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Abstract – In 2002, in a seminal article, Bandt and Pompe proposed a new methodology for
the analysis of complex time series, now known as Ordinal Analysis. The ordinal methodology
is based on the computation of symbols (known as ordinal patters) which are defined in terms
of the temporal ordering of data points in a time series, and whose probabilities are known as
ordinal probabilities. With the ordinal probabilities the Shannon entropy can be calculated, which
is the permutation entropy. Since it was proposed, the ordinal method has found applications in
fields as diverse as biomedicine and climatology. However, some properties of ordinal probabilities
are still not fully understood, and how to combine the ordinal approach of feature extraction
with machine learning techniques for model identification, time series classification or forecasting,
remains a challenge. The objective of this perspective article is to present some recent advances
and to discuss some open problems.

perspective Copyright c© 2022 EPLA

Introduction. – Since it was published in 2002, the
seminal paper by Bandt and Pompe [1] has been cited
more than 17000 times, and the number of citations per
year continues to grow, nearly exponentially. The aim
of this article is to present a brief overview of the ordinal
methodology and to present some examples of applications
in different fields.

An important challenge in time series analysis is how
we can determine if a time series was generated by a
low-dimensional, possibly chaotic dynamics, or by a high-
dimensional, possibly stochastic dynamics.

Stochastic and chaotic time series display some char-
acteristic which make them almost indistinguishable: a) a
wide-band power spectrum; b) a delta like auto-correlation
function; c) an irregular behavior of the measured sig-
nals. Chaotic systems display “sensitivity to initial condi-
tions” which manifests instability in the phase space and
leads to non-periodic motion. They display long-term un-
predictability despite the deterministic character of the
temporal trajectory. In a system undergoing chaotic mo-
tion, two trajectories starting in two neighboring points in

(a)E-mail: cristina.masoller@upc.edu (corresponding author)

phase space will diverge. Let x1(t) and x2(t) be two such
points, located within a ball of radius R at time t. Further,
let us assume that these two points cannot be resolved
within the ball due to the resolution of the measurement
instrument. At a later time, t�, the distance between the
points will grow (as the points diverge due to chaotic mo-
tion), and at time t� the points can become experimentally
distinguishable. This implies that chaotic motion reveals
some information that was not available at earlier times.
Then, we can think of chaos as an information source, and
we can use quantifiers based on Information Theory to
characterize and better understand chaotic systems. This
approach, combined with the use of symbolic analysis, was
first explored by Bandt and Pompe (BP) in 2002 [1]. Since
its success with a well-known chaotic system, the Logistic
map, the BP approach has been used to analyze a wide
range of complex data sets. It would not possible be to
review the many applications that the BP methodology
has found in the last 20 years, so here we limit ourselves
to discussing a few examples.

The organization of this perspective article is as follows:
first, we discuss two information theory quantifiers, the
entropy and the complexity, and introduce the concept of
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ordinal patterns. Then, we discuss applications of these
concepts in different fields. We finalize with a discussion
of future promising lines of research.

Entropy, complexity and ordinal patterns. –
A well-known quantifier is normalized entropy, H [P ] =
S[P ]/Smax, with S as the Shannon entropy [2], and Smax

the system’s maximal entropy that is zero when the in-
formation (knowledge) about the underlying process de-
scribed by the probability distribution function (PDF) P
is maximal and the outcome of a measure can be predicted
with complete certainty. In contrast, when a physical pro-
cess follows a uniform distribution, Pe, the knowledge is
minimal and the entropy is maximum. A related con-
cept is the Statistical Complexity, C[P ], defined as the
product of the entropy, H [P ], with the disequilibrium,
Q[P ], which is the distance between the distribution P and
the equilibrium distribution, Pe. The distance between P
and Pe is often defined in terms of the Jensen-Shannon
divergence [3].

In physics, the complexity notion starts by consider-
ing a perfect crystal and an isolated gas as two examples
of simple states of matter and therefore, as systems with
zero complexity. The structure of a perfect crystal is com-
pletely described by minimal information (i.e., distances
and symmetries that define the elementary cell) and the
probability distribution of the accessible states is repre-
sented by a delta function (the state of perfect symmetry
has probability equal to one, while any other state has
zero probability). In contrast, the probability distribution
of the possible states of an ideal gas in equilibrium is the
“simple” uniform distribution. Therefore, both situations
have minimum complexity, and then it is clear that a suit-
able measure of complexity cannot be made only in terms
of “disorder“, nor only in terms of “information”. How-
ever, the definition of statistical complexity as the product
of S and Q satisfies the condition of being zero in both lim-
its (for an ideal crystal, C = 0 because H = 0, while for
an ideal gas in equilibrium, C = 0 because Q = 0).

