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Reconstructing social sensitivity from evolution of content volume in Twitter
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We set up a simple mathematical model for the dynamics of public interest in terms of media coverage and
social interactions. We test the model on a series of events related to violence in the US during 2020, using
the volume of tweets and retweets as a proxy of public interest, and the volume of news as a proxy of media
coverage. The model successfully fits the data and allows inferring a measure of social sensibility that correlates
with human mobility data. These findings suggest the basic ingredients and mechanisms that regulate social
responses capable of igniting social mobilizations.
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I. INTRODUCTION

The continuous expansion of the digital environment cre-
ates new and faster ways to exchange information and
opinions [1]. At the same time, it also provides access to
unprecedented amounts of data, allowing the quantitative
investigation of the forces that underlie the diffusion of in-
formation [2] and the formation of public interest [3,4].

Dynamical systems have been particularly successful in
identifying collective mechanisms that give rise to public
opinion [5,6]. Using variables that describe the expansions
and contractions of content volume, these models explain
empirical data remarkably well [7].

In the domain of social media, the emergence of extreme
opinions that arise from moderate initial conditions has been
recently disclosed [8,9]. But extreme social reactions appear
also beyond the domain of opinions and debates. Normally,
people react to the news by sharing information and dis-
cussing opinions. In a few occasions, however, and under
heightened social sensitivity, a reactive state may emerge giv-
ing rise to street manifestations, protests, and riots [10] that
have been extensively studied and modeled [11,12].

Is it possible to extract a measure of social sensitivity
from content volume coming from digital media? Here we
hypothesize that the social sensitivity regulates the dynam-
ics of the public reacting to the media coverage of massive
events. To test this hypothesis, we set up a deliberately simple
model for public interest modulated by media coverage and
social interactions [13–16] that allows us to infer a measure
of social sensitivity. We capitalize on the paradigmatic model
developed by Granovetter [17] based on the concept of crit-
ical mass, which represents the fraction of interested people
needed to induce interest to the rest of the population. We
investigate this in connection with a series of highly sensitive
events that took place in the US during 2020.
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II. DATA

The Black Lives Matter movement [18] encompasses
events of different nature and volume of activity in the social
media [Fig. 1(a)]. Here we analyze a subset of the events
well covered by media sources, as displayed in chronolog-
ical order in Fig. 1(b). The time evolution of these events
is shown in Fig. 1(c). Representing the public interest, we
show in black the volume of tweets and retweets containing
the keywords George Floyd, Breonna Taylor, Jacob Blake,
Rayshard Brooks, Ahmaud Arbery, and Andrés Guardado.
Red filled curves correspond to the volume of tweets from the
29 most followed official media accounts containing the same
keywords [19].

Besides a general resemblance of the public interest (black)
and media coverage (red) across events, the traces are not
merely copies of each other. One common feature is that the
public interest grows faster than coverage at the events’ onset.
Here we propose that this effect is explained by the heightened
social sensibility that characterizes these type of events. For
this purpose we set up a model based on the one proposed by
Granovetter, detailed in the next section.

III. MODEL

Our approach is grounded in the Granovetter model [17],
originally proposed to explain the emergence of riots. In this
model, agents adopt a binary state s, which we interpret as
interested (s = 1) or noninterested (s = 0) in the event. The
dynamics of the system is described in terms of the pub-
lic interest, the fraction p = ∑N

i si/N , where N is the size
of the system. Each agent is characterized by a threshold
τi, which is the fraction of interested agents needed to in-
duce interest on the agent. Thresholds are random variables
whose cumulative distribution S(p) = P(τ < p) is interpreted
here as social engagement, given that it represents the frac-
tion of agents that become active due to their threshold lies
below p.
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FIG. 1. Evolution of public interest and media coverage. (a) Peak values of tweets and retweets for events related to the Black Lives Matter
movement. Dashed square shows those with enough statistics, limited by the amount of media tweets (in the case of Guardado is about ten
tweets for the media accounts sampled). (b) Time traces of the volume of tweets and retweets, in chronological order. (c) Time traces of the
volume of tweets and retweets [black circles, same data as (b)] and media accounts tweets (filled area).

