
Broken mirror symmetry of tracer’s trajectories in turbulence

S. Angriman,1, ∗ P.J. Cobelli,1 M. Bourgoin,2 S.G. Huisman,3 R. Volk,2 and P.D. Mininni1
1Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Fı́sica,

& IFIBA, CONICET, Ciudad Universitaria, Buenos Aires 1428, Argentina
2Univ. Lyon, ENS de Lyon, Univ. Claude Bernard, CNRS,

Laboratoire de Physique, 46 Allée d’Italie F-69342 Lyon, France
3Physics of Fluids Group, Max Planck UT Center for Complex Fluid Dynamics,

Faculty of Science and Technology, MESA+ Institute and J.M. Burgers Centre for Fluid Dynamics,
University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands

Topological properties of physical systems play a crucial role in our understanding of nature, yet their exper-
imental determination remains elusive. We show that the mean helicity, a dynamical invariant in ideal flows,
quantitatively affects trajectories of fluid elements: the linking number of Lagrangian trajectories depends on
the mean helicity. Thus, a global topological invariant and a topological number of fluid trajectories become
related, and we provide an empirical expression linking them. The relation shows the existence of long-term
memory in the trajectories: the links can be made of the trajectory up to a given time, with particles’ positions
in the past. This property also allows experimental measurements of mean helicity.

In recent years, broken symmetries and topology played an
increasing role in physics. Examples are topological phase
transitions [1], topological charges in condensed matter [2],
applications in quantum field theory [3], electromagnetism
[4], DNA [5] and chromosome organization [6]. In fluid dy-
namics, three-dimensional (3D) barotropic flows have an ideal
invariant of topological nature. Helicity, the inner product be-
tween the Eulerian velocity u and the vorticity ∇× u, inte-
grated over the fluid volume V , H = V−1 ∫ u · (∇× u) dV ,
is proportional to the Gauss linking number of vorticity field
lines [7, 8], and measures their linkage and knottedness. He-
licity is the only integral invariant of volume-preserving trans-
formations [9]. Moreover, its presence indicates the flow has
no mirror symmetry (i.e., it is chiral). Helicity is relevant
in astrophysical [10–13] and geophysical flows [14–16], in
superfluids and Bose-Einstein condensates [17–22], and in
swirling [23] and rotating [24] flows. In active fluids, it can
generate a helicity-driven inverse energy cascade (i.e., a self-
similar transfer of energy to larger scales) [25]. In turbulence,
the symmetry breaking introduced by non-zero helicity affects
the statistical properties of the energy cascade, and leads to
strongly depleted energy transfers between scales [8, 26], or
to a change in the energy transfer direction [25, 27].

Characterizing the topology of a vector field from a discrete
set of measurements constitutes a cross-cutting challenge con-
cerning several areas, such as surface reconstruction, deep
learning, time series classification, and chaotic attractor em-
beddings [28]. In fluid dynamics, helicity, although theoret-
ically appealing, is hard to measure. Experimental estima-
tions employ pointwise measurements of velocity and vortic-
ity (which are incomplete as helicity is a global quantity), or
use linking numbers in flows simple enough that vorticity field
lines can be identified [29, 30]. Helicoidal particles were also
devised to estimate local flow chirality [31]. Despite these
attempts, measurements in the fully turbulent regime remain
difficult, resulting on discussions on its conservation [32, 33].

Here we show that the broken mirror symmetry associated
with helicity affects the connectivity of fluid elements trajec-

tories, generating linkages between their long-time history.
This is accomplished by combining simulations of homoge-
neous and isotropic turbulence (HIT) and of Taylor-Green
(TG) flows at different Reynolds numbers, with laboratory ex-
periments of mirror-symmetric HIT and of chiral von Kármán
(VK) flows. The robustness of the results allows us to define
a new volumetric measurement of helicity using the particle
linking number, providing access to global quantification of
helicity in experiments.

Definition of the linking number of fluid elements’ trajec-
tories. Does the number of links between tracers’ trajectories
constitute a proxy of the helicity of the underlying flow? Parti-
cles’ trajectories do not form, in general, closed loops. Even if
some closed orbits exist under artificial (e.g., periodic) bound-
ary conditions, laboratory measurements extend for a finite
time and consist of short trajectories, spanning from a frac-
tion to a few flow correlation times, so there is no notion of
knottedness. Still, we can define an average linking number
between any set of 3D curves as the mean value of the signed
apparent crossings in a P number of two-dimensional (2D)
projections. We thus consider a time interval ∆T over which
we have measurements, and N tracers trajectories that sample
the flow during this interval. To compute the total number of
signed crossings, we project the curves onto P differently ori-
ented planes, as if computing the 2D “shadows” of the trajec-
tories. In each shadow, an apparent crossing between two pro-
jected curves is defined as their intersection. A crossing may
also occur between two different time instants of the same
trajectory; these self-crossings are treated identically (we ver-
ified that removing self-crossings yields the same results).
Note that crossings are not instantaneous crossings between
particles, but between their history. The sign of each crossing
(i.e., counting it as +1 or −1) is given by the right-hand rule
(see Fig. 1): we keep track of what trajectory is on top, and in
what direction particles moved when going across the vertex.
This orientation defines the handedness of the crossing [3].