The statistical complexity C = H × Q quantifies the
existence of non-trivial structures. In the cases of per-
fect order and total randomness C[P ] = 0 means the data
possess no structure. In between these two extreme in-
stances, a large range of possible values quantifies the level
of structure in the data. The statistical complexity is able
to detect subtle details of the dynamical processes that
generate the data [4]. This is due to the fact that for
a given value of the entropy, there is a range of possible
values of complexity.

It is interesting to note that C gives additional infor-
mation in relation to the entropy, due to its dependence
on two distributions (the one associated with the sys-
tem under analysis, P , and the equilibrium distribution,
Pe). An important property of C[P ] is that its value does
not change with different ordering of the PDF. Moreover,
the extreme complexity values, Cmin and Cmax, depend
only on the dimension of the probability space and on the

functional forms adopted for H and Q [5]. Then, one can
evaluate the so-called “entropy-complexity plane”, H × C
in order to represent the system’s dynamics in this plane.

There is no unique answer for the best procedure to
associate a PDF to a time series. However, when we con-
sider a sequence of measurements taken in time causal
order, the temporal structure of the time series needs to
be preserved in the associated PDF. For this reason, the
procedure proposed by Bandt and Pompe (BP) [1] is very
popular, because it allows to associate a time-causal PDF
to the time series. In the BP approach, from the time
series a sequence of symbols known as “ordinal patterns”
(OPs) is calculated, and the BP probability distribution
is obtained by the frequency histogram of symbols. The
OPs are defined by the sequential order of the data points
in the time series, without considering the actual values
of the data points (see [1] for details).

The OPs represent a natural alphabet for a time se-
ries [6], and are defined in terms of two parameters,
the “length” of the pattern, D, and the lag, τ , be-
tween the data points in the time series that are used
to define the patterns. The number of possible ordinal
patterns (i.e., “letters” in the alphabet) grows as D!.

An important property of the BP-PDF is that it is in-
variant under monotonic transformations, and also, it in-
corporates time causality in a natural way. Moreover, the
only condition for applicability of the BP methodology is a
very weak stationary assumption [1]. When the BP-PDF
is used to compute H and C, they are denoted as “per-
mutation entropy” and “causal complexity”, respectively,
which span the so-called “time causal entropy-complexity
plane”, H × C.

The H × C plane has been shown to be a very use-
ful diagnostic tool to discriminate between chaotic and
stochastic time series [4], since the H and C quantifiers
have distinctive behaviors for different types of dynam-
ics. Chaotic maps have intermediate permutation entropy
H while the complexity C is close to the maximum value,
Cmax (see fig. 1 in [4]). A similar behavior is still observed
when the time series is contaminated with a small or mod-
erate amount of uncorrelated or correlated noise (see [7]).
In contrast, fully uncorrelated stochastic time series are
located in the H × C plane quite close to extreme point
(H, C) ≈ (1, 0). Pure correlated stochastic time series
present decreasing values of entropy H with increasing
correlation strength, and associate increase of the com-
plexity C value at intermediate value between Cmin and
Cmax (see [4,7]).

The ordinal pattern probabilities and the H × C plane
have been used in many different applications, among
which we can mention the analysis and characterization
of stochastic and coherence resonances [8,9]; of the non-
linear dynamics of chaotic lasers [10–12]; of the Libor mar-
ket [13]; of large-scale atmospheric patterns [14,15]; of
handwriten signatures [16]; of the Ecosystem Gross Pri-
mary productivity [17]; of transportation media [18]; of
electric load consumption [19]; of cardiac [20,21] and brain
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signals (Electroencephalography (EEG) and Magnetoen-
cephalography (MEG) [22–24]); of textures in synthetic
aperture radar (SAR) imagery [25]. Next, we discuss a
few specific examples of application of these concepts in
different fields.

Uncovering similarities between neurons and
lasers. – While neurons and lasers are, at first sight, re-
markably different dynamical systems, ordinal analysis has
allowed to uncover some unexpected similarities [26]. By
analyzing the statistics of sequences of spikes, simulated
with neuronal models and recorded experimentally, in the
intensity emitted by a semiconductor laser with feedback,
conditions have been identified in which the sequences of
neuronal and optical spikes have the same hierarchy of or-
dinal probabilities, i.e., the same order in the probabilities,
that reveal the same more-expressed and less-expressed
patterns in the spike sequences (see fig. 4(a) in [27] and
fig. 3(a) in [28]).

