y,
we smoothly extend these functions to make them (and all
their spatial derivatives) periodic [41], in a region far away
from the trap center such that the gas density in that region is
negligible. This also prevents the occurrence of the Gibbs phe-
nomenon near the domain boundaries. To do so, a convolution
between the Fourier transform of V (r) or Jz and a Gaussian
filter in kx and ky is computed. The width of the filter is
chosen empirically to minimize errors in V (r) and in Jz in the
region occupied by the condensate. In practice we use a width
σ = Nk/17, where k is the resolution in wave-number
space. With this choice, errors in the computation of V (r)
and Jz are almost constant and approximately equal to 10−7

in the region occupied by the condensate. Values of ω⊥ are
also chosen to keep the condensate confined in the region of
the xy plane satisfying these errors.

In the following we use dimensionless units. All pa-
rameters are obtained by setting c0 = (gρ0/m)1/2 = 2U and
ξ0 = h̄/(2gmρ0)1/2 = 0.017L, both defined using the refer-
ence mass density in the center of the trap ρ0 = 1M/L3.
These quantities are scaled with a unitary length L, a mass
M, and a typical speed U . Considering typical dimensional
values in experiments with L ≈ 10−4 m and c0 ≈ 2×10−1

m/s [4], this results in ξ0 ≈ 1.7×10−6 m [for the dispersion
relations shown below, the relations in Secs. II B and II C are
evaluated using mean values for c and ξ in the condensate,
obtained from the mean mass density in the trap with � = 0,
〈ρ(r, t )〉�=0].

It is important to note that we must prepare the system in
a disordered initial state to have turbulence. Without such an
initial state, a nonrotating condensate should result in an equi-
librium without quantized vortices and a rotating condensate
(with � > �c) should result in an Abrikosov lattice. More-
over, none of these states can be readily accessed from the
decay of the GPE or RGPE without proper initial conditions,
as these equations have no dissipation (see, e.g., [42]). To
obtain a turbulent state, we thus perturb an initial Gaussian
density profile with a three-dimensional and random arrange-
ment of vortices using the initial conditions described in [11]
such that the kinetic energy spectrum peaks initially at k ≈ 5
(i.e., approximately 1/5 of the domain size, leaving room
in spectral space for self-organization processes). To reduce
the emission of phonons and to let the system decay into an
initial condition compatible with the RGPE, we integrate this
initial state to a steady state using a rotating real advective
Landau-Ginzburg equation, which can be derived from Eq. (1)
following the method described in [6] for the nonrotating case.
The equation is

∂ψ

∂t
=

[
h̄∇2

2m
− g

h̄
|ψ |2 − V

h̄
+ �Jz

h̄
+ μ − iv · ∇ − m|v|2

2h̄

]
ψ,

(9)
where μ is the chemical potential and v the velocity field
generated by the random arrangement of vortices. Note this
equation corresponds just to the imaginary-time propagation
of the RGPE, with a local Galilean transformation correspond-
ing to the flow v. The final state of this equation is then used
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TABLE I. Parameters of all simulations: � is the rotation angular
velocity, �/ω⊥ is the ratio of � to the frequency of the potential,
��/�0 is the ratio of the circulation in � to the quantum of circu-
lation, �/�c is the ratio of � to the critical value �c, �/R⊥ is the
ratio of the intervortex length to the condensate radius, and Ro is the
Rossby number.

� (U/L) �/ω⊥ ��/�0 �/�c �/R⊥ Ro
0 0 0 0 0.47

0.6 0.29 12.6 2.27 0.55 6.9×10−2

0.8 0.37 16.8 3.03 0.44 5.6×10−2

1.0 0.47 23.0 4.12 0.31 5.4×10−2

1.2 0.60 38.4 6.63 0.39 7.5×10−2

1.3 0.55 27.8 5.02 0.48 5.1×10−2

1.5 0.56 25.1 4.66 0.31 4.5×10−2

as the initial condition for the RGPE. If we do not want a
turbulent initial state (e.g., to get an Abrikosov lattice), we can
integrate this equation with an initial Gaussian density profile
and v = 0.