The normalized crossings Kp for the p-th projection are de-
fined as Kp = M−1

p Σ
Mp
i=1 σi, where Mp is the total (unsigned)
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FIG. 1. Definition of apparent crossing. A pair of experimental 3D
trajectories (A) are projected onto a 2D plane (bottom of A, and B).
Arrows and color gradients indicate time progression. A crossing is
an intersection between the projections and is given by the particles’
history; it does not necessarily occur with the particles being near at
the same instant. The sign of each crossing is defined by the right-
hand rule (B, bottom): +1 when an anti-clockwise rotation is needed
to move from the tip of the arrow on top to the tip of the arrow below,
and−1 in the clockwise case. Here, with two tracks projected in one
plane, we see one negative and two positive crossings.

apparent crossings in the p-th projection, and σi = ±1 is the
sign of the i-th crossing. Then, we define the mean linking
number of the N trajectories over the interval ∆T as the mean
of Kp over all P projections: K = P−1ΣP

p=1Kp.
Description of the data. To study K and H we consider

direct numerical simulations (DNSs) and tracers from parti-
cle tracking velocimetry (PTV) in laboratory experiments (see
[34] for more details). We use two sets of DNSs [35, 36] with
resolutions of 2563, 5123, and 10243 points to span different
Reynolds numbers. The first consists of DNSs of HIT with
correlated random forcing to give a flow with a tunable he-
licity [37] (we also consider a “HIT 2” simulation with very
short forcing correlation time). Another set of DNSs uses TG
forcing [38, 39] which mimics, in a periodic domain, mul-
tiple cells resembling VK flows, each non-mirror-symmetric
and with non-null helicity (with alternating signs between the
cells, resulting in null total helicity in a (2π)3-periodic do-
main). In each simulation 106 tracers were evolved along
with the fluid. Experimental data on tracers trajectories ob-
tained by PTV originates from two experiments: A VK ex-
periment in Buenos Aires [40] generates a helical flow, and
the Lagrangian Exploration Module (LEM) in Lyon [41, 42]
generates mirror-symmetric isotropic turbulence.

For each dataset, K was computed using sets of trajectories
that span a large-scale volume of the flow in non-overlapping
time intervals ∆T ranging from a fraction to several τL, with
τL the Lagrangian correlation time (estimated from the tracers
velocity auto-correlation function, or from structure functions
in the LEM [41, 43]). We consider subsets of N = 250 parti-
cles in the DNSs and all available particles in the experiments,
with P = 26 projections whose normal vectors are approxi-
mately uniformly distributed over a unit sphere, and given by
n̂p = (ix̂+ jŷ+ kẑ)/(i2 + j2 + k2)1/2 with i, j,k ∈ {−1,0,1}.
This number of projections was empirically established as the

minimum required to consistently recover the linking number
of randomly oriented torus knots.

The relation between the linking number of trajectories and
helicity. We analyze K as a function of the normalized, di-
mensionless helicityH

H= LU−2 〈H〉
∆T , (1)

where 〈·〉∆T indicates time averaging over ∆T , U = (〈v2
x +

v2
y + v2

z 〉)1/2 (with vi the components of the tracers’ velocity
and 〈·〉 the average over ∆T and all trajectories) is a measure
of the tracers’ velocity over ∆T (to consider possible effects of
velocity variations over ∆T on the helicity), and L = uτL is a
flow integral scale based on the characteristic one-component
r.m.s. value of the tracers’ velocity u estimated over a long
time interval. These choices allow for estimation of all quan-
tities solely from Lagrangian measurements.

Figure 2 shows K as a function of H for DNSs of HIT and
for three datasets of the LEM experiment. Error bars represent
95% confidence intervals (approximately twice the standard
deviation of K). K and H were computed for ∆T = τL. For
the entire range of H explored, the data displays a linear de-
pendence between the two quantities, irrespective of Reynolds
number and flow geometry. Therefore, we propose that these
two global, large-scale quantities are related by

K = α H, (2)

where α is an unknown dimensionless constant. An additive
constant is not expected in this relation, as we can assume
that a mirror-symmetric flow will have statistically as many
+1 crossings as −1 crossings (which is consistent with the
data). An error-weighted least-squares fit using the HIT data
yields αHIT = 0.241±0.006 (95% confidence level) indepen-
dently of the Reynolds number (provided a fully developed
turbulent state is reached). A dashed straight line with this
slope is shown in Fig. 2. We verified that a linear relation as
in Eq. (2) holds regardless of the particular choice of U and L
employed to normalize H in Eq. (1).

Before discussing the other datasets, note Eq. (2) is robust:
It holds for all datasets with small changes in α within errors,
and when the number of particles N, the time span ∆T , or
other parameters are changed, and also when sufficiently large
subregions of the flow are considered. To understand how us-
ing a finite number of trajectories affects the determination of
K and its error, different subsets of 250 particles were ran-
domly chosen from the 106 trajectories traced in each DNS.
We see minor variations in the value of K, as shown by the
probability distribution function (PDF) of K for different sub-
sets in a DNS (indicated by the arrow) in Fig. 2(a). The PDF
is compatible with a Gaussian distribution and its dispersion
is associated with the errors in K when using a finite num-
ber of tracers. Note this PDF does not correspond to local
helicity fluctuations: it is a measure of the uncertainty in the
determination of K. Using N = 250 is motivated by the num-
ber of trajectories that can be simultaneously observed using
PTV in experiments, of the order of the several tens to a few
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FIG. 2. Linking number of tracers trajectories K as a function of nor-
malized helicity H for DNSs of HIT and the LEM experiment. Error
bars correspond to 95% confidence intervals. A least-squares linear
fit taking into account the error bars is shown as a reference. Inset
(a) shows the PDF of K in semi-logarithmic scale for different sub-
sets of tracers of the same DNS, indicated by the arrow. A Gaussian
distribution with the same mean and standard deviation is shown for
comparison. Inset (b) shows K as a function of H for the VK ex-
periment, and cells in TG simulations; each of the cells corresponds
to a VK-like swirling flow with non-zero mean helicity. A weighted
least-squares linear fit for all TG data is shown, and it is compared
with the linear fit obtained from HIT.

