Two-valued states on Baer \(*\)-semigroups

Hector Freytes\(^*\)\(^{1,2}\), Graciela Domenech\(^*\)\(^{3}\)
and Christian de Ronde\(^*\)\(^{4,5}\)

August 1, 2013

1. Instituto Argentino de Matemática (IAM)
Saavedra 15 - 3er piso - 1083 Buenos Aires, Argentina
 e-mail: hfreytes@dm.uba.ar - hfreytes@gmail.com
2. Dipartimento di Matematica e Informatica “U. Dini”
Viale Morgagni, 67/a - 50134 Firenze, Italia
3. Instituto de Astronomía y Física del Espacio (IAFE)
Casilla de Correo 67, Sucursal 28 . 1428 Buenos Aires, Argentina
 e-mail: domenech@iafe.uba.ar
4. Instituto de Filosofía “Dr. Alejandro Korn”
(UBA-CONICET), Buenos Aires, Argentina
5. Center Leo Apostel (CLEA) and Foundations of the Exact Sciences (FUND)
Brussels Free University, Krijgskundestraat 33 - 1160 Brussels, Belgium
 e-mail: cderonde@vub.ac.be

Abstract

In this paper we develop an algebraic framework that allows us to extend families of two-valued states on orthomodular lattices to Baer \(*\)-semigroups. We apply this general approach to study the full class of two-valued states and the subclass of Jauch-Piron two-valued states on Baer \(*\)-semigroups.

Keywords: Baer \(*\)-semigroups, two-valued states, orthomodular lattices

PACS numbers: 02.10 De

1 Introduction

Recently, several authors have paid attention to the study of the concept of “state” by extending it to classes of algebras more general than the \(\sigma\)-algebras, as orthomodular posets [6, 26], MV-algebras [7, 15, 16, 22, 27] or effect algebras [9, 29, 30]. In the particular case of quantum mechanics (QM), different families of states are investigated not only because they provide different representations

\(^*\)Fellow of the Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)
of the event structure of quantum systems [21, 32, 33] but also because of their
importance in order to understand QM [11, 12, 24, 28].

In [5], a general theoretical framework to study families of two-valued states
on orthomodular lattices is given. We shall use these ideas for a general study
of two-valued states extended to Baer *-semigroups. Moreover, we investigate
varieties of Baer *-semigroups expanded with a unary operation that allows us
to capture the notion of two-valued states in an algebraic structure.

The paper is organized as follows: Section 2 contains generalities on universal
algebra, orthomodular lattices, and Baer *-semigroups. In Section 3, motiva-
tions for a natural extension of the concept of two-valued state from orthomod-
ular lattices to Baer *-semigroups are presented. In Section 4, we introduce the
concept of IE^*_B-semigroup. It is presented as a Baer *-semigroup with a unary
operation that enlarges the language of the structure. This operation is defined
by equations giving rise to a variety denoted by IE^*_B. In this way, IE^*_B defines
a common abstract framework in which several families of two-valued states can
be algebraically treated as unary operations on Baer *-semigroups. In Section
5, we give a decidable procedure to extend equational theories of two-valued
states on orthomodular lattices to Baer *-semigroups determining sub-varieties
of IE^*_B. In Section 6 and Section 7, we apply the results obtained in an abstract
way to two important classes of two-valued states, namely the full class of two-
valued states and the subclass of Jauch-Piron two-valued states. In Section 8,
we study some problems about equational completeness related to subvarieties
of IE^*_B. Finally, in Section 9, we introduce subvarieties IE^*_B whose equational
theories are determined by classes of two-valued states on orthomodular lattices.

2 Basic notions

First we recall from [4] some notions of universal algebra that will play an
important role in what follows. A variety is a class of algebras of the same type
defined by a set of equations. If A is a variety and B is a subclass of A, we
denote by $V(B)$ the subvariety of A generated by the class B, i.e. $V(B)$ is the
smallest subvariety of A containing B. Let A be a variety of algebras of type
τ. We denote by Term_A the absolutely free algebra of type τ built from the set
of variables $V = \{x_1, x_2, \ldots\}$. Each element of Term_A is referred as a
term. We denote by $\text{Comp}(t)$ the complexity of the term t and by $t = s$ the equations of
Term_A.

For $t \in \text{Term}_A$ we often write $t(x_1, \ldots x_n)$ to indicate that the variables
occurring in t are among $x_1, \ldots x_n$. Let $A \in \mathcal{A}$. If $t(x_1, \ldots x_n) \in \text{Term}_A$ and
$a_1, \ldots, a_n \in A$, by $t^A(a_1, \ldots, a_n)$ we denote the result of the application of the
term operation t^A to the elements a_1, \ldots, a_n. A valuation in A is a function
$v : V \rightarrow A$. Of course, any valuation v in A can be uniquely extended to an
\mathcal{A}-homomorphism $v : \text{Term}_A \rightarrow A$ in the usual way, i.e., if $t_1, \ldots, t_n \in \text{Term}_A$
then $v(t(t_1, \ldots, t_n)) = t^A(v(t_1), \ldots, v(t_n))$. Thus, valuations are identified with
\mathcal{A}-homomorphisms from the absolutely free algebra. If $t, s \in \text{Term}_A$, $A \models t = s$
means that for each valuation v in A, $v(t) = v(s)$ and $A \models t = s$ means that
for each \(A \in \mathcal{A} \), \(A \models t = s \).

For each algebra \(A \in \mathcal{A} \), we denote by \(\text{Con}(A) \) the congruence lattice of \(A \), the diagonal congruence is denoted by \(\Delta \) and the largest congruence \(A^2 \) is denoted by \(\nabla \). \(\theta \) is called a factor congruence iff there is a congruence \(\theta^* \) on \(A \) such that, \(\theta \land \theta^* = \Delta \), \(\theta \lor \theta^* = \nabla \) and \(\theta \) permutes with \(\theta^* \). If \(\theta \) and \(\theta^* \) is a pair of factor congruences on \(A \) then \(A \cong A/\theta \times A/\theta^* \). \(A \) is directly indecomposable if \(A \) is not isomorphic to a product of two non trivial algebras or, equivalently, \(\Delta, \nabla \) are the only factor congruences in \(A \). We say that \(A \) is subdirect product of a family of \((A_i)_{i \in I} \) of algebras if there exists an embedding \(f : A \to \prod_{i \in I} A_i \) such that \(\pi_i f : A \to A_i \) is a surjective homomorphism for each \(i \in I \) where \(\pi_i \) is the projector onto \(A_i \). \(A \) is subdirectly irreducible iff \(A \) is trivial or there is a minimum congruence in \(\text{Con}(A) - \Delta \). It is clear that a subdirectly irreducible algebra is directly indecomposable. An important result due to Birkhoff is that every algebra \(A \) is a subdirect product of subdirectly irreducible algebras. Thus, the class of subdirectly irreducible algebras rules the valid equations in the variety \(\mathcal{A} \).

Now we recall from [14, 20] some notions about orthomodular lattices. A lattice with involution\(^\dagger\) is an algebra \(\langle L, \lor, \land, \neg \rangle \) such that \(\langle L, \lor, \land \rangle \) is a lattice and \(\neg \) is a unary operation on \(L \) that fulfills the following conditions: \(\neg \neg x = x \) and \(\neg(x \lor y) = \neg x \land \neg y \). An orthomodular lattice is an algebra \(\langle L, \land, \lor, \neg, 0, 1 \rangle \) of type \((2, 2, 1, 0, 0) \) that satisfies the following conditions:

1. \(\langle L, \land, \lor, \neg, 0, 1 \rangle \) is a bounded lattice with involution,
2. \(x \land \neg x = 0 \).
3. \(x \lor (\neg x \land (x \lor y)) = x \lor y \).

We denote by \(\mathbf{OML} \) the variety of orthomodular lattices. Let \(L \) be an orthomodular lattice. Two elements \(a, b \) in \(L \) are orthogonal (noted \(a \perp b \)) iff \(a \leq \neg b \). For each \(a \in L \) let us consider the intervall \([0, a] = \{ x \in L : 0 \leq x \leq a \} \) and the unary operation in \([0, a] \) given by \(\neg_a x = \neg x \land a \). As one can readily realize, the structure \(L_a = \langle [0, a], \land, \lor, \neg_a, 0, a \rangle \) is an orthomodular lattice.

Boolean algebras are orthomodular lattices satisfying the distributive law \(x \land (y \lor z) = (x \land y) \lor (x \land z) \). We denote by \(2 \) the Boolean algebra of two elements. Let \(L \) be an orthomodular lattice. An element \(c \in L \) is said to be a complement of \(a \) iff \(a \land c = 0 \) and \(a \lor c = 1 \). Given \(a, b, c \) in \(L \), we write: \((a, b, c)D \) iff \((a \lor b) \land c = (a \land c) \lor (b \land c) \); \((a, b, c)D^* \) iff \((a \land b) \lor c = (a \lor c) \land (b \lor c) \) and \((a, b, c)T \) iff \((a, b, c)D \), \((a, b, c)D^* \) hold for all permutations of \(a, b, c \). An element \(z \) of \(L \) is called central iff for all elements \(a, b \in L \) we have \((a, b, z)T \). We denote by \(Z(L) \) the set of all central elements of \(L \) and it is called the center of \(L \).