Assuming that thresholds are normally distributed τ ∼
N (μ, σ ), we have:

S(p|μ, σ ) = 1√
2πσ 2

∫ p

−∞
e− (τ−μ)2

2σ2 dτ. (1)

When μ is low, small groups can trigger the interest to the
rest of the system. On the contrary, high values of μ would
require a bigger fraction of interested people to induce interest
to the rest of the population. We therefore identify the quantity
1 − μ as the social sensitivity of the population.

In his original model, Granovetter described the dynamics
of the public interest p regardless of the influence of the
media. To include this, we propose a modified model that
reads (see details in Materials and Methods):

1

γ

d p

dt
= −p + eC(t ) + (1 − e) S[p|μ(t ), σ ]. (2)

When the system is not exposed to the media (e = 0), we
recover the original Granovetter model, in which the dynamics
of the public interest p is driven by the social engagement
S with a time scale controlled by γ . On the contrary, when
exposure to the media is maximum (e = 1), the public interest
is only driven by the media coverage C. In the general case
e ∈ (0, 1), media coverage acts as an external field that modu-
lates the public interest. Of course, media coverage and public
interest are far from being independent of each other. On
the contrary, they feed one another; in mathematical terms, a
closed model would require another equation for the evolution
of media coverage modulated by the public interest. Here we

tackle this by feeding Eq. (2) with the experimental time traces
of media coverage C(t ).

Let us summarize the principal components of our model.
On the one hand, we have two variables that quantify the
volume of opinions and information shared by people: the
public interest p and the media coverage C. On the other
hand, we have the social sensitivity (1 − μ) and the social
engagement S, two variables that describe macroscopic inter-
actions among people. In the next section we show that the
social variables can be reliably derived from the collected data
shown in Fig. 1(c).

IV. RESULTS

To reconstruct the social variables, we integrate Eq. (2)
using the volume of tweeted news as a proxy for the coverage
C(t ). We seek for the functions S(t ) that minimize the differ-
ence between the resulting public interest and the volume of
tweets and retweets. In Fig. 2 we show the best fitting curves
for the public interest (top panels) and the reconstructed social
engagement and social sensitivity (bottom panels, gray and
red curves, respectively).

The two social variables are of a different nature. In
fact, while the engagement S(t ) is a threshold-based vari-
able whose dynamics can be expected to be fast, 1 − μ(t )
represents the slower, more gradual buildup of social sensi-
tivity across the whole population. Accordingly, we find that
this variable changes appreciably over periods of ∼ 15 days,
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FIG. 2. Data fitting allows inferring social interactions. Top: Points correspond to public interest (tweets and retweets) along with the best
fitting curves p(t ) (blue) obtained with the model of Eqs. (2) and (1). Bottom: Social sensitivity 1 − μ(t ), normalized to the event of mayor
interest, which in this case is the murder of George Floyd. When the social sensitivity is high, more people become susceptible to the event. In
gray lines the normalized social engagement S(t ) = S[p|μ(t ), σ ] are also plotted.

which is, as expected, longer than the typical time scales of
the media coverage and public interest (see Methods).

A summary of the fitting parameters is found in Table I.
We find that exposure is rather stable across events, e ∼
0.4. This says that although media coverage is important,
people are mainly influenced by the social environment in
these kinds of events. Different from exposure, the time scale
γ −1 decreases when the events accumulate over time. This
is also expected, since the first four events (Arbery, Floyd,
Brooks, and Guardado) occurred one immediately after the
other [Fig. 1(b)], speeding up the dynamics of public interest
along the sequence. After a pause of about two months, the
same speeding up effect is seen for Taylor, which occurred
right after Blake.

To quantify the performance of our model, we compare
its goodness of fit with two basic models: one in which cov-
erage is predicted by public interest alone, and the opposite
one where public interest is predicted by coverage alone (see
Methods). In Fig. 3 we show the mean-square errors for the
three models. Comparison of the basic models shows that
public interest tends to predict coverage better than coverage
predicts public interest. This is also apparent from the time
series [Fig. 1(c)], where the response of the media is slower
with respect to the public interest at the onset of the events.
Our model performs better than the basic models, explaining
this delay by an increase in the social sensitivity 1 − μ(t ).

