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WEIGHTED DISCRETE HARDY INEQUALITIES ON

TREES AND APPLICATIONS

FERNANDO LÓPEZ-GARCÍA AND IGNACIO OJEA

Abstract. In this paper, we study certain inequalities and a
related result for weighted Sobolev spaces on Hölder-α domains,
where the weights are powers of the distance to the boundary. We
obtain results regarding the divergence equation’s solvability, and
the improved Poincaré, the fractional Poincaré, and the Korn in-
equalities. The proofs are based on a local-to-global argument that
involves a kind of atomic decomposition of functions and the va-
lidity of a weighted discrete Hardy-type inequality on trees. The
novelty of our approach lies in the use of this weighted discrete
Hardy inequality and a sufficient condition that allows us to study
the weights of our interest. As a consequence, the assumptions on
the weight exponents that appear in our results are weaker than
those in the literature.

1. Introduction

Let tUtutPΓ be a certain partition of a bounded domain Ω Ă R
n.

Given f P L1pΩq with vanishing mean value, we decompose it into the
sum of a collection of functions tftutPΓ, where ft is supported on Ut

and has vanishing mean value. This kind of decomposition was applied
by Bogovskii in [1] using a finite partition to extend the solvability of
the divergence equation from star-shaped domains with respect to a
ball to Lipschitz domains. In the articles [2] and [3], the authors used
a similar decomposition where the partition of the domain is count-
able. In the case where the partition is not finite, it is required to
have an upper bound of the sum of the norms of tftutPΓ by the norm
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of the function f . In [2], the decomposition is developed for John do-
mains, and the estimation of the norms is based on the continuity of
the Hardy-Littlewood maximal operator. In [3], the authors considered
more general domains and the decomposition is based on the validity of
a certain Poincaré-type inequality. This decomposition can be used for
extending to general domains several results that are known to hold on
simpler ones, e.g.: the solvability of the divergence equation, and the in-
equalities Poincaré, improved Poincaré, fractional Poincaré and Korn.
The decomposition presented here is based on the one developed in [4]
where a continuous Hardy-type inequality is applied for proving the
estimation for the norms. Moreover, in [4] the partition of the domain
is indexed over a set Γ with tree structure, which is strongly related
to the geometry of the domain. Other references where variations of
these techniques are used are: [5, 6, 7, 8, 9].
Also, in [10, 11] a similar decomposition is used on cuspidal domains

for proving weighted Korn inequalities. In those papers, thanks to the
geometry of the domain, the partition is indexed over N (in other words,
it is formed by a chain of subdomains). The discrete weighted Hardy-
type inequality [12, inequality (1.102), page 56] is used for proving the
estimate of the norms.
In this work, we are interested in having a better understanding of

the weights that make these inequalities valid. We apply a discrete
approach, similar to the one used in [10, 11], i.e.: our partition of the
domain allows us to regard the weights as essentially constant over each
sub-domain and a discrete Hardy-type inequality is used for estimating
a weighted norm of the sum of tftu in terms of another weighted norm
of f . On the other hand, we recover the tree structure introduced in
[4], which allows the method to be applied to a larger class of domains.
Hence, we need a discrete weighted Hardy-type inequality, similar to
[12, inequality (1.102)], but for sequences indexed over trees. For this
inequality to hold, necessary and sufficient conditions on the weights
can be derived from the continuous case, treated in [13]. However, as
we shall discuss below, these conditions are very hard to check for our
examples. Hence, we prove a sufficient condition which is somehow a
natural extension of the classical condition for sequences and is much
easier to verify.
The paper is organized as follows: Section 2 introduces the weighted

discrete Hardy-type inequality that is applied later, and provides two
conditions on the weights that imply its validity. In Section 3, we
present our decomposition of functions with vanishing mean value on
arbitrary bounded domains. We also show how the Hardy-type in-
equality stated in the previous section can be used to obtain an upper
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bound of the norms of the functions proposed in the decomposition. In
Section 4, we study the decomposition of functions defined in Section 3
on bounded Hölder domains. In Section 5, we prove several interesting
results that are obtained as a consequence of the decomposition. In
particular, we prove the solvability of the divergence equation and im-
proved Poincaré, fractional Poincaré and Korn inequalities. All these
results are stated on weighted Sobolev spaces on bounded Hölder do-
mains, where the weights are powers of the distance to the boundary.
In all cases, the conditions imposed on the exponents of the weights
are less restrictive than the ones in the literature. In Appendix A, we
derive from [13] a necessary and sufficient condition for the validity of
the weighted discrete Hardy-type inequality treated in this work. This
condition is included in the manuscript for general knowledge, but it
is not used in our applications.

2. A weighted discrete Hardy inequality on trees

In this section, we study a certain weighted Hardy-type inequality
on trees, and give two conditions for its validity. The first condition
is sufficient and necessary and it follows from [13] (see Theorem 2.2).
The second condition is sufficient, and it may also be necessary, but
we haven’t proven it. We are especially interested in this second one
because its verification in our examples is easier than the first one.
Throughout the paper 1 ă p, q ă 8, with 1

p
` 1

q
“ 1, unless otherwise

stated.
A tree is a graph pV,Eq, where V is the set of vertices and E the

set of edges, satisfying that it is connected and has no cycles. A tree
is said to be rooted if one vertex is designed as root. In a rooted tree
pV,Eq, it is possible to define a partial order “ĺ” in V as follows: s ĺ t

if and only if the unique path connecting t to the root a passes through
s. The parent tp of a vertex t is the vertex connected to t by an edge on
the path to the root. It can be seen that each t P V different from the
root has a unique parent, but several elements (children) on V could
have the same parent. We assume that each vertex has a finite number
of children. Note that two vertices are connected by an edge (adjacent
vertices) if one is the parent of the other one. We say that a set of
indices Γ has a tree structure if there is a set of edges such that pΓ, Eq
is a rooted tree.
Trees can be regarded as continuous or as discrete. In a continuous

tree, the edges are segments on the plane, and one can define func-
tions taking values over them, whereas the set of vertices has vanishing
measure. On the other hand, on discrete trees, the edges are just links
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between the vertices that define a partial order. In this case, sequences
indexed on the vertices can be defined. There is a natural one to one
map between the edges and the subset of vertices Γztau. It is given by
the association of the edge ptp, tq with the vertex t. This map implies
an association between the continuous and discrete versions of a given
tree. Therefore, we define:

Γ˚ “ Γztau.

We will work with discrete trees which are derived from a continuous
setting, so Γ˚ is the natural environment for stating our Hardy-type
inequality. It is important to notice, however, that the same results
that we present here on Γ˚ can be easily extended to Γ.
Given a rooted tree Γ, we consider collections of real values indexed

over Γ˚, named in this work as Γ˚-sequences. We define ℓppΓ˚q the
space of collections b “ tbtutPΓ˚ such that:

}b}p “

˜
ÿ

tPΓ˚

b
p
t

¸ 1

p

ă 8.

We also define Pt the path from the root a to t:

Pt :“ ts : a ă s ĺ tu,

and St the shadow of t:

St :“ ts P Γ˚ : s ľ tu.

Given positive Γ˚-sequences (i.e. weights) u “ tututPΓ˚ and v “
tvtutPΓ˚ , we introduce the inequality:

˜
ÿ

tPΓ˚

ˇ̌
ˇ̌u´1

t

ÿ

sľt

bs

ˇ̌
ˇ̌
q
¸ 1

q

ď C

˜
ÿ

tPΓ˚

ˇ̌
btv

´1

t

ˇ̌q
¸ 1

q

, (2.1)

for every b “ tbtutPΓ such that bv´1 P ℓqpΓ˚q.
Notice that the following dual version to (2.1) is equivalent.

Lemma 2.1. Inequality (2.1) holds if and only if

˜
ÿ

sPΓ˚

ˇ̌
ˇ̌
ˇvs

ÿ

aătĺs

dt

ˇ̌
ˇ̌
ˇ

p¸ 1

p

ď C

˜
ÿ

sPΓ˚

|dsus|
p

¸ 1

p

(2.2)

is satisfied, for every d “ tdtutPΓ such that du P ℓppΓ˚q. Moreover, the
optimal constants for both inequalities are equal to each other.



DISCRETE HARDY INEQUALITIES ON TREES AND APPLICATIONS 5

Proof. The best constant C for (2.1) can be characterized by duality
as:

C “ sup
δ:}δ}p“1

sup
b:}bv´1}q“1

ÿ

tPΓ˚

u´1

t

´ ÿ

sľt

bs

¯
δt

“ sup
b:}bv´1}q“1

sup
δ:}δ}p“1

ÿ

sPΓ˚

bs

´ ÿ

aătĺs

δtu
´1

t

¯
.

Now, taking d “ δu´1 and β “ bv´1, we obtain the dual characteri-
zation of the optimal constant in (2.2):

C “ sup
β:}β}q“1

sup
d:}du}p“1

ÿ

sPΓ˚

vs

´ ÿ

aătĺs

dt

¯
βs.