In both spike trains (recorded from the laser output
and simulated with a neuronal model), when using OPs
of length D = 3 (that give six possible OPs, which we
may label as 123, 132, 213, 231, 312 and 321) it has been
found that four out of the six patterns form two “clus-
ters” with very similar probabilities: P (132) ∼ P (213)
and P (312) ∼ P (231). This property holds in other ex-
perimental time series [29] and in simulations of a minimal
model represented by a “circle map” [27].

Since neurons encode and transmit information in se-
quences of spikes, uncovering similarities between neu-
ronal spike trains and optical spike trains may open a path
for implementing optical neurons, that genuinely mimic
neuronal responses and are able to use neuronal mecha-
nisms to process information, as efficiently as biological
neurons, but orders of magnitude faster. Progress in this
direction requires a good understanding of the neuronal
encoding mechanisms and how they can be implemented
in laser systems.

Using neuronal models it has been shown that, when
a weak (subthreshold) periodic input is perceived by a
stochastic neuron, the neuron fires a sequence of spikes
with specific properties of ordinal probabilities. The or-
dinal probabilities depend on the amplitude and on the
period of the input signal [28,30] and thus, they may be
informative of these features of the signal. It was also
found that this encoding mechanism can be enhanced in
an ensemble of neurons, when they all perceive the weak
signal [31]. Thus, a neuronal ensemble could encode, in
time-varying ordinal probabilities, time-varying features
of aperiodic signals.

Exploiting this coding mechanism to implement laser
systems that use neural information coding requires a care-
ful comparison of the properties of the ordinal probabili-
ties computed from experimental optical spike sequences
and those simulated neuronal ones, that are emitted in
response to different types of aperiodic signals. While
the two distributions of ordinal probabilities, Pl and Pn,

computed from the output of the laser and from the out-
put of a neuron model might have similar values of per-
mutation entropy and statistical complexity, there may
be some differences that are not captured by these quanti-
fiers. Therefore, additional research is needed in order to
better understand how to detect and quantify similarities,
and also significant differences, in the values of the ordinal
probabilities.

Some biomedical applications. – Entropy plays an
essential role in biology. While at first this seems at
odd with its concept of being randomness and disorder,
living entities are constantly swimming against the inex-
orable increase in entropy mandated by thermodynamics.
In other words, being alive implies maintaining control
in a sea of disorder; hence, the analysis of how (and
how much) such control is enforced gives hints about how
healthy the organism is. Permutation entropy further al-
lows to add a new dimension to the analysis: the temporal
one, i.e., how the system copes with, or depends on, its
history.

Analysis of biomedical time series started soon after this
methodology was proposed, to the best of our knowledge
with the study of electroencephalography data near epilep-
tic events [32]. This was closely followed by a plethora of
applications, spanning from heart rate [33], gene expres-
sion [34], electromyographic (muscle response) data [35],
intracranial pressure [36], to human gait [37]. Many suc-
cess stories have emerged, as well as many tools to diag-
nose a wide range of pathologies [38–41].

Medicine is a fast evolving field, and it will require a
parallel evolution in how we analyse biomedical data. We
foresee two forces that may change how permutation pat-
terns and associated metrics will be used in this context.

The first one is exogenous, and relates to how we can
monitor the human body. Novel technologies are allowing
moving from a lab-centric approach, to a scenario in
which smart devices (as, e.g., smart watches and activity
monitors) provide non-invasive ways of monitoring pa-
tients throughout their daily life [42]. This implies, on
one hand, a huge data quality improvement: long time
series can, for the first time, be recorded in a natural envi-
ronment. On the other hand, and almost contradictorily,
this comes at the cost of a reduction in quality: sensors
of this kind can be noisy and may generate artefacts or
missing data. Little is known about how these aspects
can affect the estimation of permutation patterns and
associated metrics [43–45], especially in a context of
non-stationarity. Different sensors can also provide
information with different time resolutions, both because
of their technical specifications and of the time scales
that are characteristic of the processes they measure. To
illustrate, postural data can be registered several times
per second [37], while glucose levels can be sampled every
five minutes [40]. While permutation patterns can be
assessed on multivariate time series [46,47], how such
heterogeneity can be dealt with is not clear yet.
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This shift in data may also be accompanied by an en-
dogenous change in the way permutation patterns are
studied. Specifically, such patterns constitute the building
blocks for many complementary metrics: from simple en-
tropies, complexity and irreversibility [48,49] metrics, up
to the reconstruction of transition networks [50,51]. With
the notable exception of the first two [4], little is known
about how these metrics interact; future research works
can then be focused on understanding how complemen-
tary the information they provide is, up to the possibility
of constructing an entropy-irreversibility plane.