TABLE I. Fitted parameters. Events are in chronological order
(Fig. 1). In all cases σ = 0.2. Intervals correspond to the 95% confi-
dence levels (see Data Fitting section for more details).

(×10−3 days) Exposure e Timescale γ −1

Arbery 0.35 (0.31, 0.39) 59 (36, 100)
Floyd 0.42 (0.40, 0.45) 36 (22, 59)
Brooks 0.47 (0.47, 0.56) 13 (12, 13)
Guardado 0.25 (0.25, 0.26) 10 (10, 16)
Blake 0.30 (0.26, 0.31) 22 (17, 100)
Taylor 0.47 (0.46, 0.54) 13 (10, 16)

The inferred dynamics of the social variables are shown in the
bottom panels of Fig. 2.

Bottom panels of Fig. 2 show periods of time of increasing
social sensitivity, which leads to a sudden increase of the
social engagement, when a macroscopic fraction of agents
becomes interested in the events. If this dynamics is accurate,
we should expect an impact beyond the digital environment.
To investigate the emergence of measurable collective activity
associated to an increase in social sensitivity, we collected
mobility measures across the US territory [20]. In Fig. 4 we
show attendance to recreation places, groceries, pharmacies,
and public transport stations in the counties and periods of
time when the events took place. We find different degrees
of correlation between the social sensitivity and mobility pat-
terns for the most populous events using a lag of three days.
In the case of Floyd, social sensitivity correlates with all the
four mobility measures, with a peak in the mean Spearman’s
rank coefficient r = −0.82; in the case of Taylor, r = −0.47
for two of the mobility measures; for Blake, r = −0.48 and
only one measure (p < 0.05 in all cases). The last three events
were less massive, and we find no significant correlations with
social sensitivity accordingly.

Taken together, these results suggest that our low-
dimensional approximation of the Granovetter model captures
the basic ingredients that regulate social responses of very
different magnitudes, which are indeed capable of igniting
social mobilizations. The model implements the hypothesis
that agents become involved from media exposure and also
from the presence of a critical mass of interested agents in the

TABLE II. Variables and parameters of the model.

Variable/Parameter Interpretation

p(t ) Public interest
C(t ) Media coverage
S(p(t )) Social engagement
1 − μ(t ) Social sensitivity
e Media exposure
γ Timescale
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FIG. 3. Performance of the model. We compare the goodness of
fit with two basic models across the six events analyzed here. In one
model, public interest alone predicts coverage (p → C) and in the
other, coverage alone predicts public interest (C → p). Our model
explains the data better than both basic models with the same number
of fitting parameters.

system, which leads to characterizing the social sensitivity of
the population.

V. DISCUSSION AND CONCLUSIONS

Fluctuating interactions among people in massive social
events are difficult to quantify. In this work we set up a simple
mathematical model that allows us to infer how social inter-
action influences volume content representing public interest
knowing media coverage. We then test our model on Twitter
volume data related to the Black Lives Matter movement.

We find that this formulation fits the experimental series
better than two models in which public interest and coverage
explain each other, in absence of social interactions. Crucially,
we show that the evolution of the social sensibility correlates
with variations in mobility data due to protests and riots during
the events that draw the majority of the attention, presumably
the most moving ones.

A possible limitation of our model is related to the assump-
tion of uniform mixing [21] in pairwise interaction, given that
public interest time series were collected from Twitter, which
is indeed highly structured. The topology of social networks
plays a key role when dealing with opinions of different sign,
which give rise, for instance, to the emergence of echo cham-
bers [22,23]. In our work, however, we are dealing with the
volume of keywords, regardless of ideological leanings. We
show that, at least for the highly sensitive events analyzed
here, the structure of the network can be disregarded, in line
with similar models that assume uniform mixing and success-
fully explain the dynamics of time series related to different
hashtags in Twitter [5–7]. Simple as it is, our model provides
direct and interpretable measures of social engagement.