� �

The goal of this section is to establish conditions for (2.1) to hold
that can be verified in our examples.
It is known (see for example [14], [12], [15]) that the classical neces-

sary and sufficient condition for the continuous Hardy inequality in an
interval translates to the discrete case. Namely, if Γ is a chain (i.e. a
tree where each vertex has at most one child), then inequalities (2.2)
and (2.1) hold if and only if

Achain “ sup
tPΓ˚

˜
ÿ

aăsĺt

u´q
s

¸ 1

q
˜

ÿ

sľt

vps

¸ 1

p

ă 8. (2.3)

Moreover, the constant C in (2.1) is proportional to Achain.
The authors in [13] studied continuous Hardy inequalities on trees,

where their main result can be easily translated to the discrete case as
shown in the following theorem. However, they also showed that, on
trees that are not chains, condition (2.3) is necessary for the validity
of (2.1), but not sufficient.

Theorem 2.2. Let Γ be a discrete tree with root a. Given K a subtree
of Γ, we define its boundary as BK “ ts P K : Dt, tp “ s, t R Ku. We
also define the following class formed by some subtrees of Γ:

K “ tK subtree of Γ : a P K, and if s P BK, then t R K, @t ą su.

For K P K, we define the interior of K, K˝ “ KzBK. Then inequality
(2.1) holds if and only if:

B :“ sup
KPK

}v}ℓppΓzK˝q

αK

ă 8, (2.4)
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where:

αK :“ inf
!

}b}p :
ÿ

aăsĺt

|bs|u
´1

s “ 1, @t P BK
)
.

Moreover, the constant C in (2.1) is proportional to B.

Condition (2.4) is rather cumbersome and one can find it very hard
to prove in practical examples. However, valuable information can be
derived from it. E.g., fixing a vertex t P Γ˚, consider the sub-tree:
K “ ΓzSt. In this case, }v}ℓppΓ˚zKq “ }v}ℓppStq. On the other hand,
t is the only vertex in BK and α´1

K becomes a dual characterization
of }u´1}ℓqpPtq. Hence, the expression inside the supremum of (2.4)
becomes the expression inside the supremum of (2.3), which proves:
Achain ď B. The converse, however is not true: in [13, Section 5] an
example is given where B “ 8 whereas Achain remains bounded.
In [13] a recursive method for computing αK is given, as well as

several sufficient and slightly less complex conditions. But the main
difficulty, namely: the necessity of estimating a supremum over all
subtrees in K, remains. Hence, we prove in the following Theorem a
sufficient condition that can be regarded as a generalization of (2.3),
and which is almost as easy to check. On the downside, we were not able
to compare our sufficient condition with the other sufficient conditions
given in [13].

Theorem 2.3. Let u “ tututPΓ˚ and v “ tvtutPΓ˚ be two weights that
satisfy:

Atree :“ sup
tPΓ˚

˜
ÿ

aăsĺt

u´q
s

¸ 1

θq
˜

ÿ

sľt

vps

ˆ ÿ

aărĺs

u´q
r

˙ p

q
p1´ 1

θ
q
¸ 1

p

ă 8, (2.5)

for some θ ą 1. Then inequality (2.2) holds. In addition, the optimal

constant in (2.2) satisfies that C ď
´

θ
θ´1

¯ 1

q

Atree.

Proof. We follow an idea used in [16]. However, the introduction of the
parameter θ is crucial for obtaining a sharper result. We can assume
that dt ě 0.
We begin observing that the concavity of the function fpxq “ x1´ 1

θ

implies, via the mean value theorem, the following inequality for 0 ď
x1 ă x2 :

x2 ´ x1

x
1

θ

2

ď
θ

θ ´ 1
px

1´ 1

θ

2 ´ x
1´ 1

θ

1 q. (2.6)
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Now, let us define Nptq :“
ř

aărĺt u
´q
r . Applying Hölder inequality we

obtain:

I :“
ÿ

sPΓ˚

vps

´ ÿ

aătĺs

dt

¯p

“
ÿ

sPΓ˚

vps

´ ÿ

aătĺs

dtutNptq
1

θqu´1

t Nptq´ 1

θq

¯p

ď
ÿ

sPΓ˚

vps

´ ÿ

aătĺs

d
p
tu

p
tNptq

p

θq

¯´ ÿ

aătĺs

u
´q
t Nptq´ 1

θ

¯p

q

.

For the last factor, observe that u´q
t “ Nptq ´Nptpq for every t, where

Npaq is defined as 0. This and (2.6) give:

u
´q
t Nptq´ 1

θ “
Nptq ´ Nptpq

Nptq
1

θ

ď
θ

θ ´ 1

`
Nptq1´ 1

θ ´ Nptpq1´ 1

θ

˘
.

Now, we apply a telescopic argument along the path that goes from
a to s, obtaining:

I ď
´ θ

θ ´ 1

¯p

q
ÿ

sPΓ˚

vps

´ ÿ

tĺs

d
p
tu

p
tNptq

p

θq

¯´ ÿ

tĺs

`
Nptq1´ 1

θ ´ Nptpq1´ 1

θ

˘¯ p

q

“
´ θ

θ ´ 1

¯p

q
ÿ

sPΓ˚

vps

´ ÿ

aătĺs

d
p
tu

p
tNptq

p
θq

¯
Npsq

p
q

p1´ 1

θ
q
.

Interchanging the summations and applying condition (2.5):

I ď
´ θ

θ ´ 1

¯p

q
ÿ

tPΓ˚

d
p
tu

p
t

”
Nptq

p
θq

ÿ

sľt

vpsNpsq
p
q

p1´ 1

θ
q
ı

ď
´ θ

θ ´ 1

¯p

q

A
p
tree

ÿ

tPΓ˚

d
p
tu

p
t ,

and the result follows. � �

Remark 2.4. Condition (2.5), with the parameter θ ą 1, resembles
similar sufficient conditions that appear when dealing with weighted
inequalities involving two weights. See, for example [17, Theorem 1].

Remark 2.5. Observe that condition (2.5) (as well as (2.3)) implies
that

ř
sPΓ˚ vps ă 8. In other words: v P ℓppΓ˚q.

Remark 2.6. The proof for Theorem 2.3 can be copied verbatim re-
placing Γ˚ by Γ, both in the inequality (2.2) and in the condition (2.5).

Observe that as θ approaches 1, condition (2.5) “tends” to condition
(2.3). It seems that we cannot take θ Ñ 1, since the factor θ

θ´1
goes to

infinity. However, condition (2.5) is actually equivalent to (2.3), if Γ is
a chain. Indeed:
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Theorem 2.7. If Γ is a chain, then conditions (2.3) and (2.5) are
equivalent.

Proof. (2.5) implies the validity of (2.2), which is equivalent to (2.3)
on chains, proving that (2.5) implies (2.3).
Suppose now that (2.3) holds. Then:

´ ÿ

aărĺs

u´q
r

¯ 1

q

ď Achain

´ ÿ

rľs

vpr

¯´ 1

p

,

which in turn gives:

ÿ

sľt

vps

´ ÿ

aărĺs

u´q
r

¯ p

q
p1´ 1

θ
q

ď A
pp1´ 1

θ
q

chain

ÿ

sľt

vps

´ ÿ

rľs

vpr

¯ 1

θ
´1

.

Now, let us assume the following inequality holds on chains for any
θ ą 1 :

ÿ

sľt

vps

´ ÿ

rľs

vpr

¯ 1

θ
´1

ď θ
´ ÿ

sľt

vps

¯ 1

θ

. (2.7)

Using this, we obtain:

Atree “ sup
tPΓ˚

´ ÿ

aăsĺt

u´q
s

¯ 1

θq
´ ÿ

aăsĺt

vps
` ÿ

aărĺs

u´q
r

˘p

q
p1´ 1

θ
q
¯ 1

p

ď θ
1

pA
1´ 1

θ

chain sup
tPΓ˚

´ ÿ

aăsĺt

u´q
s

¯ 1

θq
´ ÿ

sľt

vps

¯ 1

pθ

ď θ
1

pAchain.

Hence, it only remains to prove (2.7). Let us first present the main
idea of why (2.7) holds naturally on every chain. Suppose that we are
working on a continuous setting. In that case, the left member of (2.7)
would become:

I “

ż 8

t

vpsqp
´ ż 8

s

vpxqp dx
¯ 1

θ
´1

ds.