Application to complex networks and neuro-
science. – A relevant research field where ordinal meth-
ods could be expanded is the study of ensembles of
coupled dynamics systems, particularly those with non-
trivial topologies as complex networks. For small groups
of elements, several studies have implemented new meth-
ods to detect correlations between the temporal series
of coupled dynamical systems. The ordinal techniques
are generally faster and computationally cheaper than
standard correlation methods in those cases. Bahrami-
nasab et al. [52] developed the permutation information
approach to quantify the directionality of coupling be-
tween interacting oscillators. In ref. [53] the authors use
a multi-scale version of this approach for discriminating
the time delay between two coupled time series, applying
the method to reveal delayed and anticipated synchronisa-
tion between the dynamics of brain areas. The coherence
level can be also measured in terms of the ordinal synchro-
nisation [54], with the advantage over non-ordinal meth-
ods of being able to detect signatures of both phase and
antiphase synchronisation in weakly coupled systems in a
very fast way. Another possible route is using multivariate
ordinal patterns to analyse several time series simultane-
ously. This method has allowed detecting the proximity
to synchronisation in small groups of chaotic coupled
nodes [55], and should be extensible to large ensembles.

However, the use of ordinal methods in studying large
complex networks dynamics has been limited so far, but
it is a promising tool for the important issue of inferring
the unknown underlying structure of connections. In some
cases, the ordinal mutual information allows for the com-
plete inference of the underlying network [56,57], provided
an appropriated choice of the observable variable and dy-
namical range is made.

Beyond these methods based on pairwise interactions,
every single element of the ensemble is encoding in its
dynamics the interaction with its environment, deviating
from the isolated node dynamics in a node-specific way.
The fact is exploited in refs. [58,59] to obtain information
about the network structure. The principal finding is that,
in the weakly coupled regime, the topological centrality of
each node can be inversely correlated to its statistical com-
plexity, therefore acting as a straightforward proxy for the
degree distribution. This correlation appears very gen-
eral for a wide range of dynamics and network structures,

and it allows to detect the network hubs without refer-
ences to site-to-site correlations. The method is applied
in ref. [60] to analyse the structure of networks of in vitro
cultured neurons from invertebrates, showing that the
structural information can be retrieved even in stochastic
environments.

The robustness of ordinal methods to noise and their
ability to discriminate between dynamical states make
them particularly well suited to tackle the analysis of brain
signals in the framework of complex networks. The inter-
est of the neuroscientist for the ordinal methods is contin-
uously spreading to face new problems as early cognitive
diseases [61], analysis of resting states [23,62], cognitive
reserve [63], stress [64], or epilepsy [65], to mention some
examples. Very recently, the newest techniques such as
ordinal networks and multivariate ordinal analysis [66–68]
have been incorporated into the tool collection of neuro-
science, and it is to be expected that they become funda-
mental in the next decade.

Applications to sport science. – During the last
years, sports have benefited from new technologies that
extract priceless information about what happens dur-
ing both the competition and training [69]. The access
to this data has awakened the interest of different scien-
tific areas in sports [70–73], and nonlinear dynamics and
statistical physics are not an exception. A new point of
view arises when considering a collective game as a phys-
ical system composed of players/athletes interacting un-
der specific rules and evolving in time in a constrained
space [74,75]. Under this scope it is not strange to use
network science and time series analysis to advance in the
understanding of the team’s organization, performance,
scoring processes, or the evaluation of players’ physical
condition. [76–80]. For example, information theory has
been widely used to tackle the nonlinearity aspects of
teams’ performance [81–89]. However, the scientific liter-
ature contains few studies assessing the information con-
tent of teams by using ordinal patterns [90]. Specifically,
in football, OPs have been proposed as a way to identify
which variables of a team should be observed in order to
understand team performance. In this way, this recent pa-
per has analysed the Spanish football league to describe
the dynamics of players’ interactions [90]. In this work,
the authors construct passing networks whose structure
evolves during a match and map the evolution of their fea-
tures, which are endowed with the team’s structural pro-
gression, thus capturing its information content. Results
show both a negative correlation of networks’ features dy-
namics in the entropy-complexity plane; and how the en-
tropy of centrality measures (center of mass) of teams is
positively (negatively) influenced by their average number
of passes.