Proposition 2.1 Let \(L \) be an orthomodular lattice. Then we have:

1. \(Z(L) \) is a Boolean sublattice of \(L \) [20, Theorem 4.15].
2. \(z \in Z(L) \) iff for each \(a \in L \), \(a = (a \land z) \lor (a \land \neg z) \) [20, Lemma 29.9].
Now we recall from [1, 8, 14] some notions about Baer *-semigroups. A Baer *-semigroup [8] also called Foulis semigroup [1, 3, 14] is an algebra $\langle S, \cdot, ^*, 0 \rangle$ of type $\langle 2, 1, 1, 0 \rangle$ such that, upon defining $1 = 0'$, the following conditions are satisfied:

1. $\langle S, \cdot \rangle$ is a semigroup,
2. $0 \cdot x = x \cdot 0 = 0$,
3. $1 \cdot x = x \cdot 1 = x$,
4. $(x \cdot y)^* = y^* \cdot x^*$,
5. $x^{**} = x$,
6. $x \cdot x' = 0$,
7. $x' \cdot x' = x' = (x')^*$,
8. $x' \cdot y \cdot (x \cdot y)' = y \cdot (x \cdot y)'$.

Let S be a Baer *-semigroup. An element $e \in S$ is a projector iff $e = e^* = e \cdot e$. The set of all projectors of S is denoted by $P(S)$. A projector $e \in P(S)$ is said to be closed iff $e'' = e$. We denote by $P_c(S)$ the set of all closed projectors. Moreover we can prove that:

$$P_c(S) = \{x' : x \in S\}$$

We can define a partial order $\langle P(S), \leq \rangle$ as follows:

$$e \leq f \iff e \cdot f = e$$

In [20, Theorem 37.2] it is proved that, for any $e, f \in P_c(S)$, $e \leq f$ iff $e \cdot S \subseteq f \cdot S$. The facts stated in the next proposition are either proved in [8] or follow immediately from the results in [8]:

Proposition 2.2 Let S be a Baer *-semigroup. Then:

1. If $x, y \in P(S)$ and $x \leq y$ then $y' \leq x'$,
2. $(x \cdot y)'' = (x'' \cdot y)'' \leq y''$,
3. $(x^* \cdot x)'' = x''$,
4. for each $x \in P_c(S)$, $0 \leq x \leq 1$,
5. $x \cdot y = 0$ iff $y = x' \cdot y$
Observe that, item 5 was one of the original conditions in the definition of a Baer *-semigroup in [8]. In the presence of conditions 1..7 of the definition of a Baer *-semigroup, the latter condition is equivalent to condition 8 (see [1, Proposition 2]).

Theorem 2.3 [20, Theorem 37.8] Let S be a Baer *-semigroup. For any $e_1, e_2 \in P_c(S)$, we define the following operations:

\[
e_1 \wedge e_2 = e_1 \cdot (e_2' \cdot e_1)',
\]
\[
e_1 \vee e_2 = (e_1' \land e_2')'.
\]

Then \(\langle P_c(S), \wedge, \vee', 0, 1 \rangle \) is an orthomodular lattice with respect to the order \(\langle P(S), \leq \rangle \). \[\]

We can build a Baer *-semigroup from an orthomodular lattice [8]. In the following we briefly describe this construction.

Let \(\langle A, \leq, 0, 1 \rangle \) be a bounded partial ordered set. An order-preserving function \(\phi : A \rightarrow A \) is called residuated function iff there is another order-preserving function \(\phi^+ : A \rightarrow A \), called a residual function of \(\phi \) such that \(\phi \phi^+(x) \leq x \leq \phi^+ \phi(x) \). It can be proved that if \(\phi \) admits a residual function \(\phi^+ \), it is completely determined by \(\phi \).

Remark 2.4 We will adopt the notation in [1, §1] in which residuated functions are written on the right. More precisely, if \(\phi, \psi \) are residuated functions, \(x \phi \) indicates the value \(\phi(x) \) and \(\psi \phi \) is interpreted as the function \(x \psi \phi = (x \psi) \phi \).

We denote by \(S(A) \) the set of residuated functions of \(A \). Let \(\theta \) be the constant function in \(A \) given by \(x \theta = 0 \). Clearly \(\theta \) is an order-preserving function and \(\theta^+ \) is the constant function \(x \theta^+ = 1 \). Thus \(\theta \in S(A) \) and \(\langle S(A), \circ, \theta \rangle \), where \(\psi \circ \phi = \psi \phi \), is a semigroup.

Theorem 2.5 [1, Proposition 2] Let \(L \) be an orthomodular lattice. For each \(a \in L \) we define

\[
x_{\phi_a} = (x \lor \neg a) \land a \ (\text{Sasaki projection})
\]

If we define the following unary operations in \(S(L) \):

\[
\phi^* : \text{ such that } x \phi^* = \neg((\neg x)\phi^+)
\]
\[
\phi' : = \phi_{-\phi}
\]

then:

1. \(\langle S(L), \circ^*, \circ', \theta \rangle \) is a Baer *-semigroup.
2. \(P_c(S(L)) = \{ \phi_a : a \in L \} \),
3. \(f_L : L \rightarrow P_c(S(L)) \) such that \(f_L(a) = \phi_a \) is an OML-isomorphism.
If \(L \) is an orthomodular lattice, the Baer \(^\ast \)-semigroup \(\langle S(L), \circ, ^\ast, ', \theta \rangle \), or \(S(L) \) for short, will be referred to as the Baer \(^\ast \)-semigroup of the residuated functions of \(L \).

Let \(L \) be an orthomodular lattice. We say that a Baer \(^\ast \)-semigroup \(S \) coordinatizes \(L \) iff \(L \) is OML-isomorphic to \(P_c(S) \).

3 Two-valued states and Baer \(^\ast \)-semigroups

The study of two-valued states becomes relevant in different frameworks. From a physical point of view, two-valued states are distinguished among the set of all classes of states because of their relation to hidden variable theories of quantum mechanics [11]. Another motivation for the analysis of two-valued states is rooted in the study of algebraic and topological representations of the event structures in quantum logic. Examples of them are the characterization of Boolean orthoposets by means of two-valued states [34] and the representation of orthomodular lattices via clopen sets in a compact Hausdorff closure space [33], later extended to orthomodular posets in [17]. We are interested in a theory of two-valued states on Baer \(^\ast \)-semigroups as a natural extension of two-valued states on orthomodular lattice. Formally, a two-valued state on an orthomodular lattice \(L \) is a function \(\sigma : L \rightarrow \{0, 1\} \) satisfying the following:

1. \(\sigma(1) = 1 \),
2. if \(x \perp y \) then \(\sigma(x \lor y) = \sigma(x) + \sigma(y) \).

Let \(L \) be an orthomodular lattice and \(\sigma : L \rightarrow \{0, 1\} \) be a two-valued state. The following properties are derived directly from the definition of two-valued state:

\[
\sigma(\neg x) = 1 - \sigma(x) \quad \text{and} \quad \text{if } x \leq y \text{ then } \sigma(x) \leq \sigma(y)
\]

Based on the above mentioned two properties, in [5], Boolean pre-states are introduced as a general theoretical framework to study families of two-valued states on orthomodular lattices. We shall use these ideas for a general study of two-valued states extended to Baer \(^\ast \)-semigroups. Thus, we first give the definition of Boolean pre-state.

Definition 3.1 Let \(L \) be an orthomodular lattice. By a Boolean pre-state on \(L \) we mean a function \(\sigma : L \rightarrow \{0, 1\} \) such that:

1. \(\sigma(\neg x) = 1 - \sigma(x) \),
2. if \(x \leq y \) then \(\sigma(x) \leq \sigma(y) \).

Example 3.2 Let us consider the orthomodular lattice \(MO2 \times 2 \) whose Hasse diagram has the following form:
If we define the function $\sigma : MO2 \times 2 \to \{0, 1\}$ such that:

$$\sigma(x) = \begin{cases}
1, & \text{if } x \in \{1, \neg a, \neg b, \neg c, \neg d, \neg e\} \\
0, & \text{if } x \in \{0, a, b, c, d, e\}
\end{cases}$$

we can see that σ is a Boolean pre-state. This function fails to be a two-valued states since, $b \leq \neg c$ but $\sigma(b \lor c) \neq \sigma(b) + \sigma(c)$. In fact $\sigma(b \lor c) = \sigma(\neg a) = 1$ and $\sigma(b) + \sigma(c) = 0$.

We denote by \mathcal{E}_B the category whose objects are pairs (L, σ) such that L is an orthomodular lattice and σ is a Boolean pre-state on L. Arrows in \mathcal{E}_B are $(L_1, \sigma_1) \xrightarrow{f} (L_2, \sigma_2)$ such that $f : L_1 \to L_2$ is an OML-homomorphism, and the following diagram is commutative:

\[
\begin{array}{c}
L_1 \quad \sigma_1 \quad \{0, 1\} \\
\downarrow f \\
L_2 \\
\end{array}
\]

These arrows are called \mathcal{E}_B-homomorphisms.

Let L be an orthomodular lattice and let $\sigma : L \to \{0, 1\}$ be a Boolean pre-state. Since L we can identify with $P_c(S(L))$, we ask whether the Boolean pre-state σ admits a natural extension to the whole of $S(L)$. In other words, whether there exists some kind of function of the form $\sigma^* : S(L) \to \{0, 1\}$ such that the following diagram is commutative:

\[
\begin{array}{c}
L \quad \sigma \quad \{0, 1\} \\
\downarrow f_L \\
S(L) \\
\end{array}
\]

where f_L is the OML-isomorphism $f_L : L \to P_c(S(L))$ given in Theorem 2.5-3. The simplest way to do this would be to associate with each element $\phi \in S(L)$
an appropriate closed projection \(\phi_x \in P_c(S(L)) \) and to define \(\sigma^*(\phi) = \sigma^*(\phi_x) = \sigma(x) \). An obvious choice for \(\phi_x \) is \(\phi'' = \phi_{1_\phi} \). In virtue of this suggestion, we introduce the following concept:

Definition 3.3 Let \(S \) be a Baer \(*\)-semigroup. A Boolean* pre-state over \(S \) is a function \(\sigma : S \to \{0,1\} \) such that

1. \(\sigma(x') = 1 - \sigma(x) \)
2. the restriction \(\sigma/p_c(S) \) is a Boolean pre-state on \(p_c(S) \).