Table I lists the parameters of all simulations. As already
mentioned, the value of ω⊥ is varied with � to keep R⊥
more or less the same. In all cases �/ω⊥ � 0.6, indicating
the system is in or near a mean-field Thomas-Fermi regime
[20,25,43], except when � = 0, � > �c (i.e., in the absence
of turbulence the system displays a steady state with an
Abrikosov lattice), and the circulation associated with the
rotation �� = ∫

� dS is much larger than �0. The intervortex
distance is smaller than R⊥ (the ratio �/R⊥ is often accessible
in experiments [1]) and a Rossby number defined as Ro =
u′/2�R⊥ (with u′ the rms velocity in the rotating frame),
which measures the inverse of the strength of rotation in
classical turbulence, is small in all our rotating BECs.

III. RESULTS

A. Inverse energy cascade

Figure 1 shows the time evolution of several energy com-
ponents for the simulations with � = 0 and 1.2. All energy
components display oscillations independently of �, which
are associated with a breathing mode of the condensate in the
trap (indeed, we verified that this frequency is proportional to
2ω⊥, as expected for such mode [44]). Looking at the slow
evolution, for � = 0 the incompressible kinetic energy de-
creases while the compressible and quantum energy increase.
This is the result of the free decay of the turbulence: The
incompressible kinetic energy is transferred towards smaller
scales and dissipated as sound waves. This results in the in-
crease of energy in compressible motions and in an increase of
inhomogeneities which increase the quantum pressure. How-
ever, for � = 1.2 all energy components oscillate around a
mean and approximately constant value, with a very small
increase of the quantum energy at early times. This indicates
that less energy in the flow is being dissipated. Where is this
energy going?

As shown in Fig. 2, in the presence of rotation energy
accumulates more and more at the largest available scale. The
figure shows the time evolution of the incompressible kinetic
energy at the gravest mode (k = 1) in all simulations. Leaving

FIG. 1. Time evolution of the compressible, incompressible, and
quantum energy for two simulations (with � = 0 for the lines with
stars and � = 1.2 for the lines without markers). All energies are
normalized by the initial (t = 0) incompressible kinetic energy of
each simulation.

aside the oscillations, note that for � = 0 energy in this mode
decays slowly, while for � > 0, the stronger the rotation is,
the more the energy in this mode increases with time. In other
words, the energy initially at k ≈ 5 is transferred to the k = 1
mode (i.e., to larger scales) instead of to larger wave numbers
(smaller scales). As a result, less of the kinetic energy in the
turbulent flow is available for dissipation as sound waves. This
results from the quasi-two-dimensionalization of the flow in
the presence of rotation, which results in an inverse energy
cascade even in quantum turbulence [11] or equivalently in
the condensation of the kinetic energy at the largest available
scale in a process akin to Onsager’s negative temperature
states of an ideal gas of 2D point vortices [45,46]. Thus, the
first distinguishing feature of rotating quantum turbulence is
its spontaneous evolution towards negative temperature states

FIG. 2. Incompressible kinetic energy at k = 1 in all simulations,
normalized by the initial (t = 0) incompressible kinetic energy in the
same Fourier shell.
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(a)

(b)

FIG. 3. Incompressible (green, top curves at k = 10 surrounding
the time average with the black solid line) and compressible (purple,
bottom curves at k = 10 surrounding the time average with the black
dashed line) kinetic energy spectra at different times (from light
to dark as time evolves and the time average over 2.5 breathing-
mode oscillations indicated with black lines) in a condensate with
(a) � = 0 and (b) � = 1.2. Several power laws are indicated as
references by solid lines. The inset shows the incompressible kinetic
energy spectrum of an Abrikosov lattice (i.e., a nonturbulent station-
ary solution). In all panels, vertical lines show characteristic wave
numbers: kint, associated with the intervortex distance; kho, associated
with the condensate size for a noninteracting gas; and kvinf and kvsup,
associated with two measures of the intravortex scale.

without the need for a change in the dimensionality of the
trap.