Now, through the substitution ξ “ F psq “
ş8

s
vpxqp dx, dξ “ ´vpsqpds,

we have:

I “ ´

ż
0

F ptq

ξ
1

θ
´1dξ “ θξ

1

θ |
F ptq
0 “ θF ptq

1

θ “ θ
´ ż 8

t

vpsqpds
¯ 1

θ

,

which is the continuous analog to the right hand side of (2.7).
Now, in the discrete case, we cannot change variables as we did with

the integral, but an adapted version of the same idea can be applied.
We proceed in a similar way than the proof of Theorem 2.3: we define
Mpsq “

ř
rľs v

p
r . Recalling Remark 2.5, we have that Mpsq ă 8 and

limsÑ8 Mpsq “ 0. We denote sc the child of s along Γ, which is unique
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thanks to the fact that Γ is a chain. Applying the convexity of the
function fpxq “ x

1

θ and a telescopic argument, we obtain:

ÿ

sľt

vps

´ ÿ

rľs

vpr

¯ 1

θ
´1

“
ÿ

sľt

Mpsq ´ Mpscq

Mpsq1´ 1

θ

ď θ
ÿ

sľt

Mpsq
1

θ ´ Mpscq
1

θ

“ θMptq
1

θ “ θ
´ ÿ

sľt

vps

¯ 1

θ

,

which completes the proof.
Observe that the fact that each s has only one child sc is crucial for

the telescopic argument to hold. On general trees, this step cannot be
performed, and the proof fails. � �

The proof of the previous Theorem shows that condition (2.5) can be
unravel into two: the classical condition (2.3), and the additional (2.7).
We state this as a corollary, although for the application considered
here it is easier to work directly with (2.5).

Corollary 2.8. Let Γ be a tree. If u “ tututPΓ and v “ tvtutPΓ verify
both (2.3) and (2.7) (with any constant), then (2.5) holds.

3. A decomposition of functions

Let Ω Ă R
n be a bounded domain with n ě 2. We refer by a weight

η : Ω Ñ R to a Lebesgue-measurable function, which is positive almost
everywhere.Then, we define the weighted spaces LppΩ, ηq as the space
of Lebesgue-measurable functions f : Ω Ñ R with finite norm

}f}LppΩ,ηq “

ˆż

Ω

|fpxq|pηpxq dx

˙1{p

.

Henceforth, d, dA : Ω Ñ R will denote the distance functions to BΩ
and A Ă Ω respectively.

Definition 3.1. Let C be the space of constant functions from R
n to

R and tUtutPΓ a collection of open subsets of Ω that covers Ω except
for a set of Lebesgue measure zero; Γ is an index set. It also satisfies
the additional requirement that for each t P Γ the set Ut intersects a
finite number of Us with s P Γ. This collection tUtutPΓ is called an open
covering of Ω. Given g P L1pΩq orthogonal to C (i.e.,

ş
g ϕ “ 0 for

all ϕ P C), we say that a collection of functions tgtutPΓ in L1pΩq is a
C-orthogonal decomposition of g subordinate to tUtutPΓ if the following
three properties are satisfied:

(1) g “
ř

tPΓ gt.

(2) supppgtq Ă Ut.
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(3)
ş
Ut
gt “ 0, for all t P Γ.

We also refer to this collection of functions by a C-decomposition.
Notice that condition (3) is equivalent to the orthogonality to the space
C of constant functions. Indeed, this condition can be replaced byş
Ut
gtpxqϕpxq dx “ 0, for all ϕ P C and t P Γ.
In Theorem 3.8 below, we show the existence of a C-orthogonal de-

composition by using a constructive argument introduced in [4].

Definition 3.2. Given a countable open covering tUtutPΓ of Ω, we say
that a weight η : Ω Ñ R is admissible if there exists a uniform constant
C such that

ess sup
xPUt

ηpxq ď C ess inf
xPUt

ηpxq, (3.1)

for all t P Γ. Notice that admissible weights are subordinate to tUtutPΓ
of Ω and 1 ă p ă 8.

Examples 3.3. One classical example is induced by a Whitney de-
composition. Given Ω Ă R

n an open set, it is known (see, for ex-
ample [18, Section VI]), that there exists a collection of dyadic closed
cubes, tQjujPN, with edges parallel to the coordinate axis, such that
Ω “

Ť
j Qj , satisfying that the length ℓpQjq of the cube Qj is propor-

tional to dpQj, BΩq, where the constants involved does not depend on j.
Moreover two neighbouring cubes are of similar size. These properties
are well adapted for working with weights that depend on the distance
to the boundary. Then, every weight ηpxq “ dpxqτ , with τ in R, is
admissible subordinate to tUjuj , where Uj “ 17

16
Q˝

j . A construction
similar to a Whitney decomposition is used in [4], and in Section 4.

Examples 3.4. Another example is the one studied in the articles
[10, 11, 4], where Ω is a cuspidal domain with only one singularity (the
tip of the cusp) on its boundary. For example, we can consider

Ω :“ tpx1, x2q P R
2 : 0 ă x1 ă 1 and 0 ă x2 ă x

γ
1u,

where γ ą 1. In this case, it is of interest to consider weights that
depend on the distance to the cusp instead of the distance to the
boundary. For that reason, the partition of the domain depends on
the singularity we have at the origin as it can be seen at the open
covering tUnuně0:

Un “ tpx1, x2q P Ω : 2´pn`2q ă x1 ă 2´nu.

For this open covering, any power ηpxq “ d0pxqτ of the distance to the
cusp is admissible.
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Definition 3.5. Let Ω Ă R
n be a bounded domain. We say that

an open covering tUtutPΓ is a tree covering of Ω if it also satisfies the
properties:

(1) χΩpxq ď
ř

tPΓ χUt
pxq ď NχΩpxq, for almost every x P Ω, where

N ě 1.
(2) The set of subindices Γ has the structure of a rooted tree, i.e.

it is the set of vertices of a rooted tree pΓ, Eq with a root a.
(3) There is a collection tBtut‰a of pairwise disjoint open sets with

Bt Ď Ut X Utp .

Remark 3.6. Given an open covering of a domain Ω, one can choose
an element of the covering as the root, and there are different ways
to define a tree-covering. Notice that two vertices on the tree are
adjacent only if the intersection of their corresponding open sets is
non-empty. Some care should be taken in order to obtain a meaningful
tree-covering, according with the geometry of the domain. For example,
it is known that the quasi-hyperbolic distance between two cubes in a
Whitney decomposition is comparable with the shorter chain of cubes
connecting them. Hence, on an open covering like the one in Example
3.3 we can define a tree-covering by an inductive argument on the
quasi-hyperbolic distance to the root: this is done in [19]. Another
possible tree-covering on aWhitney decomposition can be defined when
the domain is a John domain, in which case each chain connecting a
Whitney cube with the root is a Boman chain. This type of tree-
covering, which characterizes John domains, is introduced in [6].
The open covering for external cusps in Example 3.4 can be seen as

a tree-covering that is actually a chain, with the root defined as the
open set furthest from the tip of the cusp.

Given a tree covering tUtutPΓ of Ω and ν, ω : Ω Ñ R admissible
weights subordinate to tUtutPΓ, we define the following discrete Hardy-
type inequality on trees for positive sequences tbtutPΓ

˜
ÿ

tPΓ˚

|Bt|
´q{pν

´q
t

˜
ÿ

sľt

bs

¸q¸ 1

q

ď C

˜
ÿ

tPΓ˚

|Bt|
´q{pω

´q
t b

q
t

¸ 1

q

, (3.2)

where the sequence weights tωtutPΓ˚ and tνtutPΓ˚ are defined as

ωt “ ess inf
xPBt

ωpxq and νt “ ess inf
xPBt

νpxq.

Observe that here is where the necessity of working on Γ˚ becomes
apparent, since the weights depend on Bt, which plays the role of the
edge between tp and t, and is not defined for the root of the tree.
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Remark 3.7. Observe that (3.2) is exactly (2.1), taking ut “ |Bt|
1

p νt

and vt “ |Bt|
1

pωt.

Theorem 3.8. Let Ω Ă R
n be a bounded domain with a tree cover-

ing tUtutPΓ such that |Ut|
|Bt|

ď C for every t P Γ˚, and let ν, ω : Ω Ñ

R be admissible weights, with ωp P L1pΩq, such that LqpΩ, ω´qq ãÑ
LqpΩ, ν´qq and the weighted discrete Hardy inequality on trees (3.2)
holds. Then, given g in LqpΩ, ω´qq, with

ş
Ω
g “ 0, there exists tgtutPΓ,

a C-decomposition of g, such that

ÿ

tPΓ

ż

Ut

|gtpxq|qν´qpxq dx ď C

ż

Ω

|gpxq|qω´qpxq dx. (3.3)

Proof. Observe that since g P LqpΩ, ω´qq, then g P L1pΩq. Indeed,
using Hölder inequality and the integrability of ωp:

ż

Ω

|gpxq| dx “

ż

Ω

|gpxq|ωpxqω´1pxq dx

ď
´ ż

Ω

|gpxq|qω´qpxq
¯ 1

q
´ ż

Ω

ωpxqp
¯ 1

p

ď C}g}LqpΩ,ω´qq.