We are witnessing a rapid development of algorithms that
are capable of organizing massive amounts of data based on
statistical relationships. However, this growth has not been
matched with a development of dynamical models capable
of generalize our knowledge [24]. We hope that this work
contributes to our understanding of public interest, showing

the potential of a simple model to explain social reactions
within and outside the digital environment.

VI. MATERIALS AND METHODS

A. Corpus of data

We collected all the available tweets in English containing
the keywords George Floyd, Breonna Taylor, Jacob Blake,
Rayshard Brooks, Ahmaud Arbery, Andrés Guardado, Sean
Monterrosa, Daniel Prude, Deon Kay, Walter Wallace Jr.,
Dijon Kizzee, Andre Hill, Dolal Idd, Marcellis Stinnette, and
Hakim Littleton, in a period of one month around a significant
event related to each topic.

Tweets were collected using the Twitter API v2 [25].
We also collected the tweets with the same keywords
from the group of most followed news accounts in
Twitter [26]: @cnnbrk, @nytimes, @CNN, @BBCBreak-
ing, @BBCWorld, @TheEconomist, @Reuters, @WSJ,
@TIME, @ABC, @washingtonpost, @AP, @XHNews,
@ndtv, @HuffPost, @BreakingNews, @guardian, @Fi-
nancialTimes, @SkyNews, @AJEnglish, @SkyNewsBreak,
@Newsweek, @CNBC, @France24_en, @guardiannews,
@RT_com, @Independent, @CBCNews, @Telegraph [27].

Mobility measures correspond to the US County associated
to each event. From all mobility-related time series we extract
the trend to compare with social engagement.

We provide here a brief context of the analyzed events.
George Perry Floyd Jr. was murdered by a police officer
in Minneapolis (Ramsey County), Minnesota, on May 25,
2020. Breonna Taylor was fatally shot in Louisville (Jefferson
County), Kentucky, on March 13, 2020. On September 23,
several protests occurred after charging decision announced
in Taylor’s death. Jacob S. Blake was shot and seriously in-
jured by a police officer in Kenosha County, Wisconsin, on
August 23. Rayshard Brooks was murdered on June 12, 2020
in Atlanta (Fulton County), Georgia. Ahmaud Arbery was
murdered on February 23, 2020 in Glynn County, Georgia.
The case became resonant after the viralization of a video
about the shooting that caused his death on May 7. Andrés
Guardado was killed by a deputy sheriff in Los Angeles
County, California, on June 18, 2020.

B. Data fitting

We first normalized both public interest p and media cover-
age C respect to their peak values. To find a timescale for the
dynamics of the social sensitivity, we parameterized μ(t ) as
a cubic spline of N equally spaced nodes within a one-month
period. The fitting error either falls abruptly at N = 5 (Floyd
and Blake) or does not change significantly in the range 4 �
N � 9 (Taylor, Brooks, Arbery, and Guardado). We therefore
fixed the value N = 5, for which μ changes appreciably on a
timescale of ∼15 days.

The media coverage was interpolated in order to obtain
a continuous signal. Interpolation and numerical integration
of Eqs. (1) and (2) were performed with the library SCIPY

[28]. Parameter fitting was performed using a grid search in
parameter γ ∈ [10−1–120] in combination with a minimiza-
tion routine for a the rest of the parameters (e ∈ [0, 1] and
nodes of μ ∈ [−1, 2]). The routine consists in integrating the
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FIG. 4. Correlations between social sensitivity and mobility patterns. Social sensitivity (red) and standardized mobility observables of the
corresponding county. R & R: retail and recreation; G & P: groceries and pharmacies; Parks: public parks; Transit: transit in public transport
stations (Parks and Transit not shown for Blake due to lack of data). All mobility measures were shifted −3 days and inverted for visualization
purposes.

model and varying the parameters until a convergence criteria
is reached. We used sequential least-squares programming for
bounded problems in SCIPY to minimize the mean-square error
between the output of the model and data.

Confidence intervals provided in Table I and shown in
Figs. 2 and 4 correspond to fitting solutions with an error up
to 10% of the best solution in each case, except for Taylor and
Brooks, where solutions with a fitting error up to 50% of the
best solution were reported.