hundreds. Indeed, such value is enough to get a reasonable de-
termination ofK, with smaller errors as N is increased. As ∆T
decreases, N = 250 is still enough to determine K, although
with larger error bars. By varying ∆T , reasonable correlation
(with the same value of α) is obtained betweenK andH when
∆T ≥ τL/5. For ∆T < τL/10 uncertainties in K prevent dis-
tinction between chiral and non-chiral flows. By increasing
N to 1000, we verified that computing K over ∆T = τL/10
allows for a distinction between different flow chiralities, but
to achieve a correlation between K and H (consistent within
uncertainties) it is still necessary to use ∆T ≈ τL/5. This can
be interpreted as a limit on how short a history of the flow is
needed to reconstruct its topology. Furthermore, the condition
∆T ≥ τL/5 implies that if K is used to estimate the helicity in
a flow as a function of time, ≈ 0.2τL is the maximum time
cadence for which K(t) (and thusH(t)) can be estimated. Fi-
nally, increasing ∆T (for fixed N) results in a better agreement
between K/α and H. See [34] for more details on the uncer-
tainty in the determination of K, and on the robustness of the
results on N, ∆T and on the memory of the trajectories.

As previously mentioned, Fig. 2 also shows data from trac-
ers in LEM, an experiment that generates mirror-symmetric
(i.e., zero helicity) HIT. The turbulence generation mecha-
nism is quite different from the DNSs, using multiple im-
pellers instead of random volumetric forcing. Three experi-
mental runs with different Reynolds numbers (labeled LEM
2, LEM 4 and LEM 8) were analyzed. K was estimated
from the signed crossings over ∆T = τL for each run. The

mean value of K for each one is shown in Fig. 2; their val-
ues are KLEM 2 = 0.018± 0.18, KLEM 4 = 0.040± 0.29 and
KLEM 8 = 0.025±0.28 (95% confidence intervals). Such large
fluctuations arise from time fluctuations in the flow, since the
measurements were performed in the central region of the
setup (of dimensions much larger than the Kolmogorov scale)
where turbulence is expected to be more isotropic but large-
scale fluctuations are likely to be strong as one impeller may
temporarily dominate over others. Nonetheless, the value of
K is compatible with zero, consistent with null mean helicity.

Helicity and the linking number of fluid trajectories in
swirling flows. The relation given by Eq. (2) holds for other
turbulent flows besides HIT, and even locally in space, pro-
vided the region is large compared to the Kolmogorov scale,
asH and H are global, averaged quantities. We now consider
the DNSs of TG turbulence and the VK laboratory experi-
ments. Because of symmetries in the TG forcing [38, 44] the
flow in these DNSs can be divided into 8 cells each of volume
(π)3. The 8 cells are labeled as [Cx,Cy,Cz], where Ci = 1 or 2,
with 1 labeling the region from 0 to π in the i-th direction, and
2 the region between π and 2π (i.e., the cell labeled [1,2,1]
refers to the subregion [0,π)× [π,2π)× [0,π) of the whole
computational domain). Each cell has a flow that in many
previous studies was shown to have Eulerian and Lagrangian
similarities with that observed in VK experiments [39, 40, 45],
despite differences in boundary conditions and forcing mech-
anisms (volumetric forcing in the former, and two counter-
rotating propellers in the latter): two counter-rotating vortices
separated by a shear layer. The VK flow has non-zero he-
licity, while given the TG symmetries, four of the DNS cells
have mean helicity with a preferential sign, and the other four
cells have the opposite sign.

Figure 2(b) shows K for the VK experiment (with H es-
timated from DNSs and large-scale flow geometry), and for
each cell in the TG simulations, as a function of each H
value, for two different Reynolds numbers in 5123 or 10243

TG DNSs. As before, in simulations N = 250 and ∆T = τL.
Fluctuations of K and H are larger than in HIT as this flow
can have wild variations of helicity with time. However, a
linear relation between both quantities is again recovered. A
weighted least-squares fit using both resolutions yields αTG =
0.23± 0.01 (95% confidence interval). A straight line with
this slope is indicated as a reference in Fig. 2(b), as well as an-
other with slope αHIT for comparison; αHIT and αTG are com-
patible within error bars (thus, in the following α = αHIT).
This also shows that the linking number of fluid trajecto-
ries in subregions of the flow (as the individual cells in the
DNSs of TG) is proportional to the local flow helicity. Figure
3(a) depicts the value of K(t) for each TG cell in simulations
with 10243 grid points. For each cell, K was computed with
∆T = τL over 10 random subsets of trajectories (each with 250
trajectories). The different points in each vertical stripe corre-
spond to K estimated for these 10 subsets (in groups of con-
nected points for subsets in the same cells), at different con-
secutive time intervals up to time 6τL. K (and H) fluctuates
strongly in time in each cell, but half the cells preferentially



4

0 1 2 3 4 5
t/τL

−0.4

−0.3

−0.2

−0.1

0.0

0.1

0.2

0.3

0.4
K

(a)

[1,1,1]
[1,1,2]
[1,2,1]