Now, let tφtutPΓ be a partition of the unity subordinate to tUtutPΓ. In
other words, we have that supppφtq Ă Ut, 0 ď φtpxq ď 1 and

ř
t φtpxq “

1, @x P Ω. Now, we can define an initial decomposition for g given
by ft “ gφt. The collection tftutPΓ satisfies properties p1q and p2q
in Definition 3.1, but not necessarily p3q. Hence, we modify these
functions in order to obtain the C-orthogonality.
We define, for s P Γ, the shadow Ws of Us, as:

Ws “
ď

kľs

Uk,

and for s ‰ a

hspxq “
χspxq

|Bs|

ż

Ws

ÿ

kľs

fk,

where χspxq is the characteristic function of Bs. Note that suppphsq Ă
Bs and

ş
hspxqdx “

ş
Ws

ř
kľs fk. Now, we take:

gtpxq “ ftpxq `
´ ÿ

s:sp“t

hspxq
¯

´ htpxq @t ‰ a,

gapxq “ fapxq `
´ ÿ

s:sp“a

hspxq
¯
.
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Note that the summations above are finite since they are indexed over
the children of t (or a). With this definitions, we have for t ‰ a:

ż

Ω

gt “

ż

Ut

ft `
ÿ

s:sp“t

ż

Bs

hs ´

ż

Bt

ht

“

ż

Ut

ft `
ÿ

s:sp“t

ż

Ws

ÿ

kľs

fk ´

ż

Wt

ÿ

kľt

fk

“

ż

Ut

ft `
ÿ

s:sp“t

ÿ

kľs

ż

Uk

fk ´
ÿ

kľt

ż

Uk

fk

“
ÿ

kľt

ż

Uk

fk ´
ÿ

kľt

ż

Uk

fk “ 0.

Whereas for t “ a:

ż

Ω

ga “

ż

Ua

fa `
ÿ

s:sp“a

ż

Bs

hs

“

ż

Ua

fa `
ÿ

s:sp“a

ż

Ws

ÿ

kľs

fk

“

ż

Ω

ÿ

kľa

fk “

ż

Ω

g “ 0.

Hence, tgtutPΓ is a C-orthogonal decomposition of g. It remains
to prove estimate (3.3), which is a consequence of inequality (3.2).
Recall that the support of each hs, with s P Γ˚, is included in Bs, and
the collection of open sets tBtut‰a is pairwise disjoint. Moreover, hs
appears in the definition of gt if and only if t “ s or t “ sp. Now we
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can prove the estimate:

ÿ

tPΓ

ż

Ut

|gtpxq|qνpxq´q dx

ď
ÿ

tPΓ˚

2q´1

ż

Ut

˜
|ftpxq|q `

ˇ̌
ˇ̌
ˇ
´ ÿ

s:sp“t

hspxq
¯

´ htpxq

ˇ̌
ˇ̌
ˇ

q¸
ν´qpxq dx

`2q´1

ż

Ua

˜
|fapxq|q `

ˇ̌
ˇ̌
ˇ

ÿ

s:sp“a

hspxq

ˇ̌
ˇ̌
ˇ

q¸
ν´qpxq dx

“ 2q´1

#
ÿ

tPΓ

ż

Ut

|ftpxq|qν´qpxq dx

`
ÿ

tPΓ˚

ż

Ut

´
|htpxq|q `

ÿ

s:sp“t

|hspxq|q
¯
ν´qpxq dx

`

ż

Ua

ÿ

s:sp“a

|hspxq|qν´qpxq dx

+

ď 2q´1
ÿ

tPΓ

ż

Ut

|ftpxq|qν´qpxq dx ` 2q
ÿ

tPΓ˚

ż

Ω

|htpxq|qν´qpxq dx

ď 2q´1

ż

Ω

|gpxq|qν´qpxq dx` 2q
ÿ

tPΓ˚

ż

Ω

|htpxq|qν´qpxq dx

“ pIq ` pIIq.

The term pIq gives the desired estimate thanks to the embedding
LqpΩ, ω´qq ãÑ LqpΩ, ν´qq.
Now, observe that

|hspxq| ď
1

|Bs|

ż

Ws

ÿ

kľs

|fk| ď
1

|Bs|

ż

Ws

|g|.

Thus,

pIIq ď C
ÿ

tPΓ˚

ν
´q
t |Bt|

1´q
´ ż

Wt

|gpxq| dx
¯q

ď C
ÿ

tPΓ˚

ν
´q
t |Bt|

1´q
´ ÿ

sľt

ż

Us

|gpxq| dx
¯q
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Now, we apply (3.2) with bs “
ş
Us

|g|, obtaining:

pIIq ď C
ÿ

tPΓ˚

ω
´q
t |Bt|

1´q
´ ż

Ut

|gpxq| dx
¯q

ď C
ÿ

tPΓ˚

ω
´q
t |Bt|

1´q
´ ż

Ut

ωpxqp dx
¯ q

p
´ ż

Ut

|gpxq|qω´qpxq dx
¯

ď C
ÿ

tPΓ˚

ω
´q
t |Bt|

1´qω
q
t |Ut|

q

p

´ ż

Ut

|gpxq|qω´qpxq dx
¯

ď C
ÿ

tPΓ˚

ż

Ut

|gpxq|qω´qpxq dx,

which completes the proof. The constant C depends on the constants
in (3.1) for ω and ν, on the constant N that appears on Definition 3.5,

on sups
|Us|
|Bs|

and linearly on the constant on (3.2). � �

Remark 3.9. Observe that, combining Remark 3.7 with Remark 2.5,
it is easy to check that the requirement ωp P L1pΩq is implied by the
validity of the Hardy-type inequality (3.2).

4. Decomposition on Hölder domains

In this section, we prove that a C-orthogonal decomposition of a
function g as the one given in Theorem (3.8) can be obtained when Ω
is a Hölder-α domain, and the weights are powers of the distance to
BΩ.
Let Ω be a bounded domain whose boundary is locally the graph of

a function ϕ that verifies: |ϕpxq ´ ϕpyq| ď Kϕ|x´ y|α for all x, y. Our
approach follows the construction given in [4, Section 6].
Let ϕ : p´3ℓ

2
, 3ℓ

2
qn´1 Ñ R be a Hölder-α function with 0 ă α ď 1 and

ℓ ą 0. We also assume that 2ℓ ď ϕ ă 3ℓ. Consider:

Ωϕ “
!

px1, xnq P
`

´ ℓ
2
, ℓ
2

˘n´1
ˆ R, 0 ă xn ă ϕpx1q

)
. (4.1)

We could assume Ω is locally Ωϕ, but in that case, the distance to BΩ
is not necessarily equivalent to the distance to the portion of the graph
of ϕ above p´ ℓ

2
, ℓ
2
qn´1. Thus, in order to solve this problem, we assume

Ω is locally an expanded version of Ωϕ:

Ωϕ,E “
!

px1, xnq P
`

´ 3ℓ
2
, 3ℓ

2

˘n´1
ˆ R, 0 ă xn ă ϕpx1q

)
. (4.2)

Now, for x P Ωϕ, the distance to BΩ is equivalent to the distance to:

G “
!

px1, xnq P
`

´ 3ℓ
2
, 3ℓ

2

˘n´1
ˆ R, xn “ ϕpx1q

)
.
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We denote dG the distance to G. Now, we can prove our first result
regarding Hölder-α domains, namely:

Lemma 4.1. Let Ωϕ be the domain defined in (4.1) for some 0 ă α ď
1, and β satisfying:

βp ą ´α. (4.3)

Then, given f in LqpΩϕ, d
´βq
G q with vanishing mean value, there exists

a C´decomposition of f that satisfies estimate (3.3) with ω “ d
β
G and

ν “ d
β`α´1

G .

Proof. We build a tree covering of Ωϕ and prove that Theorem 3.8 holds
on it. The main idea is to give a Whitney-type decomposition of Ωϕ

into cubes that satisfy:

‚ The edge ℓt of a cube Qt is proportional to dGpQtq.
‚ Two adjacent cubes have comparable sizes.

The cubes are constructed level by level, moving upward towards the
graph of ϕ. The level 0 is given by the root cube Qa “ p´ ℓ

2
, ℓ
2
qn´1 ˆ

p0, ℓq. The other cubes are built recursively. Suppose that Qt “ Q1
t ˆ

px1n,t, x
2

n,tq is a cube of level m. Then, cubes Qs in level m ` 1, with
sp “ t, are defined in the following way: consider the cube Q “ 3pQt `
p0, . . . , 0, ℓtqq, which denotes an expansion of a translated copy of Qt.
Then:

‚ If Q Ă Ωϕ,E, then we define only one cube Qs at level m ` 1
with sp “ t, Qs “ Qt ` p0, . . . , 0, ℓtq.

‚ If Q Ć Ωϕ,E , we define 2
n´1 cubes Qs at level m`1 with sp “ t,

written as Qs “ rQ1
t ˆ px2n,t, x

2
n,t ` ℓt

2
q, where rQ1

t is one of the

pn´1q-dimensional cubes given by the partition of Q1
t into 2n´1

cubes with edges of length ℓt
2
.