We denote by \(\mathcal{E}_B^* \) the category whose objects are pairs \((S,\sigma)\) such that \(S \) is a Baer \(*\)-semigroup and \(\sigma \) is a Boolean pre-state on \(S \). Arrows in \(\mathcal{E}_B^* \) are \((S_1,\sigma_1) \rightarrow (S_2,\sigma_2)\) such that \(f : S_1 \to S_2 \) is a Baer \(*\)-semigroup homomorphism, and the following diagram is commutative:

\[
\begin{array}{c}
S_1 \\
f \downarrow \\
S_2
\end{array}
\quad \begin{array}{c}
\sigma_1 \\
\equiv \\
\sigma_2
\end{array}
\]

These arrows are called \(\mathcal{E}_B^* \)-homomorphisms. Up to now we have presented a notion that would naturally extend the notion of Boolean pre-state to Baer \(*\)-semigroups. However we have not yet proved that this extension may be formally realized. This will be shown in Theorem 3.5. To see this, we first need the following basic results:

Proposition 3.4 Let \(S \) be a Baer \(*\)-semigroup and \(\sigma \) be a Boolean* pre-state on \(S \). Then

1. \(\sigma(x'') = \sigma(x) \).
2. If \(x, y \in P(S) \) and \(x \leq y \) then, \(\sigma(y') \leq \sigma(x') \) and \(\sigma(x) \leq \sigma(y) \).
3. \(\sigma(x \cdot y) = \sigma(x'' \cdot y) \leq \sigma(y) \).
4. \(\sigma(x^x \cdot x) = \sigma(x) \).

Proof:

1) Is immediate. 2) Suppose that \(x, y \in P(S) \) and \(x \leq y \). By Proposition 2.2-1, \(y' \leq x' \) and taking into account that \(x', y' \in P_c(S) \), \(\sigma(y') \leq \sigma(x') \). By Proposition 2.2-1 again and since \(y' \leq x' \) we have that \(x'' \leq y'' \). Hence, by item 1, \(\sigma(x) = \sigma(x'') \leq \sigma(y'') = \sigma(y) \). 3) By Proposition 2.2-2, \((x \cdot y)'' = (x'' \cdot y)'' \leq y'' \). By item 1, \(\sigma(x \cdot y) = \sigma((x \cdot y)'') = \sigma((x'' \cdot y)'') = \sigma(x'' \cdot y) \). Since \((x'' \cdot y)'' \) and \(y'' \) are closed projections, by item 1, we have that \(\sigma(x'' \cdot y) = \sigma((x'' \cdot y)'') \leq \sigma(y'') = \sigma(y) \). 4) By Proposition 2.2-3 \((x^x \cdot x)''' = x'' \). Then, by item 1, \(\sigma(x^x \cdot x) = \sigma((x^x \cdot x)'') = \sigma(x'') = \sigma(x) \). \(\blacksquare \)
Thus, the class of IE-proposition provides the main properties of IE-structures. Proposition 3.5

Theorem 3.5 Let S be a Baer *-semigroup and σ a Boolean pre-state on $P_c(S)$. Then σ_S defined as $\sigma_S(x) = \sigma(x'')$

is the unique Boolean *-pre-state on S such that $\sigma_S/P_c(S) = \sigma$.

Proof: If $x \in S$ then $x'' \in P_c(S)$ and $\sigma(x'')$ is defined. Then σ_S is well defined as a function. Note that if $x \in P_c(S)$ then $\sigma_S(x) = \sigma(x'') = \sigma(x)$ since $'$ is an orthocomplementation on the orthomodular lattice $P_c(S)$. Thus $\sigma_S/P_c(S) = \sigma$. Let $x \in S$. Then $\sigma_S(x') = \sigma(x''') = 1 - \sigma(x'') = 1 - \sigma_S(x)$.

Thus σ_S is a Boolean *-pre-state on S. Let σ_1 be a Boolean *-pre-state on S such that $\sigma_1/P_c(S) = \sigma$. Let $x \in S$. Since $x'' \in P_c(S)$, by Proposition 3.4-2, $\sigma_1(x) = \sigma_1(x'') = \sigma(x'') = \sigma_S(x)$. Hence $\sigma_1 = \sigma_S$ and σ_S is the unique Boolean *-pre-state on S such that $\sigma_S/P_c(S) = \sigma$. \blacksquare

4 An algebraic approach for two-valued states on Baer *-semigroups

In this section we study a variety of Baer *-semigroups enriched with a unary operation that allows us to capture the concept of two-valued states on Baer *-semigroups in an equational theory. We begin this section showing a way to deal with families of Boolean pre-states on orthomodular lattices as varieties in which the concept of Boolean pre-states is captured by adding a unary operation to the orthomodular lattice structure.

Let L be an orthomodular lattice and $\sigma : L \to \{0, 1\}$ be a Boolean pre-state. If we define the function $s : L \to Z(L)$ such that $s(x) = 0^L$ if $\sigma(x) = 0$ and $s(x) = 1^L$ if $\sigma(x) = 1$. Then s has properties s1...s5 in the following definition:

Definition 4.1 An orthomodular lattice with internal Boolean pre-state IE_B-lattice for short is an algebra $\langle L, \wedge, \vee, \neg, s, 0, 1 \rangle$ of type $\langle 2, 2, 1, 1, 0, 0 \rangle$ such that $\langle L, \wedge, \vee, \neg, 0, 1 \rangle$ is an orthomodular lattice and s satisfies the following equations for each $x, y \in L$:

s1. $s(1) = 1$.

s2. $s(\neg x) = \neg s(x)$,

s3. $s(x \vee s(y)) = s(x) \vee s(y)$,

s4. $y = (y \wedge s(x)) \vee (y \wedge \neg s(x))$,

s5. $s(x \wedge y) \leq s(x) \wedge s(y)$.

Thus, the class of IE_B-lattices is a variety that we call IE_B. The following proposition provides the main properties of IE_B-lattices.

Proposition 4.2 [5, Proposition 3.5] Let L be a IE_B-lattice. Then we have:
1. \(\langle s(L), \lor, \land, \neg, 0, 1 \rangle \) is a Boolean sublattice of \(Z(L) \),

2. If \(x \leq y \) then \(s(x) \leq s(y) \),

3. \(s(x) \lor s(y) \leq s(x \lor y) \),

4. \(s(s(x)) = s(x) \),

5. \(x \in s(L) \text{ iff } s(x) = x \),

6. \(s(x \land s(y)) = s(x) \land s(y) \).

A crucial question that must be answered is under which conditions a class of two-valued states over an orthomodular lattice can be characterized by a subvariety of \(IE_B \). To do this, we first need the following two basic results:

Proposition 4.3 [5, Theorem 4.4] Let \(L \) be an \(IE_B \)-lattice. Then there exists a Boolean pre-state \(\sigma : L \to \{0, 1\} \) such that \(\sigma(x) = 1 \text{ iff } \sigma(s(x)) = 1 \).

Observe that, the Boolean pre-state in the last proposition is not necessarily unique. When we have an \(IE_B \)-lattice and a Boolean pre-state \(\sigma : L \to \{0, 1\} \) such that \(\sigma(x) = 1 \text{ iff } \sigma(s(x)) = 1 \), we say that \(s, \sigma \) are coherent. On the other hand, we can build \(IE_B \)-lattices from objects in the category \(E_B \) as shown the following proposition:

Proposition 4.4 [5, Theorem 4.10] Let \(L \) be an orthomodular lattice and \(\sigma \) be a Boolean pre-state on \(L \). If we define \(\mathcal{I}(L) = \langle L, \land, \lor, \neg, s_\sigma, 0, 1 \rangle \) where

\[
 s_\sigma(x) = \begin{cases}
 1^L, & \text{if } \sigma(x) = 1 \\
 0^L, & \text{if } \sigma(x) = 0
\end{cases}
\]

then:

1. \(\mathcal{I}(L) \) is an \(IE_B \)-lattice and \(s_\sigma \) is coherent with \(\sigma \).

2. If \((L_1, \sigma_1) \xrightarrow{f} (L_2, \sigma_2) \) is a \(E_B \)-homomorphism then \(f : \mathcal{I}(L_1) \to \mathcal{I}(L_2) \) is a \(IE_B \)-homomorphism.

Note that, \(\mathcal{I} \) in the above proposition defines a functor of the form \(\mathcal{I} : E_B \to IE_B \). Now it is very important to characterize the class \(\{\mathcal{I}(L) : L \in IE_B\} \). To do this, directly indecomposable algebras in \(IE_B \) play an important role and the following proposition provides this result:

Proposition 4.5 [5, Proposition 5.6] Let \(L \) be an \(IE_B \)-lattice. then:

1. \(L \) is directly indecomposable in \(IE_B \) iff \(s(L) = 2 \).
2. If \(L \) is directly indecomposable in \(IE_B \) then the function
\[
\sigma_s(x) = \begin{cases}
1, & \text{if } s(x) = 1^L \\
0, & \text{if } s(x) = 0^L
\end{cases}
\]
is the unique Boolean pre-state coherent with \(s \).

Thus, an immediate consequence of Proposition 4.4 and Proposition 4.5 is the following proposition:

Proposition 4.6 Let \(D(IE_B) \) be the class of directly indecomposable algebras in \(IE_B \). Then
\[
D(IE_B) = \{ I(L) : L \in IE_B \}
\]
and \(I : E_B \to D(IE_B) \) is a categorical equivalence when we consider \(D(IE_B) \) as a category whose arrows are \(IE_B \)-homomorphisms.