[1,2,2]
[2,1,1]
[2,1,2]

[2,2,1]
[2,2,2]
VK

1 3 5 7
PDF(K)

(c)

N(µV K, σV K)

VK

0 1 2 3 4 5
t/τL

(b)

FIG. 3. (a) Linking number K as a function of time in the 8 TG
cells, and in the VK experiment. The different points correspond to
K estimated for 10 subsets of 250 particles (in groups of connected
points), at different consecutive time intervals ∆T = τL up to time
6τL. Half the cells have K > 0 (with fluctuations in time), and the
other half K < 0. The dashed line is the mean value of K in the VK
experiment, with the colored band representing a 95% confidence
interval considering time fluctuations. (b) Time evolution of K for
all the cells with negative helicity, reconstructed by averaging the 10
subsets from the data in (a). (c) PDF of K fluctuations in the VK
experiment, with a normal distribution N(µV K ,σV K) with the same
mean µV K and standard deviation σV K for comparison.

have K > 0, and the other half K < 0. Given a TG cell and
a time interval ∆T , by averaging over the 10 subsets a mean
value of K at said time interval is computed, and a time series
K(t) for each cell is thus reconstructed. Figure 3(b) shows the
resulting time series of the linking number (or, except for the
factor 1/α , the flow’s normalized helicity) for the cells with
negative helicity.

The mean value of K in the VK experiment at a similar
Reynolds number as the DNSs, obtained from PTV, is also
shown in Fig. 3(a) by the dashed line, with a shaded horizon-
tal stripe indicating 95% of the fluctuations. Figure 3(c) shows
the PDF of K in the VK experiment for 500 measurements
(the vertical axis is shared by both panels), and a normal distri-
bution with the same mean and standard deviation. The value
of K in the VK experiment and the TG cells with positive he-
licity are compatible within uncertainties, as expected from
the similarities both flows share in their large-scale geometry,
and despite the differences in boundary conditions and forc-
ing mechanisms. Thus, the flow helicity has an imprint in the
number of crossings of particles, and for very different tur-
bulent flows, with or without mean flows, and with different
boundaries.

We showed that fluid elements tell a story of the topol-
ogy of the underlying turbulent flow. It is known that the ir-
reversibility of turbulence has an effect on trajectories [46].
Here, the flow topology affects particles by linking the trajec-
tories. In a mirror symmetric flow, signed crossings average
to zero. In a chiral flow that’s not the case: Flows with pos-

itive helicity result in a positive average of signed trajectory
crossings, while flows with negative helicity result in negative
signed crossings. Moreover, when properly normalized these
two quantities are linearly related, with a proportionality con-
stant that appears independent of the Reynolds number, the
boundary conditions, and the mechanism that generates the
turbulence. The linking of the particle paths involves macro-
scopic length and time scales. This is a remarkable feature,
as a particle might go through flow regions in which strong
fluctuations could potentially erase the broken mirror symme-
try of the flow, specially in the TG flow. Statistical alignment
between u and ∇×u, which may differ depending on flow he-
licity and was reported to take place preferentially in regions
of low dissipation [47–51], can only partially explain these
observations. As the particles move following u, they may
also partially follow vorticity field lines in helical regions, but
this can only happen in such specific regions. The relation be-
tween H and K for long times and large scales thus indicates
a stronger, and non-trivial, impact of flow chirality in physical
observables and in the memory of fluid particles. The parti-
cle linking number thus defined connects a global topological
invariant of the flow with a topological number of fluid trajec-
tories. Moreover, the ratio of proportionality α is the same for
very different flows, and in particular, for cases with helicity
in the large-scale mean flow (i.e., TG and VK flows) as for
HIT without a mean flow, both numerically and experimen-
tally. This suggests that α may characterize a universal prop-
erty of turbulence. Such connection has implications, e.g., for
studies of mixing. If particle’s trajectories get more linked
in a helical flow, then helicity can have an effect in mixing,
something already noted in studies of helical flows in biolog-
ical systems [52, 53]. Finally, the relation between H and K
provides a way to estimate helicity in laboratory experiments,
a quantity which so far has eluded detailed laboratory char-
acterization in turbulent flows. Indeed, one motivation to use
small sets of particles or short trajectories, instead of the mil-
lions of long trajectories usually accessible in DNSs, was to
probe the robustness of the particle linking number when used
in conditions as those found in the laboratory.
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SUPPLEMENTAL MATERIAL: BROKEN MIRROR SYMMETRY OF TRACER’S TRAJECTORIES IN TURBULENCE

DIRECT NUMERICAL SIMULATIONS

We performed direct numerical simulations (DNSs) of the incompressible Navier-Stokes equations

∂u
∂ t

+u ·∇u =−∇p+ν∇
2u+F, (3)

where u is the velocity field, p the pressure per unit mass density ρ0, ν the kinematic viscosity, and F an external volumetric
forcing per unit mass density that sustains the turbulence. The equations are solved in a dimensionless three-dimensional
(2π)3-periodic cubic domain using a parallel pseudospectral method with the GHOST code [35, 36]. For all forcing schemes
considered, the flow is evolved until a turbulent steady state is reached, and then 106 Lagrangian particles are injected in the
flow, which evolve according to

dxp

dt
= u(xp, t), (4)

where xp(t) is the position of the tracer at time t, and u(xp, t) is the velocity of the fluid at xp(t). Integration of tracers is
performed using a second-order Runge-Kutta time stepping scheme, and a three-dimensional third-order spline interpolation to
estimate the fluid velocity u(xp, t) at the position of the particle. The instantaneous position and velocity of each particle is
tracked as it evolves in time along with the fluid. Two different forcing schemes for F were considered.