See Figure 1 for an example of this construction. It is easy to check that
this partition satisfies the two main properties of a Whitney decompo-
sition mentioned above. Recall that in a tree covering a certain over-
lapping of the elements is needed, but our cubes are pairwise disjoint,
so we need to enlarge them. If Qt “ Q1

t ˆ px1n,t, x
2

n,tq, we can expand it

downward with a half of itself, defining Ut “ Q1
t ˆ px1n,t ´ ℓt

2
, x2n,tq. Now

tUtut is a tree covering, with Bt “ Q1
t ˆ px1n,t ´ ℓt

2
, x1n,tq. We denote Γ

the underlying set of indices with tree structure.
Now, we need to prove that Theorem (3.8) holds for the weights

ω “ d
β
G and ν “ d

β`α´1

G . Notice that the tree covering defined above

satisfies that |Ut|
|Bt|

“ 3{2 for every t P Γ˚. Moreover, observe that

LqpΩϕ, d
´pβ`α´1q
G q ãÑ LqpΩϕq, d

´βq
G q since β ě β ` α ´ 1. Notice that,
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Figure 1. Partial representation of a partition of Ωϕ

into cubes.

by construction:

max dGpzq ď Cmin dGpzq „ ℓt @z P Qt,

which implies that the weights ω and ν are admissible. Thus, it is
enough to prove the Hardy-type inequality (3.2) and the integrability
of the weight ωp.
As we mentioned in Remark 3.7, (3.2) is equivalent to (2.1) and

(2.2) with ut “ |Bt|
1

p ℓ
β`α´1

t and vt “ |Bt|
1

p ℓ
β
t . The rest of the proof is

devoted to verifying the sufficient condition (2.5) for these weights.
Without loss of generality, we assume that ℓ “ 1, and thus the edge

of every cube is 2´j for some j P N. Since (2.5) involves summations
over the shadow of a node (St), and over the path that goes from a to t
(Pt), we begin by estimating the number of cubes of a given size both
in St and Pt.
Consider a cube Qt, and take x1

t P Q1
t. Let us take Qs the first cube

going backwards from Qt, such that s ĺ t and ℓs “ 2ℓt. We have that
3pQs ` p0, . . . , 0, ℓsqq Ć ΩϕE

. Hence, there is some x1
s P 3Q1

s such that
ϕpx1

sq ď x2n,s ` 2ℓs ď x1n,t ` 2ℓs “ x1n,t ` 4ℓt (see Figure 4 left). Now, for
every x1

t P Q1
t:

|ϕpx1
tq| ď |ϕpx1

tq ´ ϕpx1
sq| ` |ϕpx1

sq| ď Kϕ|x1
t ´ x1

s|
α ` x1n,t ` 4ℓt

ď CαKϕℓ
α
t ` 4ℓt ` x1n,t.

Now, let us consider Wt “
Ť

kľt Uk, the union of all the cubes in the
shadow of Ut (which we also called shadow). Then, the above estimate
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Figure 2. Left: given Qt, we can estimate ϕpx1
tq in

terms of ℓt. Right: a cube Qt and the first cubes with
edges of length 2´k in its shadow.

gives:

|Wt| ď ℓ
pn´1q
t pCαKϕℓ

α
t ` 4ℓtq ď Cn,αℓ

n´1`α
t pKϕ ` ℓ1´α

t q.

Finally, for k P N, let us denote Piptq and Wiptq the number of cubes
of size 2´i in Pt and St respectively. Namely:

Piptq “ #tr P Γ : r ĺ t, ℓr “ 2´iu

Wiptq “ #tr P Γ : r ľ t, ℓr “ 2´iu

We want to estimate both of these quantities. For Piptq, we can take
r P Γ the lowest index in Pt such that ℓr “ 2´i, and consider Wr. Piptq
is at most the number of cubes with edges ℓr in Wr. Hence:

Piptq ď
|Wr|

|Qr|
ď Cn,αℓ

n´1`α
r pKϕ ` ℓ1´α

r qℓ´n
r ď Cℓ´1`α

r “ C2ip1´αq.

Observe that, in particular, this is an estimate for the number of cubes
of the same size in a chain of cubes. On the other hand, for Wiptq,
we assume ℓptq “ 2´k, and consider the set of the first cubes Qr such
that r ľ t and ℓr “ 2´i. In Figure 4 (right) a cube Qt is shown, along

with the four first cubes of a certain size in Wt. There are
ℓn´1

t

2´ipn´1q of
such cubes. Moreover each of these cubes can be followed by a chain
containing at most: 2´ip´1`αq cubes. Therefore:

Wiptq ď ℓn´1

t 2´ip´1`α´n`1q “ ℓn´1

t 2´ipα´nq “ 2´kpn´1q´ipα´nq.

Finally, we can prove sufficient condition (2.5). We have three indices
in Γ: r, s and t, for which we assume: ℓr “ 2´i, ℓs “ 2´j, ℓt “ 2´k.
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Hence:

ÿ

aărĺt

u´q
r “

ÿ

aărĺt

|Br|
´ q

pd
´qpβ`α´1q
G “

kÿ

i“0

Piptqp2´inq´ q

p2iqpβ`α´1q

ď
kÿ

i“0

2ip1´α`n
q

p
`qpβ`α´1qq ď C2kqpn´1`α

p
`βq

In the last step we used that the exponent is positive. Indeed:

n ´ 1 ` α

p
` β “ β `

α

p
`
n´ 1

p
ą 0,

since βp ą ´α. In the same way, we obtain that:
ÿ

aărĺs

u´q
r ď C2jqpn´1`α

p
`βq

Let us denote:

It “
´ ÿ

aăsĺt

u´q
s

¯ 1

θq
´ ÿ

sľt

vps

´ ÿ

aărĺs

u´q
r

¯ p

q
p1´ 1

θ
q¯ 1

p

Then:

It ď 2kpn´1`α
p

`βq 1

θ

´ ÿ

sľt

|Bs|d
βp
G

´ ÿ

aărĺs

u´q
r

¯p

q
p1´ 1

θ
q¯ 1

p

ď 2kpn´1`α
p

`βq 1

θ

´ 8ÿ

j“k

Wjptq2
´jn2´jβp2jpn´1`α

p
`βqpp1´ 1

θ
q
¯ 1

p

ď 2kpn´1`α
p

`βq 1

θ

´ 8ÿ

j“k

2´kpn´1q´jpα´nq2´jpn`βp´pn´1`α
p

`βqpp1´ 1

θ
qq

¯ 1

p

ď 2kpn´1`α
p

`βq 1

θ 2´kpn´1q 1

p

´ 8ÿ

j“k

2´jpα`βp´pn´1`α
p

`βqpp1´ 1

θ
qq

¯ 1

p

For the summation to be finite, we need the exponent of 2 to be negative
or equivalently:

α ` βp ´
´n ´ 1 ` α

p
` β

¯
p
´
1 ´

1

θ

¯
ą 0

But (4.3) implies α ` βp ą 0, so we can choose θ ą 1 such that
inequality above remains valid. Now, we can continue the estimate:

It ď 2kpn´1`α
p

`βq 1

θ 2´kpn´1q 1

p2´kpα`βp´pn´1`α
p

`βqpp1´ 1

θ
qq 1

p

ď 2krpn´1`α
p

`βq 1

θ
´n´1

p
´α

p
´β`pn´1`α

p
`βqp1´ 1

θ
qs
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Since Atree is the supremum of It over t, we need It to be bounded
uniformly on t, which is to say on k, hence we need:

E “
´n ´ 1 ` α

p
`β

¯1

θ
´
n´ 1 ` α

p
´β`

´n´ 1 ` α

p
`β

¯´
1´

1

θ

¯
ď 0

But it is easy to check that, in fact, E “ 0.
Finally, as we mentioned in Remark 3.9 the integrability of the weight

ωp is implied by the sufficient condition for the Hardy-type inequality
(3.2). Indeed:

ż

Ω

ωppxq dx ď
ÿ

tPΓ

ż

Ut

ωppxq dx ď
ÿ

tPΓ

|Ut|ω
p
t ď C

8ÿ

k“0

Wkpaq2´kn2´kβp

ď C

8ÿ

k“0

2´kpα´nq2´kn2´kβp “ C

8ÿ

k“0

2´kpα`βpq

which is finite, since βp ą ´α. � �

Remark 4.2. The previous lemma was stated assuming a certain fixed
shift in the exponents of the weights. However, one can prefer to con-
sider the general case, with two different weights ν “ d

γ
G and ω “ d

β
G.

In that case, the proof of Lemma 4.1 can be reproduced verbatim until
the last step, where the exponent E in the estimate of It should be
studied. The requirement E ď 0 is not automatically fulfilled, but im-
plies the restriction γ ď β`α´ 1, where the natural shift between the
weights becomes apparent. In order to simplify the proof, we stated
the lemma in the critical case γ “ β ` α´ 1, which is the most useful.

Lemma 4.1 constitutes the core of the decomposition on Hölder-α
domains. In order to extend this result to a complete Hölder domain,
we just need to cover it with patches given by rectangles of the form
of Ωϕ:

Theorem 4.3. Let Ω be a Hölder-α bounded domain, with 0 ă α ď 1,
and β satisfying that βp ą ´α. Then, given g P LqpΩ, d´βqq, with
vanishing mean value, there exists a C´decomposition of g subordinate
to a partition tUtutPΓ of Ω that satisfies:

ÿ

tPΓ

ż

Ut

|gtpxq|qdp´β´α`1qqpxq dx ď C

ż

Ω

|gpxq|qd´βqpxq dx. (4.4)

In addition, the partition is formed by one smooth domain Ω0, with
positive distance to BΩ, and denumerable cubes or cubes extended by a
factor 3{2 in one direction.