C. Basic models

We compare the goodness of fit with two basic models. In
one of them, coverage is predicted by public interest p → C
and in the other it is the other way around, C → p. Both basic
models were set up to be nonlinear functions approximated by
order seventh polynomials, C(t ) = ∑7

n=1 an pn(t ) and p(t ) =∑7
n=1 bn Cn(t ), without zeroth-order term (a0 = b0 = 0). In

this way, the basic models match the number of fitting pa-
rameters of the model [e, γ and μ(ti ), with 1 < i < 5].

D. Analytical formulation of the model

Equation (1) is an analytical approximation of the
threshold-based model proposed by Granovetter [17] with
the addition of an external field. In this model, agents adopt
a binary state s, which we interpret as interest (s = 1) or
noninterest (s = 0) in a given topic. The dynamics of the sys-
tem is described in terms of the fraction of interested agents
p = ∑

i si/N , where N is the size of the system. The agents
have also an associated threshold τi, which is the fraction of
interested agents needed to induce interest on agent i. The
thresholds are random variables between 0 and 1 taken from a
probability density f (τ ). On the other hand, the external field
is introduced through a parameter C ∈ [0, 1] independent of
the state of the system.

With these ingredients, the dynamics of the system is as
follows: the fraction of interested agents p can change because
a random agent i interacts with the media with probabil-
ity e and become interested (si = 1) in a given topic with
probability C or disinterested (si = 0) with probability 1 − C;

otherwise, with probability 1 − e, the agent observes the sys-
tem. In this last case, if the fraction of interested agents is
greater than the threshold of the agent (p � τi), then it be-
comes interested (si = 1); otherwise, it becomes disinterested
(si = 0). Agents’ states are synchronously updated, indepen-
dently from their initial state.

Following Ref. [29], we derive the analytical expression
for the dynamics of p shown in Eq. (1). Let q(pk, t ) be the
probability that the fraction of interested agents at time t is
pk = k/N . The master equation for q(pk, t ) is

dq(pk, t )

dt
= Q(1|pk−1)q(pk−1, t ) + Q(0|pk+1)q(pk+1, t )

− Q(1|pk )q(pk, t ) − Q(0|pk )q(pk, t ),

where Q(1|pk ) y Q(0|pk ) are the transition probabilities that a
given agent become interested or disinterested given pk . These
probabilities are given by:

Q(1|pk ) = (1 − pk )[(1 − e)S(pk ) + eC]

Q(0|pk ) = pk[(1 − e)(1 − S(pk )) + e(1 − C)],

where S(pk ) is the threshold cumulative distribution
function S(pk ) = ∫ pk f (τ )dτ , which by definition is
the fraction of agents whose threshold is below pk

[S(pk ) ≡ P(τ < pk )].
In the limit of infinite population (N → ∞), pk → p,

where p is now the fraction of interested agents and a continue
variable ∈ [0, 1]. In this limit, the following approximations
are taken:

pk±1 → p ± η

q(pk±1, t ) → q(p, t ) ± ∂q(p, t )

∂ p
η

S(pk±1) → S(p) ± ∂S(p)

∂ p
η
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with η = 1/N . Replacing the above expressions in the master
equation and neglecting terms of η2 order, we obtain:

∂q(p)

∂t
= − ∂

∂ p
[(−p + S(p) − eS(p) + eC)q(p, t )]η.

For a well-defined initial condition, q(p, 0) = δ(p − p0) [δ(x)
is the Dirac’s delta] and rescaling time t → Nt , the solution
of the above equation (pages 53–54 of Ref. [30]) is given by:

d p

dt
= −p + (1 − e)S(p) + eC.

In particular, if the thresholds are normally distributed with
mean μ and dispersion σ , S(p) ≡ S(p|μ, σ ). Finally, by
adding a constant γ that allows to adjust the timescale, Eq. (1)
is obtained.

Equation (1) has equilibria given by peq = (1 −
e)S(peq ) + eC The stability of these points is given by

the sign of:

d ṗ

d p
|peq =

[
−1 + (1 − e)

dS(p)

d p

]
peq

,

where it can be observed that the parameter C plays no role in
setting the stability. As reference, we summarize here all the
variables and parameters of the model mentioned during the
paper:
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