Homogeneous and isotropic turbulence with tunable helicity

To generate homogeneous and isotropic turbulence (HIT) while controlling the amount of helicity injected in the flow, the
mechanical forcing was chosen as a superposition of Fourier modes with random phases, and a correlation time of 0.5 turnover
times (random phases were slowly varied in time to prevent abrupt changes in the forcing). Helicity injection was controlled
using the method introduced in [37]: Two random independent fields q(1) and q(2) are generated in Fourier space, each normally
distributed and centered around kF , the forcing wave number. From these, two normalized and incompressible fields f(1) and f(2)
are defined as

f(i) =
∇×q(i)

〈|∇×q(i)|2〉1/2 , i = 1,2. (5)

Lastly, by correlating the fields f(1) and f(2), the mechanical forcing in Fourier space is given by

F(k) = f0

{
cos(ζ )f(1)(k)+ sin(ζ )f(2)(k)+

1
k

∇× [sin(ζ )f(1)(k)+ cos(ζ )f(2)(k)]
}
, (6)

where f0 is the amplitude of the forcing, and ζ controls the amount of helicity injected in the flow. The relative helicity of the
forcing is given by sin(2ζ ), so ζ = 0 corresponds to no helicity injection (on average), while ζ = π/4 results in maximal helicity
injection. For the HIT DNSs, three Reynolds numbers were considered respectively with spatial resolutions of 2563, 5123 and
10243 grid points. For each Reynolds number and spatial resolution, multiple runs with ζ ∈ [−π/4,π/4] were done (i.e., varying
the amount of helicity in the flow). Also, a HIT simulation (“HIT 2”) with a forcing correlation time of 1/100 of the turnover
time was performed, with a spatial resolution of 10243 grid points and with ζ = π/4, to study whether changing other forcing
parameters, as the forcing correlation time, had a significant effect in the observed correlation between helicity and the tracers’
linking number.

Taylor-Green DNSs

For these simulations the external mechanical forcing is based on the Taylor-Green flow [38]:

Fx = F0 sin(kF x) cos(kF y) cos(kF z), Fy =−F0 cos(kF x) sin(kF y) cos(kF z), Fz = 0, (7)

with forcing wave number kF = 1. The resulting flow presents several symmetries in a statistical sense, see Ref. [38, 44], and
as a result the flow in the full domain can be split into eight cells of volume π3. In each cell the flow consists of two counter-
rotating large-scale vortices which lie perpendicular to ẑ, separated by a shear layer in the mid plane. The flow in each cell has a
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FIG. 4. (a) Schematic view of the LEM setup. Twelve impellers are positioned on twelve of the twenty faces of the vessel containing the
fluid. The length of the size of each triangular face is indicated as a reference, as well as the position of the motors and the windows used for
measurements. (b) VK setup, with a representation of the mean large-scale flow. Two propellers with straight blades are used; the size of the
vessel and the distance between propellers are indicated as a reference.

similar geometry to the von Kármán experiment (see Sec. 2), both from a Eulerian and a Lagrangian point of view [40, 45]. Also
because of the symmetries the total helicity in the (2π)3 domain is zero, but each π3 cell has non-zero helicity which fluctuates
in time (the mean value alternates between positive and negative values when neighboring cells are crossed). With this forcing
two different Reynolds numbers were explored, using spatial resolutions of 5123 and 10243 grid points.

LABORATORY EXPERIMENTS

The Lagrangian Exploration Module (LEM)

The experimental data for HIT was obtained from the LEM setup in Lyon [41]. The setup consists of twelve independently
controlled impellers with a diameter of 10 cm, located at twelve of the twenty faces of a regular icosahedron and placed in a
configuration to ensure maximum isotropy and mirror symmetry. The edges of the icosahedron have a length of 40 cm, so that
the full volume of the vessel is ≈ 140 l. The vessel is filled with degassed and filtered water. A schematic view of the setup
is depicted in Fig. 4(a). Observation windows are made of polymethyl methacrylate (PMMA). Each impeller is driven by an
independent brushless motor (Unimotor, Leroy Somer, 640 W). For the experiments in this work the forcing is isotropic: all
impellers are used with the same constant rotation frequency f LEM

0 , achieving a turbulent steady state in all cases. The turbulent
flow at the center of the apparatus—in a region comparable to the flow integral scale—is statistically homogeneous and isotropic,
with a mean flow whose magnitude is about 10% of the turbulent fluctuating velocity and has zero mean helicity.

Polyethylene microspheres with diameters of 106–125 µm (Cospheric) are used as tracers (density 0.995 g cm −3). The setup
is illuminated using a pulsed Nd:YAG laser (Quantronix Dual Condor, with mean output power of 150 W and with repetition
rates synched with the cameras) with wavelength of 532 nm and pulse width of 200 ns. The laser is collimated and expanded to
illuminate the measurement volume. Three high-speed cameras (Phantom V12, Vision Research Inc.) are used to measure the
flow in a volume of 5×6.5×5.5 cm3, with an imaging resolution of 50 µm/px. The optical system is calibrated to recover the
instantaneous 3D position of each particle, which is then tracked in time [42]. The velocity for each track is derived from the
trajectories using Particle Tracking Velocimetry (PTV).