Since \(D(IE_B) \) contains the subdirectly irreducible algebras of \(IE_B \), we have that:
\[
IE_B \models t = s \iff D(IE_B) \models t = s
\]
Hence, the class of orthomodular lattices admitting Boolean pre-states can be identified with the directly indecomposable algebras in \(IE_B \) that determine the variety \(IE_B \). We can use these ideas to give a general criterium to characterize families of two-valued states over orthomodular lattices by a subvariety of \(IE_B \).

Let \(A_I \) be a subvariety of \(IE_B \). We denote by \(D(A_I) \) the class of directly indecomposable algebras in \(A_I \).

Definition 4.7 Let \(A \) be a subclass of \(E_B \) and let \(A_I \) be a subvariety of \(IE_B \).
Then we say that \(A_I \) equationally characterizes \(A \) iff the following two conditions are satisfied

I: For each \((L, \sigma) \in A, (I(L), \wedge, \vee, \neg, s_{\sigma}, 0, 1) \) belong to \(D(A_I) \) where \(s_{\sigma}(x) = \begin{cases}
1^{L}, & \text{if } \sigma(x) = 1 \\
0^{L}, & \text{if } \sigma(x) = 0
\end{cases} \)

E: For each \(L \in D(A_I), (L, \sigma_s) \in A \) where \(\sigma_s \), the unique Boolean pre-state coherent with \(s \), is given by \(\sigma_s(x) = \begin{cases}
1, & \text{if } s(x) = 1^{L} \\
0, & \text{if } s(x) = 0^{L}
\end{cases} \)

Since \(D(A_I) \) contains the subdirectly irreducible algebras of \(A_I \), we have that:
\[
D(A_I) \models t = s \iff A_I \models t = s
\]
where \(t, s \) are terms in the language of \(A_I \).

Thus, when we say that a subclass \(A \) of \(E_B \) is equationally characterizable by a subvariety \(A_I \) of \(IE_B \) this means that the objects of \(A \) are identifiable with the directly indecomposable algebras of \(A_I \) according to the items I and
E in Definition 4.7.

Taking into account the concept of IE_B-lattice we introduce a way to study the notion of Boolean* pre-state given in Definition 3.3 via a unary operation added to the Baer *-semigroups structure.

In fact, let S be a Baer *-semigroup. A unary operation s on S that allows us to capture the notion of Boolean* pre-state would have to satisfy the following basic conditions:

a. $s(x') = s(x)'$.

b. The restriction $s/\mathcal{P}(S)$ defines a unary operation in $\mathcal{P}(S)$ such that $\langle \mathcal{P}(S), \lor, \land', s/\mathcal{P}(S), 0, 1 \rangle$ is an IE_B-lattice.

c. s should satisfy a version of Theorem 3.5 i.e., s should be always obtainable as the unique extension of $s/\mathcal{P}(S)$.

These ideas motivate the following general definition:

Definition 4.8 An IE_B^*-semigroup is an algebra $\langle S, \cdot, *, ', s, 0 \rangle$ of type $\langle 2, 1, 1, 1, 0 \rangle$ such that $\langle S, \cdot, *, ', 0 \rangle$ is a Baer *-semigroup and s satisfies the following equations for each $x, y \in S$:

bs1. $s(1) = 1$,

bs2. $s(x') = s(x)'$,

bs3. $s(x)'' = s(x)$,

bs4. $s(x' \lor s(y')) = s(x') \lor s(y')$,

bs5. $y' = (y' \land s(x)) \lor (y' \land s(x'))$,

bs6. $s(x' \land y') \leq s(x') \land s(y')$.

Thus, the class of IE_B^*-semigroups is a variety that we call IE_B^*.

Proposition 4.9 Let S be an IE_B^*-semigroup. Then

1. $s(x) \in Z(\mathcal{P}(S))$.

2. $\langle \mathcal{P}(S), \lor, \land', s/\mathcal{P}(S), 0, 1 \rangle$ is an IE_B-lattice and $\langle s(S), \lor, \land', 0, 1 \rangle$ is a Boolean subalgebra of $Z(\mathcal{P}(S))$.

3. $s(x'') = s(x)$.

4. If $x, y \in P(S)$ and $x \leq y$ then, $s(y') \leq s(x')$ and $s(x) \leq s(y)$.

5. $s(x \cdot y) = s(x'') \cdot y \leq s(y)$.

6. $s(x^* \cdot x) = s(x)$.
Theorem 4.10 Let S be a Baer *-semigroup and $(P_c(S),\lor,\land,\ast,s,0,1)$ be an IE_B-lattice. Then the operation $s_S : S \to S$ such that:

$$s_S(x) = s(x'')$$

defines the unique IE_B^*-semigroup structure on S such that $s_S/P_c(S) = s$.

Proof: If $x \in S$ then $x'' \in P_c(S)$ and $s(x'')$ is defined. Then s_S is well defined as a function. Since $x \in P_c(S)$ iff $x = x''$, $s_S(x) = s(x'')$ for each $x \in P_c(S)$. Thus $s_S/P_c(S) = s$. Now we prove the validity of the axioms bs1,...,bs6.

bs1) Is immediate. bs2) $s_S(x') = s(x'') = s(x'')'$, bs3) $s_S(x)' = s(x'')'' = s(x'')$ since $s(x') \in P_c(S)$ and $'$ is an orthocomplementation on $P_c(S)$. Hence $s_S(x)' = s_S(x)$. bs4, bs5, bs6) Follow from the fact that $s_S/P_c(S) = s$ and $(P_c(S),\lor,\land,\ast,s,0,1)$ is an IE_B-lattice. Hence s_S defines an IE_B^*-semigroup structure on S such that $s_S/P_c(S) = s$.

Suppose that $(S,\lor,\land,\ast,s,0,1)$ is an IE_B^*-semigroup such that $s_1/P_c(S) = s$. Let $x \in S$. Since $x'' \in P_c(S)$, by Proposition 4.9-3, $s_1(x) = s_1(x'') = s_1(x'') = s_S(x)$.

Hence $s_1 = s_S$ and s_S defines the unique IE_B^*-semigroup structure on S such that $s_S/P_c(S) = s$.

By Proposition 4.9 and Theorem 4.10 we can see that the definition of IE_B^*-semigroup pre-state satisfies the conditions required by items a, b, c.

Corollary 4.11 Let $(L,\lor,\land,\neg,s,0,1)$ be an IE_B-lattice and $S(L)$ be the Baer *-semigroup of residuated functions of L. If for each Sasaki projection $\hat{\phi}_a$ we define $\hat{s}(\phi_a) = \hat{\phi}_{s(\phi_a)}$, then:

1. $(P_c(S(L)),\lor,\land,\ast,\hat{s},0,1)$ is an IE_B-lattice and $f : L \to P_c(S(L))$ such that $f(a) = \hat{\phi}_a$ is an IE_B-isomorphism.

2. The operation $\hat{s}_S(\varphi) = \hat{\phi}_{s(\varphi(1))}$ defines the unique IE_B^*-semigroup structure on $S(L)$ such that L is IE_B-isomorphic to $P_c(S(L))$.

Proof: 1) By Theorem 2.5, there exists an OML-isomorphism $f : L \to P_c(S(L))$. It is not very hard to see that the composition $\hat{s} = fsf^{-1}$ satisfies bs1,...,bs6 and $f(s(x)) = (fsf^{-1})f(x) = \hat{s}f(x)$, i.e. f preserves \hat{s}. Then L is IE_B-isomorphic to $P_c(S(L))$.

2) Let $\varphi \in S(L)$. Then $s_S(\varphi) = \hat{\phi}_{s(\varphi(1))} = \hat{\phi}(\hat{s}(\varphi(1))) = s(\varphi'')$. Therefore s_S is the extension of \hat{s} given in Theorem 4.10. Hence the operation s_S defines the unique IE_B^*-semigroup structure on $S(L)$ such that L is IE_B-isomorphic to $P_c(S(L))$.

Corollary 4.12 Let \((S, \cdot, \cdot', s, 0)\) be an \(IE_B^*\)-semigroup. Suppose that \(S_1\) is a sub Baer \(^*\)-semigroup of \(S\) and \(P_c(S_1)\) is a sub \(IE_B\)-lattice of \(P_c(S)\). Then the restriction \(s_{S_1}\) defines the unique \(IE_B^\#\)-semigroup structure on \(S_1\). In this way, \(S_1\) is also a sub \(IE_B^\#\)-semigroup of \(S\).

Proof: Let \(S_1\) be a sub Baer \(^*\)-semigroup of \(S\) such that \(P_c(S_1)\) is a sub \(IE_B\)-lattice of \(P_c(S)\). If for each \(x \in S_1\) we define \(s_{S_1}(x) = s_{P_c(S)}(x') = s(x')\) then, \(s_{S_1} = s_{S_1}\) and, by Theorem 4.10, it defines the unique \(IE_B^\#\)-semigroup structure on \(S_1\) that coincides with \(s_{P_c(S)}\) in \(P_c(S_1)\). In this way \(S_1\) also results a sub \(IE_B^\#\)-semigroup of \(S\). \(\blacksquare\)

Proposition 4.13 Suppose that \((S_i)_{i \in I}\) is a family of \(IE_B^\#\)-semigroups. Then, \(\Pi_{i \in I} P_c(S_i)\) is an \(IE_B\)-lattice isomorphic to \(P_c(\Pi_{i \in I} S_i)\).