The inverse energy cascade can be further confirmed in
the spatial spectra in Fig. 3, which shows the incompressible
and compressible kinetic energy spectra at different times
in the simulations with � = 0 and 1.2. While in the former
case the incompressible spectrum peaks at all times at k = 4,
in the latter the same spectrum peaks at the smallest available
wave number.

B. Direct cascade subrange

For wave numbers k > 5, the spectra in Fig. 3 display
distinct power laws. When � = 0, the incompressible kinetic
energy displays a range compatible with Kolmogorov ∼k−5/3

scaling. The compressible kinetic energy displays an ∼k1

scaling compatible with an axisymmetric (2D) thermalization,
probably associated with the trap geometry. However, for
� = 1.2 the spectra are very different. The incompressible
direct cascade subrange is compatible with ∼k−1 scaling, as
in Vinen or ultraquantum turbulence. The inset in Fig. 3 also
shows as a reference the incompressible kinetic spectrum of

FIG. 4. Momentum spectrum for � = 0 and 1.2, compared with
the theoretical momentum spectrum per unit length of one vortex [6],
multiplied by the total vortex length in the simulation with � = 0.
The inset shows the intervortex wave number as a function of time
for all simulations.

an Abrikosov lattice with � = 1.2 (i.e., of a nonturbulent
stationary solution of the RGPE), to show that its spectrum
displays characteristic peaks and no clear ∼k−1 scaling. The
compressible kinetic spectrum in the rotating turbulent regime
also changes its scaling and becomes flatter, as if the energy
in sound modes reaches one-dimensional equipartition. As
references, the figure also shows four characteristic, averaged
in time, wave numbers: the intervortex wave number kint =
2π/�, the inverse harmonic trap length kho for noninteracting
bosons [47], and kvsup and kvinf, which correspond to the in-
verse lengths at which a single isolated vortex recovers 0.9
and 0.5, respectively, of the mass density ρ0 for � = 0. The
direct cascade subranges take place for k > kint and k < kvinf,
and the direct ∼k−1 scaling obtained with rotation is very
different from the ∼k−2 scaling observed in rotating classical
turbulence [28–30].

A k−1 scaling has been associated before with the presence
of a counterflow [12], with fluxless solutions [48], or with
disorganized vortex tangles [19,49]. In our case, the flux of
energy towards small scales in the presence of rotation is
substantially decreased, as evidenced by the accumulation
of energy at large scales and also by direct computation of
the flux (not shown). Also, the vortex tangles in the flow in
the presence of rotation change drastically. This is shown in
Fig. 4, which shows the spectrum of momentum P(i)(k) for
� = 0 and 1.2, together with a theoretical estimation of the
spectrum for a superposition of individual quantized vortices
with the same total length (for � = 0). For � = 0 the shapes
of the theoretical and observed momentum spectra are similar
for k � 5, but very different for � = 1.2. This indicates that
the vortex bundles indeed change in the presence of rotation.
Differences at large scales (associated with the flow and trap
geometry) can be expected in all cases; note in particular the
excess of momentum at small wave numbers for � = 1.2,
which again confirms the large-scale self-organization. Dif-
ferences at the smaller scales (k > kho) may be the result
of contributions coming from the momentum field ρv at the
boundary of the condensed cloud. Indeed, in the presence of
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FIG. 5. Density ρ(x, y, z = πL) (top) and three-dimensional vol-
ume rendering of quantized vortices in the central region of the trap
(bottom) for simulations with � = 1.2 at late times in (a) a stationary
regime and (b) the turbulent regime. Volume renderings were done
using the software VAPOR [50].

rotation there must be a net circulation generated by the vortex
tangle in the condensate, which should be balanced with the
circulation in a boundary layer. The inset in Fig. 4 shows the
evolution of kint over time, calculated from the momentum
spectrum. In all cases, on top of the breathing-mode oscilla-
tions, there is an initial increase of kint (and thus of Lv , the
total vortex length) associated with vortex stretching.