Several experimental runs were made varying the rotation frequency of the impellers, f LEM
0 ∈ {2,4,8} Hz. The cameras and

laser’s frame rate was chosen at least one order of magnitude faster than the Kolmogorov time scale τη . There are approximately
210 different trajectories in time intervals of duration τL (the Lagrangian velocity correlation time, defined below), with a mean
duration of 0.08 f LEM

0 . After many runs for each forcing frequency, there are a total of O(105) 3D trajectories available.
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Flow Label Datasets u τη ν τL/τη ε τL/dtp Repart Reλ

[m/s] [10−3 s] [10−6 m2/s] [10−2 m2/s3]
HIT 2563 9 0.53 147 1200 14.3 5.59 140 490 133

5123 5 0.57 102 480 22.0 4.60 450 1500 270
10243 3 0.63 54 200 42.5 6.84 920 4600 420

HIT2 10243 1 0.68 54 200 47.2 6.95 1010 5770 475
TG 5123 - 0.84 53 675 40.5 24 430 2300 215

10243 - 0.85 36 300 48.5 23 700 4200 337
LEM LEM 2 - 0.062 12 1 15.6 0.66 585 730 180

LEM 4 - 0.118 4.2 1 19.7 5.5 260 1200 230
LEM 8 - 0.241 1.5 1 28.9 45 270 2500 336

VK - - 0.17 3.8 1 56.1 6.6 109 6300 435

TABLE I. Parameters of all datasets. DNS data is dimensionalized using a unit length L0 = 1 m, a unit velocity U0 = 1 m/s, and a unit density
ρ0 = 1 kg/m3. For the DNSs, the label corresponds to the grid resolution. For the LEM experiment, labels indicate the impellers frequency in
Hz. For the HIT simulations the number of datasets (“Datasets”) is equal to the total number of simulations with different values of ζ (also,
each simulation was conducted for several turnover times, allowing multiple estimations of the helicity). “HIT 2” corresponds to a HIT run
with a very short forcing correlation time. u is a measure of the 1D r.m.s. value of the particles’ velocity, τη = (ν/ε)1/2 is the Kolmogorov
time scale with ν the kinematic viscosity, and ε the energy injection rate. τL is the Lagrangian correlation time, dtp is the particles’ sampling
time, Repart is the Reynolds number based on the particles’ velocities, and Reλ the Taylor-based Reynolds number.

The von Kármán Swirling Flow experiment

The data come from a von Kármán (VK) flow experiment in Buenos Aires [40]. The setup comprises two facing disks of
diameter D = 19 cm, separated by a vertical distance of H = 20 cm, each fitted with eight straight blades. The blades have a
height of 1 cm, a width of 1 cm and a length such that they do not reach the center of the disk. The propellers are contained
in a PMMA cell of square cross-section with side h = 20 cm, giving access to an experimental volume of (20× 20× 20) cm3

where the flow can be measured. The total size of the cell is (20× 20× 50) cm3, leaving space in the back of the propellers
for shafts that connect the propellers to motors, and for refrigeration coils that allow heat removal if needed. Each propeller
is driven by an independent brushless rotary servomotor (Yaskawa SMGV-20D3A61, 1.8 kW) controlled by a servo controller
(Yaskawa SGDV-8R4D01A) which provides access to the instantaneous velocity and torque of the motor. The cell is filled with
distilled water from a double pass reverse osmosis system, to remove ions and suspended solid particles. For this study the two
disks rotate in opposite directions at an angular rotation frequency f VK

0 , stirring the fluid in the cell. This generates two large
counter-rotating circulation cells producing, on average, a strong shear layer in the midplane between the disks. A secondary
circulation in the axial direction is also generated by the propellers, resulting in a fully three-dimensional turbulent flow. A
schematic representation of the VK setup and its mean flow is shown in Fig. 4(b). The macroscopic flow structure and lack of
mirror symmetry implies that the VK flow has non-zero helicity.

For each individual experimental run the flow is stirred by setting the angular frequency f VK
0 = 1.25 Hz, so that the Reynolds

number attained is comparable to the Reynolds number of the TG DNS using 10243 grid points. The flow is seeded with
tracer particles, which are neutrally buoyant polyethylene microspheres (density of 1 g cm−3) of diameter d = 250–300 µm
(Cospheric). Particles were coated with a biocompatible surfactant (Tween 80) to ensure proper placement in suspension.

Measurements of particles’ dynamics were carried out using PTV. The cell is illuminated from two adjacent sides using two
(25× 25) cm2 LED panels (each 1880 lm, 22 W). Two high-speed cameras (Photron FASTCAM SA3) capture the particle’s
shadow projection over a bright background on two perpendicular sides of the cell. The cameras are aligned in such a way
that the center of each image coincides with the center of the face of the cell that is being recorded. One camera captures
the x–z components of the particle’s position, while the other measures the y–z components, so the 3D individual trajectories
are later reconstructed from 2D trajectories in each view. Each camera has a maximum speed of 1000 fps at full resolution
of (1024× 1024) px2, and 12-bit color depth. The cameras are placed in front of the cell at a distance L = 3.5 m so that the
region of observation of (16× 16× 16) cm3 covers nearly the whole experimental volume, while warranting minimal optical
distortion, with a spatial resolution of 0.16 mm/px. We employ a 70-300 mm lens in each camera, using a focal length of
260 mm. Under these experimental conditions, the estimated maximum error in imaging a particle’s position due to perspective
effects is ≈ 325 µm, which is of the order of the tracers’ diameter (see Ref. [40] for more details). For the results presented
here, the sampling frequency of the cameras is set at fs ≈ 1/τη . After several realizations of the experiment there are O(104)
3D trajectories with a mean duration per trajectory of 0.34/ f VK