Proof: Since the operations in \(\Pi_{i \in I} S_i\) are defined pointwise, for each \((x_i)_{i \in I} \in \Pi_{i \in I} S_i\), \((x_i)_{i \in I} = (x_i')_{i \in I}\). Then it is straightforward to prove that \(f((x_i)_{i \in I}) = (x_i')_{i \in I}\) defines an OML-isomorphism \(f : P_c(\Pi_{i \in I} S_i) \to \Pi_{i \in I} P_c(S_i)\). We have to prove that this function preserves \(s\). In fact \(f(s((x_i)_{i \in I})) = f(s(x_i)_{i \in I}) = (s(x_i')_{i \in I} = (s(x_i'))_{i \in I} = s_{\Pi_{i \in I} S_i}(f((x_i)_{i \in I})). Hence \(f\) is an \(IE_B\)-lattice isomorphism. \(\blacksquare\)

In what follow we study the relation between Boolean \(^*\) pre-states and \(IE_B^\#\)-semigroups.

Proposition 4.14 Let \((S, \cdot, \cdot', s, 0)\) be an \(IE_B^\#\)-semigroup. Then there exists a Boolean \(^*\) pre-state \(\sigma : S \to \{0, 1\}\) such that \(s_{P_c(S)}\) is coherent with \(\sigma_{P_c(S)}\).

Proof: By Proposition 4.3 there exists a Boolean pre-state \(\sigma_0 : P_c(S) \to \{0, 1\}\) such that \(s_{P_c(S)}\) is coherent with \(\sigma_0\). By Theorem 3.5, there exists a unique Boolean \(^*\) pre-state \(\sigma : S \to \{0, 1\}\) such that \(\sigma_0 = \sigma_{P_c(S)}\). Hence \(s_{P_c(S)}\) is coherent with \(\sigma_{P_c(S)}(S) = \sigma_0\). \(\blacksquare\)

The following result gives a kind of converse of the last proposition:

Proposition 4.15 Let \(S\) be a Baer \(^*\)-semigroup and \(\sigma : S \to \{0, 1\}\) be a Boolean \(^*\) pre-state. If we define

\[s_\sigma(x) = \begin{cases} 1_{P_c(S)}, & \text{if } \sigma(x) = 1 \\ 0_{P_c(S)}, & \text{if } \sigma(x) = 0 \end{cases} \]

then \((S, \cdot, \cdot', s_\sigma, 0)\) is an \(IE_B^\#\)-semigroup and \(s_\sigma_{P_c(S)}\) is coherent with \(\sigma_{P_c(S)}\).

Proof: By Proposition 4.4, \((P_c(S), \wedge, \vee, \cdot', s_\sigma_{P_c(S)}, 0, 1)\) is an \(IE_B\)-lattice and \(s_\sigma_{P_c(S)}\) is coherent with \(\sigma_{P_c(S)}\). Since \(\sigma(x) = \sigma(x')\) then \(s_\sigma(x) = s_\sigma(x') = s_\sigma_{P_c(S)}(x')\). Hence, by Theorem 4.10, \(s_\sigma\) defines the unique \(IE_B^\#\)-semigroup structure on \(S_1\) that extends \(s_\sigma_{P_c(S)}\). \(\blacksquare\)
5 Varieties of IE_B-lattices determining varieties of IE_B^*-semigroups

When a family of two-valued states over an orthomodular lattice is equationally characterizable by a variety of IE_B-lattices in the sense of Definition 4.7, the problem about the existence of a variety of IE_B^*-semigroups that somehow may be able to equationally characterize the mentioned family of two-valued states may be posed. The following definition provides a “natural candidate” for such a class of IE_B^*-semigroups.

Definition 5.1 Let A_I be a subvariety of IE_I. Then we define the subclass $A_I^* = \{ S \in IE^*_B : P_c(S) \in A_I \}$ as follows:

Before proceeding, we have to make sure that A_I^* is a non-empty subclass of IE^*_B.

Proposition 5.2 If A_I is a non-empty subvariety of IE_I then A_I^* is a non-empty subclass of IE^*_B.

Proof: Suppose that $\langle L, \land, \lor, \neg, s, 0, 1 \rangle$ belong to A_I. By Theorem 2.5 we can consider the Baer *-semigroup $S(L)$ of residuated functions in L in which L is OML-isomorphic to $P_c(S(L))$. Identifying L with $P_c(S(L))$, by Theorem 4.10, there exists an operation $s_{S(L)}$ on $S(L)$ that defines the unique IE_B^*-semigroup structure on $S(L)$ such that $s_{S(L)/P_c(S(L))} = s$. Hence $S(L) \in A_I^*$ and A_I^* is a non-empty subclass of IE^*_B. ■

In what follows we shall demonstrate not only that A_I^* is a variety but also we shall give a decidable method to find an equational system that defines A_I^* from an equational system that defines A_I. In order to study this we first introduce the following concept:

Definition 5.3 We define the *-translation $\tau : Term_{IE_B} \rightarrow Term_{IE^*_B}$ as follows:

\[
\begin{align*}
\tau(0) &= 0 \text{ and } \tau(1) = 1 \\
\tau(x) &= x' \text{ for each variable } x, \\
\tau(\neg t) &= \tau(t)', \\
\tau(t \land s) &= (\tau(t)' \cdot \tau(s)', \tau(s), \\
\tau(t \lor s) &= \tau(-(\neg t \land \neg s)), \\
\tau(s(t)) &= s(\tau(t)).
\end{align*}
\]

Proposition 5.4 Let S be a IE_B^*-semigroup, $v : Term_{IE_B} \rightarrow S$ be a valuation and τ be the *-translation. Then:
1. For each $t \in \text{Term}_{IE_B}$, $v(\tau(t)) \in P_c(S)$,

2. There exists a valuation $v_c : \text{Term}_{IE_B} \to P_c(S)$ such that for each $t \in \text{Term}_{IE_B}$, $v_c(t) = v(\tau(t))$.

Proof: 1) Let $t \in \text{Term}_{IE_B}$. If t is the form $\neg r$ then, $v(\tau(r)) = v(\tau(\neg r)) = v(\tau(r))' = v(\tau(r))' \in P_c(S)$. If t is the form $s(r)$ then, $v(\tau(s(r))) = v(s(\tau(r))) = s(v(\tau(r))) \in Z(P_c(S)) \subseteq P_c(S)$. For the other case we use induction on the complexity of terms in Term_{IE_B}. If $\text{Comp}(t) = 0$ then t is 0, 1, or a variable x. In these cases $v(\tau(1)) = v(1) = 1^S$, $v(\tau(0)) = v(0) = 0^S$ and $v(\tau(x)) = v(x') = v(x)'$. Thus $v(\tau(t)) \in P_c(S)$. Assume that $v(\tau(t)) \in P_c(S)$ whenever $\text{Comp}(t) < n$. Suppose that $\text{Comp}(t) = n$. We have to consider the case in which t is the form $p \land r$. Then $v(\tau(t)) = v(\tau(p \land r)) = v((\tau(p)' \cdot \tau(r))') = v(\tau(p)' \cdot \tau(r)') = v(\tau(r) \land \tau(p))$ because $v(\tau(r)) \in P_c(S)$ and $v(\tau(p)) \in P_c(S)$. Thus $v(\tau(t)) \in P_c(S)$. This proves that for each $t \in \text{Term}_{IE_B}$ $v(\tau(t)) \in P_c(S)$.

2) Consider the valuation $v_c : \text{Term}_{IE_B} \to P_c(S)$ such that for each variable x, $v_c(x) = v(x')$. Now we proceed by induction on the complexity of terms in Term_{IE_B}. If $\text{Comp}(t) = 0$ then t is 0, 1, or a variable x. Then, $v_c(1) = 1^S = v(1) = v(\tau(1)), v_c(0) = 0^S = v(0) = v(\tau(0))$ and $v_c(x) = v(x') = v(\tau(x))$. Assume that $v_c(t) = v(\tau(t))$ whenever $\text{Comp}(t) < n$. Suppose that $\text{Comp}(t) = n$. We have to consider three possible cases:

- t is the form $\neg r$. Then $v_c(t) = v_c(\neg r) = v_c(r)' = v(\tau(r))' = v(\tau(\neg r)) = v(\tau(t))$.
- t is the form $p \land r$. $v_c(t) = v_c(p \land r) = v_c(p) \land v_c(r) = v(\tau(p)) \land v(\tau(r)) = (v(\tau(p))' \cdot v(\tau(r)))' \cdot v(\tau(r))' = v((\tau(p)' \cdot \tau(r))') \cdot v(\tau(r)) = v(\tau(r) \land \tau(p)) = v(\tau(t))$.
- t is the form $s(r)$. $v_c(t) = v_c(s(r)) = s(v_c(r)) = s(v(\tau(r))) = v(\tau(t))$.

This proves that for each $t \in \text{Term}_{IE_B}$, $v_c(t) = v(\tau(t))$. ■

Proposition 5.5 Let S be an $IE_B^*_p$-semigroup and $v : \text{Term}_{IE_B} \to P_c(S)$ be a valuation. Then there exists a valuation $v^* : \text{Term}_{IE_B} \to S$ such that $t \in \text{Term}_{IE_B}$, $v^*(\tau(t)) = v(t)$.