Proof. Let us begin by covering BΩ with a finite number of open sets
tUiui for i “ 1, . . . , m, such that Ωi “ Ui X Ω are of the form of Ωϕ,
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defined in (4.1). We may assume also that there are open sets Vi such
that Vi X Ω are of the form of Ωϕ,E , defined in (4.2). Then, we take a
smooth domain Ω0 that intersects each Ωi, with 1 ď i ď m, and such
that dpΩ0, BΩq ě δ ą 0, and

Ťm

i“0
Ωi “ Ω.

We continue by using the idea by Bogovskii in [1] for a finite partition
and Lemma 4.1 in each Ωi, with 1 ď i ď m. Indeed, let us apply an
inductive argument: given two sets A,B Ă Ω such that |A X B| ą 0
and a function f P LqpΩ, d´βqq such that

ş
AYB

f “ 0. Then, we can
decompose f in AY B in the following way:

fpxq “ χApxqfpxq ´
χAXBpxq

|A X B|

ż

A

f
loooooooooooooooomoooooooooooooooon

fApxq

`
χAXBpxq

|AX B|

ż

B

f ` χBzApxqfpxq
loooooooooooooooooomoooooooooooooooooon

fBpxq

.

From the integrability of dβp, the functions fA and fB are well-defined
and have finite norms in LqpΩ, d´βqq. Thus, there is a constant C such
that:

}fA}LqpΩ,d´βqq ` }fB}LqpΩ,d´βqq ď C}f}LqpΩ,d´βqq.

Furthermore, it is easy to check that fA and fB are supported in A and
B respectively and that both has vanishing mean value.
Next, we can apply this argument with A “ Ωm and B “

Ťm´1

i“0
Ωi,

and then again with A “ Ωm´1 and B “
Ťm´2

i“0
Ωi, etc. Therefore, we

obtain for every g P LqpΩ, d´βqq with vanishing mean value on Ω, a
decomposition: g “

řm

i“0
gi, such that gi is supported on Ωi and has

vanishing mean value, with the estimate
mÿ

i“0

}gi}
q

LqpΩ,d´βqq
ď C}g}q

LqpΩ,d´βqq
.

Now, each gi for i “ 1, . . . , m can be decomposed applying Lemma
4.1 with estimate (3.3). And, using that dpΩ0, BΩq ě δ ą 0, we have:

}g0}LqpΩ,dp´β´α`1qqq ď C}g0}LqpΩ,d´βqq,

which completes the proof. � �

5. Applications to inequalities on Hölder domains

In this section we present several results regarding different inequal-
ities on Hölder-α domains. In all the cases the proof follows a similar
model: given a function f with vanishing mean value on Ω, we consider
a partition tUtutPΓ, as the one provided by Theorem 4.3 and apply the
decomposition to f . Then, we apply an unweighted version of the in-
equality on each Ut, for t P Γ, and take advantage of the estimate (4.4)
for recovering a global norm. For doing this we rely heavily on the fact
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that the distance to BΩ, dpxq, can be regarded as constant over each Ut.
In other words, we can define values dt such that dt „ dpxq, @x P Ut,
where the constants involved in the proportionality are independent of
t. Moreover, we have that each Ut is either a smooth domain (Ω0 in
the proof of Theorem 4.3), or a cube or a cube expanded along one
direction by a factor 3

2
. For this simple domains, we can control the

constant involved in the unweighted inequality.
The divergence problem is solved directly : we apply the decompo-

sition to the data f . For the other results a duality characterization
of the norm on the left hand side is used, and the decomposition is
applied to the function in the dual space of the one where the function
involved in the inequality belongs. For applying this argument we need
the lemma below.
Recall that the weight dβp is integrable over Ω. Thus, let us define

the following subspace of LqpΩ, d´βqq:

V :“
!
gpxq ` ψdβppxq :

gpxq P LqpΩ, d´βqq and ψ P R,with supppgq Ă Ω,

ż

Ω

g “ 0,
)
.

Lemma 5.1. V is dense in LqpΩ, d´βqq, and any g`ψdβp P V verifies
that

}g}LqpΩ,d´βqq ď 2}g ` ψdβp}LqpΩ,d´βqq.

Proof. First, let us prove the estimation in the lemma. Notice that

ψ “

ş
Ω
g ` ψdβpş
Ω
dβp

.

Thus, by using the Hölder inequality we obtain

}ψdβp}LqpΩ,d´βqq ď

ˇ̌ş
Ω
g ` ψdβp

ˇ̌
ş
Ω
dβp

}dβp}LqpΩ,d´βqq

ď

ˆż

Ω

dβp
˙1{p`1{q´1

}g ` ψdβp}LqpΩ,d´βqq,

which implies the estimate.
Now, given F P LqpΩ, d´βqq and ε ą 0, let us show that there ex-

ists gF ` ψFd
βp in V sufficiently close to F . Using again that dβp is

integrable, we define ψF by

ψF “

ş
Ω
Fş

Ω
dβp

.
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Then, the function hF pxq “ F pxq ´ψFd
βp has a vanishing mean value,

but it does not necessarily have a compact support. Thus, let B be an
open ball, independent of ε, such that B Ă Ω. And, let Ωε be an open
set that contains B such that Ωǫ Ă Ω and

}p1 ´ χΩε
pxqqhF pxq}LqpΩ,d´βqq ă ε,

where χ denotes a characteristic function. Finally, let show that the
following function fulfils the requirements

gF pxq “ χΩε
pxqhF pxq `

χBpxqdβppxqş
B
dβp

ż

ΩzΩε

hF .

Following some straightforward calculations, it can be seen that gF pxq`
ψFd

βppxq belongs to V . And, by using the Hölder inequality multiple
times we conclude the proof of the lemma with the following estimation

}F pxq ´ gF pxq ´ ψFd
βppxq}LqpΩ,d´βqq

“}hF pxq ´ gF pxq}LqpΩ,d´βqq

ď

››››p1 ´ χΩε
pxqqhF pxq ´

χBpxqdβppxqş
B
dβp

ż

ΩzΩε

hF

››››
LqpΩ,d´βqq

ď

˜
1 `

ˆ ş
Ω
dβpş

B
dβp

˙1{p
¸

}p1 ´ χΩε
pxqqhF pxq}LqpΩ,d´βqq

ď

˜
1 `

ˆ ş
Ω
dβpş

B
dβp

˙1{p
¸
ε.

� �

The importance of this lemma will become evident later, in the proof
of the improved Poincaré inequality, which is the first result that is
obtained via a duality argument.

5.1. The divergence equation. In this subsection, we study the
problem divu “ f in Ω with boundary condition u “ 0 on BΩ, for
certain f such that

ş
Ω
f “ 0. In addition we want to obtain an es-

timate for the norm of the solution u in terms of the datum f . The
unweighted estimate }Du}LqpΩq ď C}f}LqpΩq, that is valid on regular
domains, cannot hold on Hölder-α domains due to the singularities on
the boundary of Ω. Weighted norms can be used to compensate those
singularities, as shown in the following inequality:

}Du}LqpΩ,dp1´αqqq ď C}f}LqpΩq.

Such a result was extended in [20], under certain additional hypoth-
esis. Indeed, in that paper only the planar case is considered, and BΩ
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is assumed to be included in a 1´Ahlfors regular set. In this context
the following estimate is proven:

}Du}LqpΩ,dp1´β´αqqq ď C}f}LqpΩ,d´qβq, (5.1)

where the restrictions 0 ď β ď 1´α and β ă 1

q
are imposed on β. It is

important to notice that we have stated (5.1) in the same terms of our
results to simplify the comparison. We follow the same principle when
citing previous results in the next subsections.
Observe that the restrictions on β allows the weight to be transferred

partially (or totally) to the right hand side. The case β “ 1´α is used
to prove well-posedness of the Stokes equations. The estimation (5.1)
was generalized in [4] where the restrictions on the dimension on Ω, on
the parameter β, and on the Ahlfors regularity on BΩ were lifted, with
the exception of the requirement β ě 0. Our result shows that this
restriction can be relaxed, and that it is enough to ask β ą ´α{p.

Theorem 5.2. Let Ω Ă R
n be a bounded Hölder-α domain, and βp ą

´α. Given f P L
q
0
pΩ, d´qβq such that

ş
Ω
f “ 0, there exists a vector

field u P W
1,q
0

pΩ, dqp1´α´βqqn, solution of divu “ f , that verifies the
estimate (5.1).

Proof. It is known (see, for example, [21]), that given U a John do-
main and f P LqpUq with vanishing mean value, then, there exists
u P W 1,q

0 pUqn such that divu “ f and:

}u}W 1,qpUq ď C}f}LqpUq.

Moreover, a simple scaling argument shows that the result holds with
the same constant C for every cube (or, more generally, for every rec-

tangle with a fixed aspect ratio). Indeed, consider Q̂ “ p0, 1qn, the
reference cube. For simplicity, we take Q Ă R

n some other cube, with
edges parallels to the coordinate axis and of length ℓQ. We can consider

the affine map F : Q̂ Ñ Q, F px̂q “ ℓQx̂` b, being b a fixed vertex of Q.