Nowadays, the door is open for further studies using
OPs methods for the benefit of sports science. To name
but a few: new studies might evaluate whether the in-
ner dynamics of teams would be influenced by the context
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of the game, e.g., the score, the players on the pitch, the
ranking of the teams, etc. At the same time, OPs methods
could be used to analyze the evolution of different game
events, such as faults, tackles, shots, or goals. It would be
also interesting to observe that the change of entropy and
complexity of teams dynamics when playing at different
moments of the season, or different scenarios (e.g., Cham-
pions league vs. country’s national league), altogether
could be framed in the causal (H × C) plane. One could
even think of using information theory to compare dif-
ferent collective games and investigate, for example, how
the effective position of teams evolves in time and space
and its relation with the pitch/court size [88,90]. The use
of ordinal networks [91,92] or measures of statistical irre-
versibility [49,93] could also offer new ways of studying the
inner dynamics of games with this kind of data.

Furthermore, this kind of analysis could also be used
to unveil the synchronization between teams. The use of
information-based correlations of OPs [54,94] might lead
to interesting results when observing the degree of cohe-
sion between fluctuations of a network parameter of two
teams in a match.

From the spatial point of view, there is debate around
players’ heatmaps obtained from events or tracking
datasets [95]. The former with spatio-temporal knowledge
of players’ actions (passes, faults, goals); and the latter
with the localisation of players and with a resolution of a
few centimeters and 25 frames per second [96]. Heatmaps
characterise the spatial role of players by mapping their
activity into matrices of pixels. These kinds of matrices
have previously been analysed by a bidimensional adap-
tation of OPs in other contexts [97–99]. Nonetheless, the
use of planar patterns in heatmaps would shed new in-
sights around the event-vs.-tracking data debate to hope-
fully understand and detect the team’s formations from a
nonlinear perspective.

It is also well-known that some teams have a partic-
ular game style. Some of them prefer long-range passes
with large time lapses between them, and others adopt
a composite style, e.g., ball possession mainly driven by
long-playing sequences. In a mimic of biological systems,
the act of passing the ball can be viewed as a neuronal
spike solely activated when the neuron (player) conveys
information (pass) to another one. These all-or-none “sig-
nals” provide information of the neural culture (the team,
in this analogy) by studying the interspike intervals, i.e.,
the interludes between two successive events [100]. The
information content of the time series of inter-passes in-
tervals could shed light on the game style of a team by
characterising the entropy and complexity of OPs of these
passing sequences.

In view of all, the application of OPs to sports science
will offer a complementary perspective regarding team or
individual performance in the years to come, and it can
be considered as an emergent branch with potential and
interesting results to unveil the nonlinear dynamics hidden
in collective sports.

Outlook. – We end this perspective article by propos-
ing some, in our opinion, promising research lines.

1) Over the years, extensions of the BP approach have
been proposed (e.g., [101–104]). Their advantages
and drawbacks, in particular in terms of their com-
putational requirements and robustness to noise are
not yet fully understood.

2) New extensions to multivariate signals and ensem-
ble dynamics, and new applications of the causal
complexity-permutation entropy plane. For example,
for tracking changes in the teams’ dynamics of collec-
tive sports at different seasons or different scenarios.
It could also be used to compare reached levels of
these quantifiers extracted from planar OPs applied
on data of events, vs. tracking of players.

3) A better understanding of how to deal with missing
data or equal values, non-equi-sampled values, etc.

4) Alternative approaches for defining ordinal pattern
networks (which pattern follows each pattern) that
best capture the correlational structures in the data.

5) A better understanding of how to assign confidence
intervals to the ordinal probabilities and to the infor-
mation theory measures (causal complexity, permu-
tation entropy, Fisher entropy, etc.). The work done
by the Frery group, for uncorrelated noises opens a
promising path in this direction.

6) More research is needed to better understand the sta-
tistical properties of the ordinal patterns, and in par-
ticular, the values of the ordinal probabilities. If the
existence of ordinal patterns with similar probabili-
ties turns out to be a generic property of certain dy-
namical systems, this should be taken into account
when combining ordinal analysis with machine learn-
ing, as a proper selection of the input features (ordinal
probabilities) will avoid feeding the machine learning
algorithm with redundant features.
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Crespo S., Jordán-Núñez J., Vargas B. and Vigil

L., Comput. Methods Progr. Biomed., 165 (2018)
197.
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Chaos, 30 (2020) 063101.

31001-p6



20 years of ordinal patterns

[52] Bahraminasab A., Ghasemi F., Stefanovska A.,

McClintock P. V. and Kantz H., Phys. Rev. Lett.,
100 (2008) 084101.

[53] Montani F., Rosso O. A., Matias F. S., Bressler

S. L. and Mirasso C. R., Philos. Trans. R. Soc. A, 373
(2015) 20150110.

[54] Echegoyen I., Vera-Ávila V., Sevilla-Escoboza
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