Proof: Consider the valuation $v^* : \text{Term}_{IE_B} \to S$ such that for each variable $v^*(x) = v(\neg x)$. Let $t \in \text{Term}_{IE_B}$. We use induction on the complexity of terms in Term_{IE_B}. If $\text{Comp}(t) = 0$ then t is 0, 1, or a variable x. Then, $v^*(\tau(1)) = v^*(1) = 1^S = v(1), v^*(\tau(0)) = v^*(0) = 0^S = v(0)$ and $v^*(\tau(x)) = v^*(x') = v(x') = v(\neg x)' = v(\neg x)' = v(x) \in P_c(S)$. Assume that $v^*(\tau(t)) = v(t)$ whenever $\text{Comp}(t) < n$. Suppose that $\text{Comp}(t) = n$. We have to consider three possible cases:

- t is the form $\neg r$. Then $v^*(\tau(t)) = v^*(\tau(\neg r)) = v^*(\tau(r))' = v^*(\tau(r))' = v(\neg r)' = v(\neg r) = v(t)$.
- t is the form $p \land r$. Then $v^*(\tau(t)) = v^*(\tau(p \land r)) = v^*((\tau(p)' \cdot \tau(r))') = v((\tau(p)' \cdot \tau(r))') = v(\tau(p)' \cdot \tau(r))' \cdot \tau(r) = v((\tau(p)' \cdot \tau(r))') = v(\tau(r) \land \tau(p)) = v(\tau(t))$.

16
The category of orthomodular lattices admitting a two-valued state, noted by \mathcal{B}

Theorem 5.6

Let $f(y) = f(y(y)) = f(y(s(y))) = s(f(y)) = v(s(y)) = v(t)$.

This proves that for each $t \in \text{Term}_{\mathcal{B}}$, $v^*(\tau(t)) = v(t)$. □

17
7 Baer *-semigroups and Jauch-Piron two-valued states

The category of orthomodular lattices admitting a Jauch-Piron two-valued state \([31]\), noted by \(JPE_B\), is the full sub-category of \(TE_B\) whose objects are \(E_B\)-lattices \((L, \sigma)\) in \(TE_B\) also satisfying the following condition:

\[\sigma(x) = \sigma(y) = 1 \implies \sigma(x \land y) = 1\]

In \([5,\text{Theorem 7.3}]\) it is proved that the variety \(I_{JPEB} = I_{TEB} + \{s(x) \land s(\neg x \lor y) = s(x \land y)\}\)
equationally characterizes \(JPE_B\) in the sense of Definition 4.7. Thus the objects of \(JPE_B\) are identifiable to the directly indecomposable algebras of \(I_{JPEB}\).

By Theorem 5.6 we can give an equational theory in the frame of Baer *-semigroups that captures the concept of two-valued state. In fact this is done through the variety \(I_{JPEB^*} = I_{TEB^*} + \{s(x') \land s(x'' \lor y') = s(x' \land y')\}\)

8 The problem of equational completeness in \(A_I^*\)

Let \(A\) be a family of \(E_B\)-lattices. Suppose that the subvariety \(A_I\) of \(IE_I\) characterizes \(A\) in the sense of Definition 4.7. Then, through a functor \(I\), \(A\) is identifiable to the directly indecomposable algebras of \(IE_I\).

With the natural extension of Boolean pre-states to Baer *-semigroups, encoded in \(A_I^*\), this kind of characterization may be lost. More precisely, the class \(A\) may “not rule” the equational theory of \(A_I^*\) in the way \(A\) does with \(A_I\). The following example shows such a situation:

\textbf{Example 8.1} Let \(\tilde{B}\) be the subclass of \(E_B\) formed by the pairs \((B, \sigma)\) such that \(B\) is a Boolean algebra and \(\sigma\) is a Boolean pre-state. \(\tilde{B}\) is a non-empty class since Boolean homomorphisms of the form \(B \rightarrow 2\) always exist for each Boolean algebra \(B\) and they are examples of Boolean pre-states. It is clear that the class \(\tilde{B}_I = IE_B + \{x \land (y \lor z) = (x \land y) \lor (x \land z)\}\)
equationally characterizes the class \(\tilde{B}\) in the sense of Definition 4.7. Note that \(\tilde{B}_I\) may be seen as a sub-variety \(\tilde{B}_I^*\) since, each algebra \(B\) in \(\tilde{B}_I\) in the signature \(\langle \land, \ast, \neg, s, 0 \rangle\) where \(\ast\) is the identity, is a \(IE_B^*\)-semigroup. Then the equational theory of \(\tilde{B}_I\), as variety of \(IE_B^*\)-semigroups, is determined by the algebras of \(\tilde{B}\). Note that algebras of \(\tilde{B}_I\) are commutative Baer *-semigroups and then we have \(\tilde{B}_I \models x \cdot y = y \cdot x\)
What we want to point out is the following: \mathcal{B}_I captures (although in some sense a trivial one) the concept of Boolean pre-states over Boolean algebras in a variety. Moreover \mathcal{B} also determines the equational theory of \mathcal{B}_I when \mathcal{B}_I is seen as a variety of IE_B^*-semigroup.

Let us now compare the last result with Definition 5.3 and Theorem 5.6. The variety \mathcal{B}_I^* given by

$$\mathcal{B}_I^* = IE_B^* + \{\tau(x \land (y \lor z)) = \tau((x \land y) \lor (x \land z))\} = IE_B^* + \{x' \land (y' \lor z') = (x' \land y') \lor (x' \land z')\}$$

is the biggest subvariety of IE_B^* whose algebras have a lattice of closed projections with Boolean structure and then $\mathcal{B}_I \subseteq \mathcal{B}_I^*$. We shall prove that $\mathcal{B}_I \neq \mathcal{B}_I^*$, i.e. the inclusion is proper. In fact:

Let B_4 be the Boolean algebra of four elements $\{0, a, \neg a, 1\}$ endowed with the operation $s(x) = x$ i.e., the identity on B_4. In this case $B_4 \in \mathcal{B}_I$. According to Theorem 2.5, we consider the Baer *-semigroup $S(B_4)$ of residuated functions of B_4. Since we can identify B_4 with $P_c(S(B_4))$, by Proposition 4.10 we can extend s to $S(B_4)$. Therefore $S(B_4)$ may be seen as an algebra of \mathcal{B}_I^*. Consider the function $\phi : B_4 \rightarrow B_4$ such that $0\phi = \phi(0) = 0, 1\phi = \phi(1) = 1, a\phi = \phi(a) = \neg a$ and $(\neg a)\phi = \phi(\neg a) = a$. Note that ϕ is an order preserving function and the composition $\phi\phi = 1_{B_4}$. Hence ϕ is the residual function of itself and then $\phi \in S(B_4)$. Let ϕ_a be the Sasaki projection associated to a. Then $x\phi_a = (x \lor \neg a) \land a = x \land a$. Note that $a(\phi_a) = (a\phi) \land a = \neg a \land a = 0$ and $a(\phi_a) = (a\phi_a)\phi = a\phi = \neg a$.

This proves that $\phi\phi_a \neq \phi_a\phi$ and then, $S(B_4) \not\subseteq \mathcal{B}_I$ because \mathcal{B}_I is a variety of commutative Baer *-semigroups. Thus $\mathcal{B}_I \neq \mathcal{B}_I^*$ and the inclusion is proper.

Hence the directly indecomposable algebras of \mathcal{B}_I considered as IE_B^*-semigroups do not determine the equational theory of \mathcal{B}_I. Consequently \mathcal{B} does not significantly add to the equational theory of \mathcal{B}_I^*.

Taking into account Example 8.1, the following problem may be posed:

Let \mathcal{A} be a class of E_B-lattices and suppose that the subvariety \mathcal{A}_I of IE_I equationally characterizes \mathcal{A} in the sense of Definition 4.7. Give a subvariety G^* of \mathcal{A}_I^* in which we can determine the equational theory of G^* from the class \mathcal{A}.

We conclude this section defining the meaning of the statement that, the class \mathcal{A} of E_B-lattices determines the equational theory of a subvariety of \mathcal{A}_I^*.

Definition 8.2 Let \mathcal{A} be a class of E_B-lattices. Suppose that the variety \mathcal{A}_I of IE_B-lattices equationally characterizes the class \mathcal{A} and $I : \mathcal{A} \rightarrow \mathcal{D}(\mathcal{A}_I)$ is the functor that provides the categorical equivalence between \mathcal{A} and the category $\mathcal{D}(\mathcal{A}_I)$ of directly indecomposable algebras of \mathcal{A}_I. We say that \mathcal{A} determines the equational theory of a subvariety G^* of \mathcal{A}_I^* iff there exists a class operator $G : \mathcal{A}_I \rightarrow \mathcal{A}_I^*$.
such that:

1. For each $L \in A$, $GI(L)$ is a directly indecomposable algebra in A^*_I.

2. $G^* = \forall \{GI(L) : L \in A\}$.

In the next section, we will study a class operator, denoted by S_0, that will allow us to define a subvariety of A^*_I whose equational theory is determinated by A in the sense of Definition 8.2.

9 The class operator S_0

Let $(L, \land, \lor, \neg, s, 0, 1)$ be an IE_B-lattice. By Corollary 4.11, we consider the IE_B^*-semigroup $S(L)$ of residuated functions of L. By abuse of notation, we also denote by s the operation $s_{S(L)}$ on $S(L)$ where $s_{S(L)}(x) = s(x^n)$. Let $S_0(L)$ be the sub Baer *-semigroup of $S(L)$ generated by the Sasaki projections on L. In the literature, $S_0(L)$ is refereed as the small Baer *-semigroup of products of Sasaki projections on L [1, 8]. By Corollary 4.12, $S_0(L)$ with the restriction $s_{S_0(L)}$ is a sub IE_B^*-semigroup of $S(L)$. This IE_B^*-semigroup will be denoted by $S_0(L)$.

Since $P_*(S_0(L))$ is IE_B-isomorphic to L, if A_I is a subvariety of IE_I and $L \in A_I$ then $S_0(L) \in A^*_I$. These results allow us to define the following class operator:

$$S_0 : A_I \rightarrow A^*_I \quad s.t. \quad L \mapsto S_0(L)$$

Proposition 9.1 Let L_1, L_2 be two IE_B-lattices and $f : L_1 \rightarrow L_2$ be an IE_B-homomorphism.