Then, given f P LppQq such that
ş
Q
f “ 0, we define f̂px̂q “ fpF px̂qq,

and û the solution of div x̂û “ f̂ on Q̂. Now, take upxq “ ℓQûpF´1pxqq.

We have div xu “ ℓQdiv xûpF´1pxqq “ ℓQ
1

ℓQ
div x̂ûpp̂xqq “ f̂px̂q “ fpxq.

The estimate follows in a similar way, with the constant C being the
same for Q as for the fixed cube Q̂. If the edges of Q are not parallel
to the axis, a rotation needs to be included in F , but the same idea
follows.
Now, given Ω a Hölder-α domain, and f P LqpΩ, d´qβq such thatş

Ω
f “ 0, we consider tftutPΓ the decomposition of f given by Theorem
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4.3. For each ft, we have a unique solution ut supported on Ut and
such that divut “ ft with the unweighted estimate:

}Dut}LqpUtq ď c}ft}LppUtq.

Since every Ut, with the possible exception of the the root of Γ, is
a cube, the constant c can be taken independent of t. Now, taking
u “

ř
tPΓ ut, it is immediate that divu “ f . Moreover, we can take a

constant dt „ dpUt, BΩq for each t, and:

}Du}q
LqpΩ,dp1´α´βqqq

ď C
ÿ

tPΓ

}Dut}
q

LqpUt,dp1´α´βqqq

ď C
ÿ

tPΓ

d
p1´α´βqq
t }Dut}

q

LqpUtq

ď Cc
ÿ

tPΓ

d
p1´α´βqq
t }f}q

LqpUtq

ď C
ÿ

tPΓ

ż

Ut

fpxqqdpxqp1´α´βqq dx

ď C

ż

Ω

fpxqqdpxq´βq dx “ C}f}q
LqpΩ,d´βqq

,

where in the last step we used (4.4). � �

5.2. Improved Poincaré inequality. Improved Poincaré inequalities
have been largely studied in several contexts. For a Hölder-α domain
Ω, in [22] (and later in [3]) it is proven that:

}f}LppΩq ď C}∇f}LppΩ,dαpq,

for every f with vanishing mean value on Ω.
A weighted extension of this result was given in [23], where the au-

thors proved:

}f}LppΩ,dβpq ď C}∇f}LppΩ,dpβ`αqpq,

for β satisfying 0 ď β ď 1´α. We show that this restrictions on β can
be reduced to the requirement β ą ´α{p.

Theorem 5.3. Let Ω be a Hölder-α domain for some 0 ă α ď 1, and
f P LppΩ, dβpq for some βp ą ´α, such that

ş
Ω
fdβp “ 0. Then, there

is a constant C such that:

}f}LppΩ,dβpq ď C}∇f}LppΩ,dpβ`αqpq.
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Proof. We study the norm of f using a duality characterization. Thanks
to Lemma 5.1, it is enough to consider h “ g ` dβpψ P V :

}f}LppΩ,dβpq “ sup
h:}h}

LqpΩ,d´βqq
“1

ż

Ω

fh

“ sup
h:}h}

LqpΩ,d´βqq
“1

ż

Ω

fpg ` dβpψq

“ sup
h:}h}

LqpΩ,d´βqq
“1

ż

Ω

fg.

In the last step, we used that
ş
Ω
fdβp “ 0 and ψ is a constant. Now,

since g has vanishing mean value, we can apply to it the decomposition
of Theorem (3.8):

}f}LppΩ,dβpq “ sup
h:}h}

LqpΩ,d´βqq
“1

“

ż

Ω

ÿ

tPΓ

fgt.

Here the necessity of Lemma 5.1 becomes clear: since the support
of g is compact, it intersects only a finite number of sets Ut, so the
summation is finite and can be pulled out of the integral. Hence, using
the C´orthogonality of gt and the fact that dpxq „ dt for x P Ut we
have:

ż

Ω

fg “
ÿ

tPΓ

ż

Ut

fgt “
ÿ

tPΓ

ż

Ut

pf ´ fUt
qgt

ď
ÿ

tPΓ

}f ´ fUt
}LppUt,dpβ`α´1qpq}gt}LqpUt,dp´β´α`1qqq

ď
´ ÿ

tPΓ

}f ´ fUt
}p
LppUt,dpβ`α´1qpq

q
1

p

´ ÿ

tPΓ

}gt}
q

LqpUt,dp´β´α`1qqq

¯ 1

q

ď C
´ ÿ

tPΓ

d
pβ`α´1qp
t }f ´ fUt

}p
LppUtq

¯ 1

p

}g}LqpΩ,d´βqq,

where in the last step we used (4.4).
In order to complete the proof, we recall that, thanks to the estimate

in Lemma 5.1, }g}LqpΩ,d´βqq ď 2, and that the Poincaré inequality holds
on the unweighted case for smooth domains. Moreover, for convex
domains the constant is proportional to the the diameter of the domain.
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In our case, the diameter of each cube Ut is proportional to dt, hence:

}f}LppΩ,dβpq ď C
´ ÿ

tPΓ

d
pβ´1`αqp
t d

p
t }∇f}p

LppUtq

¯ 1

p

ď C
´ ÿ

tPΓ

}∇f}p
LppUt,dpβ`αqpq

¯ 1

p

“ C}∇f}LppΩ,dpβ`αqpq

� �

5.3. Fractional Poincaré inequality. Recently, authors have shown
interest in fractional versions of the classical Poincaré inequality, for
example:

inf
cPR

}u´ c}LppUq ď C

ˆż

U

ż

UXBpx,τdpxqq

|upxq ´ upyq|p

|x ´ y|n`sp
dxdy

˙ 1

p

, (5.2)

for τ P p0, 1q. The right hand side is similar to the usual seminorm
of the fractional Sobolev space W s,p for 0 ă s ă 1 where the double
integral is taken over U ˆ U . In fact, both expressions are equivalent
for Lipschitz domains ([24, equation (13)]). However, if the usual semi-
norm is taken in (5.2), it can be seen that the inequality holds for every
bounded domain (see, for example [25, Section 2], [8, Proposition 4.1]).
In particular, it is shown in [8, Proposition 4.1] that the constant in-

volved in the inequality is proportional to diampUq
n
p

`s|U |´ 1

p . On the
other hand, the stronger version (5.2) fails on irregular domains. Here
we prove a weighted improved inequality:

Theorem 5.4. Let Ω be a Hölder-α domain for some 0 ă α ď 1, and
u P W s,ppΩ, dβpq for some s P p0, 1q and βp ą ´α then, for τ P p0, 1q:

inf
cPR

}u´ c}LppΩ,dβpq ď

C

ˆż

Ω

ż

ΩXBpx,τdpxqq

|upyq ´ upxq|p

|y ´ x|n`sp
δpx, yqps`β´α`1qpdxdy

˙ 1

p

, (5.3)

where δpx, yq “ mintdpxq, dpyqu.

Proof. Naturally, it is enough to consider c “
ş
Ω
udβp. Moreover, we

may assume that
ş
Ω
udβp “ 0. As usual, writing the norm on the left

hand side by duality, via Lemma 5.1, applying the decomposition for
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g and estimate (4.4) yield:

}u}LppΩ,dβpq “
ÿ

tPΓ

ż

Ut

pu´ ctqgt

ď
ÿ

tPΓ

}u´ ct}LppUt,dppβ`α´1qq}gt}LqpUt,dqp´β´α`1qq

ď C

˜
ÿ

tPΓ

}u ´ ct}LppUtqd
ppβ`α´1q
t

¸ 1

p

,

for any set of constants tctutPΓ.
For completing the proof we invoke [8, Proposition 4.2], that states

that for a cube Q with edges of length ℓpQq:

inf
c

}u´ c}LppQq ď Cn,pτ
s´nℓpQqs

ˆż

Q

ż

QXBpx,τℓpQqq

|upxq ´ upyq|p

|x ´ y|n`sp

˙ 1

p

,

for any τ P p0, 1q. We apply this estimate for every cube Ut. For the
central subdomain U0, we apply [8, Proposition 4.1]. Hence, we obtain:

}u}LppΩ,dβpq

ď Cn,pτ
s´n

˜
ÿ

tPΓ

ż

Ut

ż

UtXBpx,τℓpUtqq

|upxq ´ upyq|p

|x´ y|n`sp
ℓpUtq

spd
ppβ`α´1q
t

¸ 1

p

.