0 . In each time interval of duration τL there are approximately
105 trajectories available. From the individual trajectories, the instantaneous velocity is derived after applying a Gaussian filter.
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FIG. 5. Left: Estimation of the helicity from the particles’ linking number for different time spans ∆T (in units of τL), using subsets of 250
particles. The dashed lines represent H averaged over ∆T for three simulations, and the shaded regions indicate their corresponding standard
deviation (associated to the strength of helicity fluctuations in time). The markers with error bars depict K/α (i.e., and estimation of the flow
helicity) computed over a given time span ∆T . Right: Estimation of K/α and H using subsets of 1000 trajectories, as a function of ∆T . Labels
are the same as in the left panel.

FLOW CHARACTERIZATION

To define Reynolds numbers and characterize the flows we use the one-component r.m.s. tracers’ velocity u. For isotropic
flows (HIT DNSs and the LEM experiment) u is defined as u = (U/3)1/2 = (〈v2

x + v2
y + v2

z 〉/3)1/2, where vi is the ith component
of the tracer’s velocity and the brackets 〈·〉 denote averages over time and over all trajectories. For anisotropic flows (TG and
VK), u is computed using the horizontal components of the velocity (i.e., vx and vy): u = (〈v2

x +v2
y〉/2)1/2. Note that to normalize

the kinetic helicity we always use U = (〈v2
x + v2

y + v2
z 〉)1/2, for all flows, motivated by the fact that the helicity is a volumetric

and three-dimensional quantity.
The Lagrangian velocity autocorrelation function is computed for each component of the tracers’ velocity as

R(i)
L (τ)≡ Cv(τ)

Cv(0)
=
〈vi(t) vi(t + τ)〉
〈v2

i (t)〉
, (8)

with τ the time lag. The one-dimensional Lagrangian correlation time τ
(i)
L is estimated from this correlation function. For

isotropic flows the correlation time is then defined as τL = (τ
(x)
L + τ

(y)
L + τ

(z)
L )/3, whereas for the TG and VK flows τL =

(τ
(x)
L + τ

(y)
L )/2. A different procedure was followed in the LEM experiments where the available trajectories are short, as

explained below.
In the simulations the energy injection rate ε is readily available. In the VK experiments ε is estimated using u and τL as

ε =
2

C0

u2

τL
, (9)

where C0 ≈ 4 is the Lagrangian second order structure function constant for the VK flow at the Reynolds numbers explored here
(see [40], note C0 can typically vary between 2 and 7 [43]). For the LEM experiments, the energy injection rate is estimated
from the Eulerian second order structure function. Note that in this case, given the shorter particle trajectories, the Lagrangian
correlation time is then estimated as τL = 2u2/(εC0), with C0 ≈ 6.0 the constant for HIT at the experiments’ Reynolds number.
We verified that in the DNSs and VK experiment this procedure resulted in compatible estimations of τL within uncertainties.
An integral Reynolds number based on tracers’ velocity Repart can be defined in all cases as

Repart =
uL
ν
, (10)

where L is a characteristic length scale based on u and τL,

L = uτL. (11)
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FIG. 6. Particles’ linking number K as a function of the number of trajectories used to determine the crossings, for three simulations over a
fixed time interval ∆T . Error bars in K correspond in all cases to 95% confidence intervals. Left: ∆T = τL Right: ∆T = τL/5.

Note that as L is based on Lagrangian measurements, for it to be properly estimated tracers must be tracked for a sufficiently
long time. Using u and the corresponding estimation of ε , the Taylor-based Reynolds number is defined as

Reλ =

√
15u4

νε
. (12)

All the relevant parameters for the datasets analyzed are provided in Table I.

ROBUSTNESS OF THE RESULTS

To analyze the robustness of the results we consider data from DNSs of HIT with 2563 grid points for three flow configurations:
one withH< 0, one withH≈ 0, and one withH> 0. Similar results were obtained at other Reynolds numbers.

Time interval dependence

We first consider what is the minimum time span ∆T needed to estimate the particles’ linking number such that flows with
different helicity can be distinguished. For the three simulations mentioned above, the normalized crossings were computed
over increasing time intervals ∆T from τL/10 to 5τL, averaging K over 20 sets of 250 randomly picked particles in each set.
The quotient K/α (with 95% confidence intervals) is shown in Fig. 5 as a function of ∆T , and compared against the normalized
helicity H in the flow averaged over the same time span (with error bars corresponding to the standard deviation in the time
fluctuations of the helicity). For ∆T = τL/10 the 95% confidence intervals do not allow for statistical discrimination between the
three cases withH< 0, ≈ 0, and > 0. However, just computing the crossings over ∆T = τL/5 is enough to distinguish between
chiral and non-chiral flow states, and as ∆T/τL increases the agreement betweenK/α andH improves. Note also that the shapes
of the curves K(∆T )/α follow qualitatively those ofH(∆T ) for every dataset.

To see whether this is the smallest time interval at which helicity can be obtained from the particle linking number, we consider
larger subsets of 1000 randomly picked particles. Figure 5 (right) shows K in this case for ∆T ≤ 0.4τL. In this case the different
flow states are distinguishable for ∆T ≥ 0.1τL, as error bars are significantly reduced, but in order to consistently link K to the
value of helicity H (within statistical uncertainties), ∆T needs to be, again, at least 0.2τL. This indicates a minimum history of
the trajectories is needed to reconstruct the flow topology, at least for the number of particles considered here.