However, unlike homogeneous quantum turbulence, the
∼k−1 scaling of the incompressible kinetic energy in the
rotating case cannot be the result of unpolarized bundles of
vortices (i.e., of randomly and independently oriented vortices
[19,49]). As explained before, the vortices in the rotating
BEC must be polarized and more or less aligned in order
to approximate the solid-body rotation. This is illustrated in
Fig. 5, which shows a horizontal cut of the mass density and a
3D volume rendering of quantized vortices for an Abrikosov
lattice (i.e., in the nonturbulent stationary solution) and for
the turbulent regime (� = 1.2). The latter system tries to
mimic the former, with a quasi-2D bundle of vortices, albeit
with disorder in the vortices’ positions as well as with de-
formation in the z direction (the axis of rotation). The ∼k−1

scaling can thus be the result of the disorder in a quasi-2D
system. Let us define u(r) = (

√
ρv)(i). The Fourier transform

of the incompressible field generated by many quantum vor-
tices can be written, using the translation operator, as û(k) =∑

j e−ik·r j ûv (k), where ûv (k) is the Fourier transform of the
incompressible field generated by just one quantized vortex
and r j the position of the jth vortex. Then the power spectrum
of u is the angle average in Fourier space of

û∗(k) · û(k) =
∑

i j

e−ik·(ri−r j )|ûv (k)|2, (10)

where the asterisk denotes a complex conjugate. If the vortices
are organized in a lattice, the spectrum is dominated by the lat-
tice spatial ordering (as in the inset in Fig. 3). However, for a
disorganized state with random positions, the sum in Eq. (10)
reduces to the sum of the spectra of individual vortices, each
with an ∼k−1 scaling [6,19].

C. Wave emission

In nonrotating quantum turbulence, energy is transferred
towards smaller scales through vortex reconnection and a
Kelvin wave cascade [7] and is finally dissipated through

FIG. 6. Spatiotemporal mass spectra for simulations with increasing �, as a function of (a), (c), and (e) k⊥ (for kz = 0) and (b), (d), and
(f) kz (for kx = ky = 0) for (a) and (b) � = 0, (c) and (d) � = 1, and (e) and (f) � = 1.2. As a reference, the dispersion relations of sound and
soft Tkachenko waves are shown as a reference.
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FIG. 7. Spatiotemporal mass spectrum for � = 1.2 as a function
of k⊥ (for kz = 0) centered at two different times: (a) corresponds
to time t = 0.32 and (b) corresponds to time t = 3.68. Note the
pulsation between the positive and negative ω branches, as a mode
moves outward or inward. As a reference, sound and soft Tkachenko
dispersion relations are shown.

sound emission [51,52]. The study of the waves excited by
these flows can shed light on how energy is dissipated in
the presence of rotation and on the reasons for the different
scaling laws observed in Fig. 3.

Figure 6 shows the mass spatiotemporal spectrum [9] as a
function of the frequency ω, of k⊥ = (k2

x + k2
y )1/2 (for kz = 0),

or of kz (for k⊥ = 0), for � = 0, 1, and 1.2. Figures 6(a)
and 6(b) show these spectra when � = 0. Excitations accu-
mulate near the dispersion relation of sound waves. When
� increases, emission of waves changes drastically. In kz,
excitations still accumulate around sound waves: Turbulence
dissipates energy by emitting sound in the z direction. How-
ever, in k⊥ the dispersion relation shifts towards larger values
of k⊥ as � increases [Figs. 6(c) and 6(e)] and become closer
to soft Tkachenko waves.

These modes in k⊥ are not stationary. Figure 7 shows
two spatiotemporal mass spectra as a function of k⊥ in the
simulation with � = 1.2, for both positive and negative fre-
quencies. Note the pulsation between positive and negative
ω(k⊥) branches as time evolves. In other words, modes are
of the form exp[i(k⊥ · r⊥ − ωt )] and exp[i(k⊥ · r⊥ + ωt )],
respectively, or equivalently the modes collectively propagate
outward or inward. Interestingly, the alternation of energy be-
tween the positive and negative ω(k⊥) branches is not visible
in the simulation with � = 0. Thus, it must represent a global
deformation of the vortex lattice on top of which turbulence
develops (and also feeds with energy), the breathing mode
possibly being part of it, and which can give a mechanism

(a) (b)

FIG. 8. Spatiotemporal spectrum of (a) the incompressible ki-
netic energy E (i)

k (k⊥, ω) and (b) the compressible energy E (c)
k (k⊥, ω)

(for kz = 0) in a condensate with � = 1.2. As a reference sound, soft
Tkachenko wave and Kelvin wave dispersion relations are shown.
The solid-body mean rotation is removed from these spectra.