1. If ϕ_1, \ldots, ϕ_n are Sasaki projections in L_1 then for each $x \in L_1$ we have
$$f(x\phi_1, \ldots, \phi_n) = f(x)\phi_{f(a_1)} \ldots \phi_{f(a_n)}.$$

2. If f is a surjective function then there exists an unique IE_B^*-homomorphism $g : S_0(L_1) \rightarrow S_0(L_2)$ such that, identifying L_1 with $P_*(S_0(L_1))$, $g/L_1 = f$. Moreover, g is a surjective function.

3. If f is bijective then $S_0(L_1)$ and $S_0(L_2)$ are IE_B^*-isomorphic.

Proof:

1) We use induction on n. Suppose that $n = 2$. Then
$$f(x\phi_1, \phi_2) = f(((x \lor -a_1) \land a_1) \lor -a_2) \land a_2)$$
$$= (((f(x) \lor -f(a_1)) \land f(a_1)) \lor -f(a_2)) \land f(a_2)$$
$$= f(x)\phi_{f(a_1)} \phi_{f(a_2)}$$

Suppose that the result holds for $m < n$. Then:
$$f(x\phi_1, \ldots, \phi_n) = f((x\phi_1, \ldots, \phi_{a_{n-1}}) \lor -a_n) \land a_n)$$
$$= (f(x)\phi_{f(a_1)} \ldots \phi_{f(a_{n-1})} \lor -f(a_n)) \land f(a_n)$$
$$= f(x)\phi_{f(a_1)} \ldots \phi_{f(a_n)}$$

20
2) Suppose that \(f : L_1 \to L_2 \) is a surjective \(IE_B \)-homomorphism. If \(\phi \in S_0(L_1) \) then \(\phi = \phi_{a_1} \ldots \phi_{a_n} \) where \(\phi_{a_i} \) are Sasaki projections on \(L_1 \). We define the function \(g : S_0(L_1) \to S_0(L_2) \) such that

\[
g(\phi) = g(\phi_{a_1} \ldots \phi_{a_n}) = \phi_{f(a_1)} \ldots \phi_{f(a_n)}
\]

We first prove that \(g \) is well defined. Suppose that \(\phi = \phi_{a_1} \ldots \phi_{a_n} = \phi_{c_1} \ldots \phi_{c_m} \). Let \(b \in L_2 \). Since \(f \) is a surjective function then there exists \(a \in L_1 \) such that \(f(a) = b \). Then by item 1,

\[
b \phi f(c_1) \ldots \phi f(c_m) = f(a) \phi f(c_1) \ldots \phi f(c_m) = f(a) \phi_{c_1} \ldots \phi_{c_m} = f(a) \phi_{f(a_1)} \ldots \phi_{f(a_n)} = b \phi f(a_1) \ldots \phi f(a_n)
\]

Thus \(g(\phi_{a_1} \ldots \phi_{a_n}) = g(\phi_{c_1} \ldots \phi_{c_m}) \) and \(g \) is well defined. Note that for each \(a \in L_1 \), \(g(\phi_a) = \phi_{f(a)} \) and then \(g|_{L_1} = f \) identifying \(L_1 \) with \(P_1(S_0(L_1)) \). The surjectivity of \(g \) follows immediately from the surjectivity of \(f \). By definition of \(g \), it is immediate that \(g \) is a \(\langle \cdot^*, 0 \rangle \)-homomorphism where \(\psi \circ \phi = \psi \phi \).

We prove that \(g \) preserves the operation \(' \). Suppose that \(\phi = \phi_{a_1} \ldots \phi_{a_n} \). By Theorem 2.5 \(\phi' = \phi_{-1} \phi = \phi_{-1} \phi_{a_1} \ldots \phi_{a_n} \). By item 1 we have that

\[
g(\phi') = g(\phi_{-1} \phi_{a_1} \ldots \phi_{a_n}) = \phi_{f(-1) \phi_{a_1} \ldots \phi_{a_n}} = \phi_{-f(1) \phi_{f(a_1)} \ldots \phi_{f(a_n)}} = \phi_{-1 g(\phi)} = g(\phi)'
\]

Thus, \(g \) preserves the operation \(' \). Now we prove that \(g \) preserves \(s \). By Proposition 4.9-3 \(s(\phi) = s(\phi') \). Then there exists \(a \in L_1 \) such that \(\phi' = \phi_a \). By Corollary 4.11, \(g(s(\phi)) = g(s(\phi_a)) = g(\phi_{s(a)}) = g(\phi_{f(s(a))}) = g(\phi_{f(a)}) = s(\phi_{f(a)}) = s(g(\phi)) = s(g(\phi')) = s(g(\phi)) \) and \(g \) preserves the operation \(s \).

Hence \(g \) is a surjective \(IE_B^* \)-homomorphism such that, identifying \(L_1 \) with \(P_1(S_0(L_1)) \), \(g|_{L_1} = f \). We have to prove that \(g \) is unique. Suppose that there exists an \(IE_B^* \)-homomorphism \(h : S_0(L_1) \to S_0(L_2) \) such that \(h|_{L_1} = f \).

Let \(\phi = \phi_{a_1} \ldots \phi_{a_n} \in S_0(L_1) \). Then \(h(\phi) = h(\phi_{a_1} \ldots \phi_{a_n}) = h(\phi_{a_1}) \ldots (\phi_{a_n}) = f(\phi_{a_1}) \ldots f(\phi_{a_n}) = g(\phi_{a_1} \ldots \phi_{a_n}) = g(\phi) \). Thus, \(h = g \) and this proves the unicity of \(g \).

3) To prove this item, we assume that \(f \) is bijective and use the function \(g \) of item 2. Then we have to prove that \(g \) is injective. Suppose that \(g(\phi) = g(\psi) \) where \(\varphi, \psi \in S_0(L_1) \). Suppose that \(\phi = \phi_{a_1} \ldots \phi_{a_n} \) and \(\psi = \phi_{c_1} \ldots \phi_{c_m} \). By item 1, for each \(x \in L_1 \) we have that:

\[
f(x \phi_{a_1} \ldots \phi_{a_n}) = f(x) \phi_{f(a_1)} \ldots \phi_{f(a_n)}
\]
Proof:

= \ f(x)g(\phi_{a_1}\ldots\phi_{a_n})
= \ f(x)g(\phi)
= \ f(x)g(\psi)
= \ f(x)\phi_{f(c_1)}\ldots\phi_{f(c_m)}
= \ f(x\phi_{a_1}\ldots\phi_{c_m})

Since \(f \) is bijective, \(\phi_{a_1}\ldots\phi_{a_n}(x) = \phi_{c_1}\ldots\phi_{c_m}(x) \) and then \(\phi = \psi \). Thus \(g \) is bijective.

\[\blacksquare \]

Proposition 9.2 Let \(A \) be a sub \(IEB \)-lattice of \(L \). Then there exists a sub \(IEB \)-semigroup \(S_A \) of \(S_0(L) \) such that \(A \) is \(IEB \)-isomorphic to \(P_c(S_A) \).

Proof: Consider the set

\[
S_A = \bigcup_{n \in \mathbb{N}} \{ \phi_{a_1}\phi_{a_2}\ldots\phi_{a_n} : a_i \in A \}
\]

where \(\phi_{a_i} \) are Sasaki projections on \(L \). Note that in general \(S_A \neq S_0(A) \) since the domain of Sasaki projections \(\phi_{a_i} \) is \(L \) (and not \(A \)). In [1, Proposition 10] it is proved that \(S_A \) is a sub Baer *-semigroup of \(S_0(L) \) in which \(A \) is OML-isomorphic to \(P_c(S_A) \) and then, \(A \) is \(IEB \)-isomorphic to \(P_c(S_A) \). Thus, by Corollary 4.12, \(S_A \) is a sub \(IEB \)-semigroup of \(S_0(L) \).

\[\blacksquare \]

Proposition 9.3 Let \(S \) be an \(IEB \)-semigroup and for each \(a \in S \) we define the function \(\psi_a : P_c(S) \to P_c(S) \) such that \(\psi_a(x) = (xa)^\nu \). Then

1. If \(a \in P_c(S) \) then \(\psi_a = \phi_a \).
2. \(f : S \to S(P_c(S)) \) such that \(f(a) = \psi_a \) is an \(IEB \)-homomorphism.
3. Let \(S_0 \) be the sub \(IEB \)-semigroup of \(S \) generated by \(P_c(S) \). If we consider the restriction \(f|_{S_0} \), then \(\text{Imag}(f|_{S_0}) = S_0(P_c(S)) \).

Proof:

1) Suppose that \(a \in P_c(S) \). By [20, Lemma 37.10], \(\psi_a(x) = (xa)^\nu = (x \lor \neg a) \land a = x\phi_a \). Hence \(\psi_a = \phi_a \).

2) In [1, Proposition 7] is proved that \(f \) preserves the operations \(\langle \cdot, \cdot, \cdot, 0 \rangle \). Then we have to prove that \(f \) preserves the operation \(s \). Note that, by item 1, \(f/P_c(S) \) is the \(IEB \)-isomorphism \(a \mapsto \phi_a \). Then, by Corollary 4.11, \(f(s(a)) = s(f(a)) \) for each \(a \in P_c(S) \). Taking into account that for each \(a \in S \), \(s(a) = s(a^\nu) \) we have that, \(f(s(a)) = f(s(a^\nu)) = s(f(a^\nu)) = s(f(a)) \). Thus \(f \) is an \(IEB \)-homomorphism.