Number of particles

While DNSs with millions of particles are feasible, experiments can often track only a few hundreds of particles at a time,
although measurements can be repeated multiple times. For practical purposes, the determination of K should be robust to the
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FIG. 7. Normalized particles linking number K/α , conditioned to crossings of trajectories occurring only in a window of time centered around
τcross (in units of τL, solid markers). The empty markers show the accumulated value of K/α for all crossings separated in time up to a time
interval τcross. All error bars correspond to 95% confidence intervals. As a reference, the horizontal dashed lines with shaded regions indicate
the mean flow helicity and its standard deviation.

number of particle trajectories N considered in each measurement. For a fixed time span ∆T = τL, we computed K averaging
over the crossings in 20 sets of N particles (randomly picked for each set, from the total of 106 particles available in each DNS).
The number of particles was increased successively from N = 20 up to N = 250, in a range motivated by the typical amount
of simultaneously available particle trajectories in a typical PTV laboratory measurement. The value of K as a function of N is
shown in the left panel of Fig. 6 with 95% confidence intervals, again for the three reference simulations with positive, negative,
and zero helicity. For N ≥ 65 it is possible to statistically discern between the different flow chiral states. The mean value of
K does not show significant variations, and as expected the error bars decrease with increasing N. As discussed before, if the
time interval ∆T is decreased, error bars and uncertainties increase. Or, otherwise, a larger number of trajectories is needed for
the statistics to converge with the same uncertainties. The right panel of Fig. 6 shows K as function of N but for a time interval
∆T = τL/5. In this case, N ≥ 190 is enough to identify each flow state within statistical uncertainties, and larger values of N
provide better results. Moreover, the determination of K using τL/5 is compatible within error bars to that obtained for ∆T = τL.

Memory of the crossings

Are all crossings of trajectories relevant? Or are crossings more important for the determination of K if the particles were
nearby at the time of the crossing, or on the contrary, very far away? For a time span ∆T = 5τL, and using 20 sets of 250
particles, we computed K conditioned to only crossings occurring separated by a time interval close to τcross. That is to say,
given a crossing for which one particle passed through the crossing at time t0, and the other particle passed through it at a
time t0 + δτ , we only computed the crossing if δτ ∈ [τcross− τL/10,τcross). The result is shown in the right panel of Fig. 7.
Interestingly, consistent results are obtained for a very long range with τcross . 5τL, i.e., even crossings separated in time contain
information on the flow chirality. The figure also shows K accumulated for all time separations up to τcross, i.e., counting all
crossings with δτ ∈ [0,τcross). The accumulated crossings (when normalized by α) converge rapidly to the mean flow helicity
in each case.

Time dependence and uncertainties of K and H

In the DNSs, the large number of available trajectories allows for the determination of uncertainties in K using different
subsets of trajectories for the same time interval ∆T : as was shown in the main text, for a fixed ∆T we can computeK for subsets
of the trajectories, and the error inK is associated to the standard deviation of the subsets’ values ofK. However, in experiments,
where the typical number of trajectories ranges from several tens to a few hundreds, to quantify uncertainties in K we repeated
the experiment several times. For each realization we then computed K(t) and its average. Figure 8 shows K(t) as a function of
time (in units of τL) for 20 realizations of the von Kármán experiment, computed over non-overlapping time intervals ∆T = τL.
The dashed line and the shaded region represent respectively the mean value over all realizations, and 95% confidence levels.
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FIG. 8. Time series of K(t) for 20 realizations of the von Kármán experiment. Green dots turn darker as time evolves in each realization. In
the first panel on the left, the time evolution of K(t) for one TG cell with positive helicity is shown as a reference. On the right we show the
PDF of K, with a normal distribution with same mean and dispersion as a reference.

Within each realization K(t) displays fluctuations, whose amplitudes are comparable to those in the TG DNSs (see the points
corresponding toK(t) for one TG cell with positive helicity in the first panel from the left in Fig. 8). From all the realizations we
can build the PDF shown in the rightmost panel of Fig. 8. The uncertainty in the determination of K for the experiment steady
state is associated with the dispersion of this distribution.

In the LEM experiment, H must be zero on average as the forcing mechanism is mirror symmetric. In the VK experiment,
detailed studies (see, e.g., [40]) have shown that the large-scale geometry of the VK flow resembles that of the TG flow in one
cell, except for boundary effects. Thus, we estimate H in this flow from calibrated DNSs of TG flows at similar Reynolds
numbers, and we rescale values from the DNSs taking into account that the TG flow displays a different ratio of poloidal to
toroidal velocities, vz/vx. From geometric considerations, H in the experiment is thus estimated from H in the DNSs rescaled
by a factor (vz/vx)VK (vz/vx)

−1
TG ≈ 1.15.


	Broken mirror symmetry of tracer's trajectories in turbulence
	Abstract
	 Acknowledgments
	 References
	 Supplemental Material: Broken mirror symmetry of tracer's trajectories in turbulence
	 Direct numerical simulations
	 Homogeneous and isotropic turbulence with tunable helicity
	 Taylor-Green DNSs

	 Laboratory experiments
	 The Lagrangian Exploration Module (LEM)
	 The von Kármán Swirling Flow experiment

	 Flow characterization
	 Robustness of the results
	 Time interval dependence
	 Number of particles
	 Memory of the crossings
	 Time dependence and uncertainties of K and H