Since ℓpUtq „ dt „ dpxq „ dpyq for every x P Ut and y P Ut, we continue:

ď Cn,pτ
s´n

˜
ÿ

tPΓ

ż

Ut

ż

UtXBpx,τdpxqq

|upxq ´ upyq|p

|x ´ y|n`sp
d
pps`β`α´1q
t

¸ 1

p

ď Cτ s´n

˜
ÿ

tPΓ

ż

Ut

ż

Bpx,τdpxqq

|upxq ´ upyq|p

|x ´ y|n`sp
δpx, yqpps`β`α´1q

¸ 1

p

ď Cτ s´n

ˆż

Ω

ż

Bpx,τdpxqq

|upxq ´ upyq|p

|x ´ y|n`sp
δpx, yqpps`β`α´1q

˙ 1

p

,

which completes the proof. � �

This result provides a partial generalization of the one obtained in
[25]. In that paper, a more general form of the inequality is considered,
with different exponents p and q on the left and right hand sides, as
well as a larger class of domains. However, for technical reasons, when
dealing with Hölder-α domains, only the case β “ 0 is considered. Our
result is equivalent to [25, Theorem 5.1] with p “ q, but the restriction
on β is weaker.
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Moreover, [25, Theorem 5.2] shows that the shift in the exponent
between the left and right hand sides of (5.3) is optimal.

5.4. Korn’s inequality. Given a vector field u P W 1,ppUqn, Korn’s
inequality states that,

}Du}LppUq ď C}εpuq}LppUq, (5.4)

where εpvq “ Dv`Dv
t

2
is the symmetric gradient. This result fails when

εpuq vanishes but Du does not. Thus, some additional condition on u

is needed. The so-called first case states the inequality when u vanishes
at the boundary of U , and it can be proven using simple arguments,
for every bounded domain. We are interested in the second case that
establishes that (5.4) holds when

ş
U

Du´Du
t

2
“ 0. This case requires

deeper considerations on the domain and it actually fails for irregular
domains.
A general case is also considered in the literature:

}Du}LppUq ď Ct}εpuq}LppUq ` }u}LppUqu, (5.5)

which does not need any further assumption on u. (5.5) can be eas-
ily derived from the second case of (5.4) (see, for example [26]). The
converse can be proved, for regular domains, using a compactness ar-
gument (see [27])
We prove the following weighted version of (5.4).

Theorem 5.5. Let Ω be a Hölder-α domain for some 0 ă α ď 1, and
u P W 1,ppΩ, dβpqn with βp ą ´α, such that

ş
Ω

Du´Du
t

2
dβp “ 0 then,

}Du}LppΩ,dβpq ď C}εpuq}LppΩ,dpβ`α´1qpq.

Proof. Observe that if we denote ηpuq “ Du´Du
t

2
, Du “ εpuq ` ηpuq,

so it is enough to prove the estimate for the elements ηi,jpuq of the
matrix ηpuq, that have vanishing weighted mean value. The estimate
is obtained by following step by step the proof of Theorem 5.3 so we
only give references for the needed unweighted inequalities. The norm
of ηi,jpuq is characterized by duality via Lemma 5.1. The unweighted
estimate (5.4) is known to hold for convex domains with a constant C
proportional to the ratio between the diameter of U and the diameter
of a maximal ball contained in U (see [5]). Hence, a universal constant
can be taken for every cube Ut. On the other hand, for the central
subdomain U0, we can apply [28, Corollary 2.2] where it is shown that
(5.4) holds on domains of Jones, which include Lipschitz domains. �

�
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This generalizes [23, Theorem 3.1] and [20, Theorem 2.1], where a
similar result is proven, but only for 0 ď β ď 1 ´ α. In both cases the
result is stated in the form of (5.5) but it is derived from the second
case. In [29] a counterexample is given that shows that the shift α´ 1
between the exponents on the left and right hand sides is optimal.

Appendix A. Proof of Theorem 2.2

We derive the discrete result from a continuous analogous proven in
[13]. We begin by obtaining another equivalent form for the Hardy-type
inequality:

Lemma A.1. Inequalities (2.1) and (2.2) are equivalent (with the same
constant C) to:

˜
ÿ

sPΓ˚

ˆ
vs

ÿ

aătĺs

Ftu
´1

t

˙p
¸ 1

p

ď C

˜
ÿ

sPΓ˚

F p
s

¸ 1

p

, (A.1)

for every F “ tFtutPΓ P ℓppΓq.

Proof. (A.1) is obtained from (2.2) by changing variables Fs “ dsus.
� �

We derive conditions for (A.1) to hold from the continuous case. Let
Gc “ pΓc, Ecq be a continuous tree with root a. By continuous, we
mean that the edges in Ec are segments in the plane, with a certain
length. In [13], the authors study the operator T : Lp1pGq Ñ Lp2pGq
given by:

T pfq “ ηpxq

ż x

a

fpyqµpyqdy.

Where µ and η are weights and the integral is taken along the path
that connects the root a with the point x, that could lie anywhere in
Gc. Here we are only interested in the case p1 “ p2 “ p, so we consider
µ P L

q
locpGcq and η P LppGcq, but the same ideas could be applied to

the general case. T is continuous in LppGcq if and only if:

Cc “ sup
fPLp

´ş
Gc

`
ηpxq

şx
a
fpyqµpyqdy

˘p
dx

¯ 1

p

´ş
Gc
fpxqpdx

¯ 1

p

ă 8.

Given a sub-tree K, we denote BK the boundary of K. We say that
x P BK is maximal if every point y ą x does not belong to K. We
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define Kc the set of all sub-trees of Γ containing a and such that every
boundary point is maximal. We define:

Bc “ sup
KPKc

´ş
ΓzK

ηpxqpdx
¯ 1

p

αc,K

,

where

αc,K “ inf
!

}f}p :

ż t

a

|fpxq|µpxqdx, @t P BK
)

Now, we can state the main result of [13], namely:

Theorem A.2. T is continuous if and only if Bc ă 8. Moreover:

Bc ď Cc ď 4Bc

Proof. See [13, Theorem 3.1]. � �

Finally, we can prove the theorem:

Proof of Theorem 2.2. We prove that given G “ pΓ, Eq a discrete tree,
v “ tvtutPΓ˚ and u “ tututPΓ˚ positive weights, inequality (A.1) holds
for every F “ tFtutPΓ˚ if and only if:

B “ sup
KPSa

p
ř

tPK 1 v
p
t q

1

p

αK

,

Moreover B ď C ď 4B
In order to apply Theorem A.2, we build a continuous tree Gc from

G by assigning each edge in E a length of 1. Take 0 ă ε ă 1. We
denote ps ´ ε, sq the points in the edge psp, sq that are at a distance
less than ε from s. For each s P Γ˚, we take ϕs

ε a function such that:

supppϕs
εq Ă ps ´ ε, sq,

ż s

s´ε

ϕs
εpxqpdx “ 1.

Now we complete the setting for the continuous problem by defining,
for z P psp, sq the functions:

‚ fpzq “ Fs,
‚ µpzq “ u´1

s ,
‚ ηεpzq “ vsϕ

s
εpzq

In the definition of Cc we take ηε and µ as the weights and the
supremum over all functions that are constant on each edge and denote
the result Cε. Analogously, Bε is Bc with ηε and µ. We prove that
Cε Ñ C and Bε Ñ B when ε Ñ 0`.
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First, for C, observe that we can assume without loss of generality
that Ft (hence, f) is positive. Then:

ż s

sp

ˆ
ηεpxq

ż x

a

fpyqµpyq dy

˙p

dx “

ż s

s´ε

ˆ
ηεpxq

ż x

a

fpyqµpyq dy

˙p

dx

ě

ż s

s´ε

vpsϕ
s
εpxqp

˜
ÿ

aătăs

Ftu
´1

t ` p1 ´ εqFsu
´1

s

¸p

dx

ě vps

˜
ÿ

aătĺs

Ftu
´1

t

¸p

p1 ´ εq

ż s

s´ε

ϕs
εpxqp dx

“ p1 ´ εqvps

˜
ÿ

aătĺs

Ftu
´1

t

¸p

On the other hand:
ż s

sp

ˆ
ηεpxq

ż x

a

fpyqµpyq dy

˙p

dx ď

ż s

s´ε

ˆ
ηεpxq

ż s

a

fpyqµpyq dy

˙p

dx

ď

ż s

s´ε

vpsϕ
s
εpxqp

˜
ÿ

aătĺs

Ftu
´1

t

¸p

dx “ vps

˜
ÿ

aătĺs

Ftu
´1

t

¸p

Finally, observe that ż s

sp

fpxqpdx “ F p
s .

Hence, we have:

p1 ´ εqC ď Cε ď C,

which proves that Cε Ñ C, when ε Ñ 0`.
For B, take δ ą 0 and K P K such that

´ř
sPΓzK˝ vps

¯ 1

p

αK

ą B ´ δ.

Consider Kε the continuous subtree obtained by removing from K the
points that are at a distance less than ε from its leaves. Then:

ż

GzKε

ηεpxqp dx “
ÿ

sPΓzK˝

ż s

s´ε

vpsϕ
s
εpxqp dx “

ÿ

sPΓzK˝

vps

In a similar way, it is easy to see that:

lim
εÑ0`

αc,Kε
“ αK
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Moreover, we have that f K1, K2 P Sa and K1 Ă K2, then αK1
ě αK2

.
In particular, this means αc,Kε

ě αc,K “ αK . This implies:

Bε ď B and lim
εÑ0`

Bε ą B ´ δ.

Since this can be done for every δ ą 0, we have: B “ Bc. � �
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