3) Suppose that \(\varphi \in S_0(P_c(S)) \). Then \(\varphi = \phi_{a_1}\ldots\phi_{a_n} \) for some \(a_1,\ldots,a_n \) in \(P_c(S) \). If we consider the element \(a = a_1a_2\ldots a_n \) then \(a \in S_0 \) and, since \(f \) is an \(IEB \)-homomorphism, \(f(a) = f(a_1a_2\ldots a_n) = f(a_1)f(a_2)\ldots f(a_n) = \phi_{a_1}\phi_{a_2}\ldots\phi_{a_n} = \varphi \). \(\text{Imag}(f|_{S_0}) = S_0(P_c(S)) \).

\[\blacksquare \]
Proposition 9.4 Let \((L_i)_{i \in I}\) be a family of \(IE_B\)-lattices. Then:

1. If \(\vec{a} = (a_i)_{i \in I} \in \prod_{i \in I} L_i\) then the Sasaki projection \(\phi_\vec{a} : \prod_{i \in I} L_i \rightarrow \prod_{i \in I} L_i\) satisfies that for each \(\vec{x} = (x_i)_{i \in I}, \vec{x}\phi_\vec{a} = (x_i\phi_{a_i})_{i \in I}\).

2. If \(\vec{a} = (a_i)_{i \in I}\) and \(\vec{b} = (b_i)_{i \in I}\) are elements in \(\prod_{i \in I} L_i\) then for each \(\vec{x} = (x_i)_{i \in I}, \vec{x}\phi_\vec{a}\phi_\vec{b} = (x_i\phi_{a_i}\phi_{b_i})_{i \in I}\).

3. \(S_0(\prod_{i \in I} L_i)\) is \(IE_B\)-isomorphic to \(\prod_{i \in I} S_0(L_i)\)

Proof: 1) Let \(\vec{a} = (a_i)_{i \in I} \in \prod_{i \in I} L_i\). Then

\[
\vec{x}\phi_\vec{a} = ((x_i)_{i \in I} \lor \neg(a_i)_{i \in I}) \land (a_i)_{i \in I} = ((x_i \lor \neg a_i) \land a_i)_{i \in I} = (x_i\phi_{a_i})_{i \in I}
\]

2) Let \(\vec{a} = (a_i)_{i \in I}\) and \(\vec{b} = (b_i)_{i \in I}\) be two elements in \(\prod_{i \in I} L_i\) and \(\vec{x} = (x_i)_{i \in I}\). Then, by item 1, we have that:

\[
\vec{x}\phi_\vec{a}\phi_\vec{b} = (\vec{x}\phi_\vec{a})\phi_\vec{b} = ((x_i\phi_{a_i})_{i \in I})\phi_\vec{b} = (x_i\phi_{a_i}\phi_{b_i})_{i \in I}
\]

3) Follows from item 2.

Proposition 9.5 Let \(L\) be an \(IE_B\)-lattice. Then, \(L\) is directly indecomposable if and only if \(S_0(L)\) is directly indecomposable.

Proof: Suppose that \(S_0(L)\) admits a non trivial decomposition in direct products of \(IE_B\)-semigroups i.e. \(S_0(L) = \prod_{i \in I} S_i\). Then, by Proposition 4.13, we can see that \(L \approx_{IE_B} P_c(S_0(L)) \approx_{IE_B} P_c(\prod_{i \in I} S_i) \approx_{IE_B} \prod_{i \in I} P_c(S_i)\). Thus \(L\) admits a non trivial decomposition in direct products of \(IE_B\)-lattices.

Suppose that \(L\) admits a non trivial decomposition in direct products of \(IE_B\)-lattices i.e. \(L = \prod_{i \in I} L_i\). Then, by Proposition 9.4-3, \(S_0(L) = \prod_{i \in I} S_0(L_i) \approx_{IE_B} \prod_{i \in I} S_0(L_i)\). Thus \(S_0(L)\) admits a non trivial decomposition in direct products of \(IE_B\)-semigroups.

Let \(A_I\) be a variety of \(IE_B\)-lattices. We denote by \(G^*(A_I)\) the sub variety of \(A_I^*\) generated by the class \(\{S_0(L) : L \in A_I\}\). More precisely,

\[G^*(A_I) = \forall(\{S_0(L) : L \in A_I\})\]

We also introduce the following subclass of \(G^*(A_I)\)

\[G_{D}^*(A_I) = \{S_0(L) : L \in D(A_I)\}\]

where \(D(A_I)\) is the class of the direct indecomposable algebras of \(A_I\). By Proposition 9.5, we can see that \(G_{D}^*(A_I)\) is a subclass of the direct indecomposable algebras of \(A_I^*\).
Theorem 9.6 Let \mathcal{A}_I be a variety of IE_B-lattices. Then

$$\mathcal{G}^*(\mathcal{A}_I) \models t = r \iff \mathcal{G}^*_D(\mathcal{A}_I) \models t = r$$

Proof: As regards to the non-trivial direction assume that

$$\mathcal{G}^*_D(\mathcal{A}_I) \models t(x_1, \ldots, x_n) = r(x_1, \ldots, x_n)$$

Let $S_0(L) \in \mathcal{G}^*(\mathcal{A}_I)$. By the subdirect representation theorem, there exists an IE_B-lattice embedding $\iota : L \hookrightarrow \prod_{i \in I} L_i$ where $(L_i)_{i \in I}$ is a family of subdirectly irreducible algebras in \mathcal{A}_I. Therefore, $L_i \in \mathcal{D}(\mathcal{A}_I)$ and $S_0(L_i) \in \mathcal{G}^*_D(\mathcal{A}_I)$ for each $i \in I$. By Proposition 9.2, there exists an IE_B-semigroup embedding $\iota_F : F \hookrightarrow S_0(\prod_{i \in I} L_i)$ where L is IE_B-isomorphic to $P_s(F)$. By Proposition 9.4, we can assume that the IE_B-semigroup embedding ι_F is of the form $\iota_F : F \hookrightarrow \prod_{i \in I} S_0(L_i)$. By Proposition 9.3, if we consider the sub IE_B-semigroup F_0 of F generated by $P_s(F)$ then, there exists a surjective IE_B-homomorphisms $f : F_0 \rightarrow S_0(L)$. The following diagram provides some intuition:

$$F_0 \hookrightarrow F \xrightarrow{\iota_F} \prod_{i \in I} S_0(L_i)$$

$$f \downarrow$$

$$S_0(L)$$

Since F_0 can be embedded into a direct product $\prod_{i \in I} S_0(L_i)$, where $S_0(L_i) \in \mathcal{G}^*_D(\mathcal{A}_I)$ for each $i \in I$, by hypothesis, we have that:

$$F_0 \models t(x_1, \ldots, x_n) = r(x_1, \ldots, x_n)$$

Let $\vec{a} = (a_1 \ldots a_n)$ be a sequence in $S_0(L)$. Since f is surjective, there exists a sequence $\vec{m} = (m_1, \ldots, m_n)$ in F_0 such that $f(\vec{m}) = (f(m_1), \ldots, f(m_n)) = \vec{a}$. Since $t^{F_0}(\vec{m}) = r^{F_0}(\vec{m})$ then $t^{S_0(L)}(\vec{a}) = f(t^{F_0}(\vec{m})) = f(r^{F_0}(\vec{m})) = t^{S_0(L)}(\vec{a})$. Hence $S_0(L) \models t(x_1, \ldots, x_n) = r(x_1, \ldots, x_n)$ and the equation holds in $\mathcal{G}^*(\mathcal{A}_I)$.

Even though the study of equations in $\text{Exp}(\mathcal{A}_I)$ is quite treatable from the result obtained in Theorem 9.6, we do not have in general a full description of the equational system that defines the variety $\text{Exp}(\mathcal{A}_I)$. The following corollary provides an interesting property about $\text{Exp}(\mathcal{A}_I)$.

Corollary 9.7 Let \mathcal{A}_I be a variety of IE_B-lattices. Then

$$\mathcal{G}^*(\mathcal{A}_I) \models s(x) \cdot y = y \cdot s(x).$$

Proof: Let S be an algebra in $\mathcal{G}^*_D(\mathcal{A}_I)$. Then for each $x \in S$, $s(x) \in \{0, 1\}$ and $s(x) \cdot y = y \cdot s(x)$. Hence by Theorem 9.6, $\mathcal{G}^*(\mathcal{A}_I) \models s(x) \cdot y = y \cdot s(x)$. ■
Let \mathcal{A}_I be a variety of IE_B-lattices. Note that the assignment $L \mapsto S_0(L)$ defines a class operator of the form

$$S_0 : \mathcal{A}_I \to G^*(\mathcal{A}_I) \subseteq \mathcal{A}_I^*$$

Taking into account Definition 8.2, by Proposition 9.5 and Theorem 9.6 we can establish the following result:

Theorem 9.8 Let \mathcal{A} be a class of E_B-lattices. Suppose that the variety \mathcal{A}_I of IE_B-lattices equationally characterizes the class \mathcal{A}. Then the class \mathcal{A} determines the equational theory of $G^*(\mathcal{A}_I)$. ■

This last theorem provides a solution to the problem posed in Section 8.1.

10 Final remarks

We have developed an algebraic framework that allows us to extend families of two-valued states on orthomodular lattices to Baer \ast-semigroups. To do so, we have explicitly enriched this variety with a unary operation that captures the concept of two-valued states on Baer \ast-semigroups as an equational theory. Moreover, a decidable method to find the equational system is given. We have also applied this general approach to study the full class of two-valued states and the subclass of Jauch-Piron two-valued states on Baer \ast-semigroups.

Acknowledgments

The authors wish to thank an anonymous referee for his/her careful reading of our manuscript and useful comments on an earlier draft. His/her remarks have substantially improved our paper. This work was partially supported by the following grants: PIP 112-201101-00636, Ubacyt 2011/2014 635, FWO project G.0405.08 and FWO-research community W0.030.06. CONICET RES. 4541-12 (2013-2014).

References