FIG. 9. Incompressible kinetic energy spectrum (for � = 1.2)
as a function of k⊥ for modes with kz = 0 (top spectrum) and as a
function of kz for modes with k⊥ = 0 (bottom spectrum), normalized
by the incompressible energy in (k⊥ = 1, kz = 0). Power laws and
characteristic wave numbers are indicated as references.

for energy dissipation as vortices move through this pulsation
(i.e., it could act as an effective counterflow).

Waves manifest not only in the mass spatiotemporal spec-
trum. The spatiotemporal spectra of the incompressible and
compressible kinetic energies as a function of k⊥ (for kz = 0)
are shown in Fig. 8, computed after turbulence is totally devel-
oped and over half a breathing-mode period. The spectra are
computed after removing the solid-body rotation. The incom-
pressible energy shows excitations at lower frequencies, near
the Kelvin and soft Tkachenko dispersion relations, and with
excitations at frequencies close to the soft Tkachenko modes
observed in the mass spectrum in Fig. 6, suggesting these
modes correspond in part to inward or outward incompress-
ible deformations. In the compressible energy, excitations are
approximately compatible with sound modes and with some
power in Tkachenko frequencies.

Anisotropic sound (or compressible mode) emission was
observed in experiments of nonturbulent rotating BECs [53].
In our case they seem to provide different mechanisms for
the energy dissipation, along different directions in spectral
space. Figure 9 shows the incompressible kinetic spectrum
e(i)

k (k⊥, kz ) for modes with k⊥ = 0 or kz = 0 and for � = 1.2.
These spectra can be computed from the full spatiotemporal
spectrum E (i)

k (k, ω) by integrating over all frequencies. In the
direction of k⊥ the spectrum displays a scaling compatible
with ∼k−2

⊥ in a broad range of wave numbers (compatible with
predictions from the theory of classical rotating turbulence
[33]), while along kz the spectrum displays an ∼k−5/3

z com-
patible scaling. This scaling is visible at wave numbers above
and below the intervortex wave number and thus is probably
the result of vortex reconnection with some contribution of a
Kelvin wave cascade.

IV. CONCLUSION

Rotating quantum turbulence is fundamentally different
from both nonrotating quantum turbulence and classical rotat-
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ing turbulence. The quasi-two-dimensionalization of the flow
results in an inverse energy transfer, as in quasi-2D quantum
turbulence [11] and in classical rotating turbulence [31]. This
inverse transfer can be also interpreted as a negative tem-
perature state, as predicted for 2D point vortices [54] and
observed in BEC experiments [45,46]. However, the small
scales display a scaling different from all other regimes.

An ∼k−1 power law at intermediate wave numbers in the
incompressible kinetic energy is reminiscent of the scaling
of Vinen turbulence, albeit in this case there is no obvious
counterflow in the system. However, the system displays very
little transfer of energy to small scales (most kinetic energy
is transferred to larger scales) and a different arrangement
of quantized vortices. This, together with a pulsation of the
condensate inward and outward (with the associated friction
of the vortices with this flow), can provide a way for the
system to dissipate energy in the perpendicular direction as
suggested by the spatiotemporal spectra. Along the axis of

rotation, energy is dissipated instead as sound waves. This
results in a thermalization of one-dimensional sound modes,
with a flat spectrum of the compressible kinetic energy, and
distinct scaling of the incompressible energy when individual
modes are studied: an ∼k−5/3

z subdominant scaling for modes
with k⊥ = 0 and an ∼k−2

⊥ dominant scaling for modes with
kz = 0. A similar mechanism may be also present in recent
simulations of quantum turbulence in BECs [17,18], in which
cigar-shaped traps and a few multicharged aligned vortices are
studied.
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