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BOUNDEDNESS AND COMPACTNESS FOR COMMUTATORS

OF SINGULAR INTEGRALS RELATED TO A CRITICAL

RADIUS FUNCTION

B. BONGIOANNI, E. HARBOURE AND P. QUIJANO

Abstract. We work in the general framework of a family of singular inte-
grals with kernels controlled in terms of a critical radius function ρ. This

family models the harmonic analysis derived from the Schrödinger operator

L = −∆ + V , where the non-negative potential V satisfies an appropriate re-
verse Hölder condition. For their commutators, we find sufficient conditions

on the symbols for boundedness and/or compactness when acting on weighted

Lp spaces. In all cases, the classes of symbols and weights are larger than their
classical counterparts, BMO, CMO and Ap. When these general results are

applied to the Schrödinger context, we obtain boundedness and compactness

for commutators of operators like ∇L−1/2, ∇2L−1, V 1/2L−1/2, V 1/2∇L−1,
V L−1 and Liα. As in Uchiyama’s classical paper, we give a full description

of the class for compactness, CMO∞ρ , assuming ρ to be bounded. Finally, we

provide examples showing that CMO is strictly contained in CMO∞ρ for any
ρ, bounded or not.

1. Introduction

Our main purpose in this work is to study the behaviour of commutators in the
frame of the harmonic analysis related to the Schrödinger differential operator in
Rd with d > 2 as given in [17], that is,

Lu = −∆u+ V u ,

where the potential V is a non-negative locally integrable function belonging to
RHq for some q > d/2. We remind that the last property means that there exists
a constant C such that

(1)

(
1

|B|

ˆ
B

V q
)1/q

≤ C 1

|B|

ˆ
B

V,

holds for any ball B ⊂,Rd. When the left hand side is replaced by supB V , we say
that V ∈ RH∞.

In the classical harmonic analysis associate to the Laplacian, commutators of
singular integrals with multiplication by a locally integrable function b were first
considered by Calderón in an effort to construct an algebra of operators preserv-
ing Lp spaces. Let us remind that by commutator of a linear operator T with
multiplication by a function b ∈ L1

loc, called symbol, means

Tbf(x) = [T, b] f(x) = T (bf)(x)− b(x)Tf(x)
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2 B. BONGIOANNI, E. HARBOURE AND P. QUIJANO

Notice that if T is bounded on Lp, commutators with L∞ symbols are clearly
bounded since both terms are. Nevertheless, from the cancellation we may ex-
pect commutators to preserve Lp for a wider class of symbols. In a famous work,
Coifman-Rochberg and Weiss ([10]) prove that if the functions b are in BMO
then commutators with Calderón-Zygmund singular integrals are bounded on Lp,
1 < p < ∞. Furthermore, if commutators with all the Riesz transforms are
bounded, the symbol b must belong to BMO. For applications to some problems
related to elliptic diferential equations, it is desirable to know when such operators
are also compact. In [19], Uchiyama provides an answer for commutators with sin-
gular integrals, characterizing the symbols for compactness on Lp as the functions
that are limit in BMO of smooth and boundedly supported symbols. He also gives a
description of this class, which he calls CMO, as those functions in BMO satisfying
the following three conditions

(a) limδ→0 sup
{

Osc(f,B(x, r)) : x ∈ Rd, r ≤ δ
}

= 0

(b) limλ→∞ sup
{

Osc(f,B(x, r)) : x ∈ Rd, r ≥ λ
}

= 0
(c) lim|x|→∞Osc(f,B(x, r)) = 0, for each fixed r > 0.

Here by Osc(f,B(x, r)) we mean

1

|B(x, r)|

ˆ
B(x,r)

|f − fB |,

where fB stands for the average of f over the ball B = B(x, r).
More recently, in [9], the authors have extended Uchiyama’s result to Lp(w),

1 < p <∞, for symbols also in CMO and w a Muckenhoupt weight in the Ap class.
In the Schrödinger context, results regarding boundedness of commutators on

Lp spaces were given in [5] for the first order Riesz Transform and its adjoint, that
is, for ∇L−1/2 and L−1/2∇, showing that symbols may belong to a class larger
than BMO. Later, in [7] weighted inequalities for such commutators have also been
obtained. Related results can be found in [12], [8], [15] and [20].

As for compactness, in view of the above results for continuity, we may expect
to get results for symbols in a class larger than CMO. However we have not found
references to this question in the literature and it will be one of our main concerns
here.

Let us start giving more precise details on the environment we will be working.
As we said, we consider the Schrödinger differential operator with a potential sat-
isfying a reverse Hölder condition given by (1) with q > d/2 and d > 2. In this
setting the underlying idea is that L can be seen as a perturbation of the Laplacian
operator and this fact can be expressed through a certain critical radius function
introduced by Shen. Namely, we define ρ : Rd 7−→ (0.∞) as

(2) ρ(x) = sup

{
r :

r2

|B(x, r))|

ˆ
B(x,r)

V ≤ 1

}
.

He also proves that it satisfies the following key inequalities

(3) c−1ρ ρ(x)

(
1 +
|x− y|
ρ(x)

)−N0

≤ ρ(y) ≤ cρ ρ(x)

(
1 +
|x− y|
ρ(x)

) N0
N0+1

,

for some constant cρ independent of x and y.
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BOUNDEDNESS AND COMPACTNESS FOR COMMUTATORS... 3

In [17], it is shown that the following estimates hold for the fundamental solution
of L : For any positive N there exists a constant CN such that

0 ≤ Γ(x, y) ≤ CN
|x− y|d−2

(
1 +
|x− y|
ρ(x)

)−N
That behaviour suggests that in the region {(x, y) : |x − y| < ρ(x)} behaves

as the fundamental solution of the Laplacian, while it has a much better decay at
infinity scaled with the function ρ.

On the other hand, due to the light condition imposed to V , we may have not
pointwise estimates for the kernels of, for instance, the Riesz transforms, neither
for their size nor for smoothness; rather we may have just mean estimates. Also,
smoothness estimates may hold with respect to one of the variables and not for the
other. For that reason, even for Lp-spaces, 1 < p <∞, some operators may not be
bounded over all the whole range of p. Such different behaviour leads to introduce
appropriate spaces, weights and symbols which are defined in terms of the function
ρ.

Along this line, in [6], suitable classes of weights are introduced as follows: we
say that w ∈ Aρ,∞p if for some θ ≥ 0 there exists a constant C such that

(4) w(B)1/p[w−1/(p−1)(B)]1/p
′
≤ C

(
1 +

r

ρ(x)

)θ
|B|

for any ball B. Here and all along, p′ denotes the conjugate exponent of p.
Appropriate family of symbols for commutators of Schrödinger Riesz Transforms

have been introduced in [5], as those locally integrable functions b such that for some
θ ≥ 0 there is a constant C satisfying

(5) Oscθρ(b, B(x, r)) =

(
1 +

r

ρ(x)

)−θ
1

|B|

ˆ
B

|b− bB | ≤ C,

for any ball B = B(x, r). For a fixed θ we call this class BMOθ
ρ and BMO∞ρ to

the union over θ ≥ 0. Notice that BMOθ
ρ, if we identify functions differing in a

constant, turns to be a normed space under the norm

(6) ‖b‖θ,ρ = sup
B(x,r)

Oscθρ(b, B(x, r))

Next we introduce the family of symbols to get Lp(w) compactness, which is a
suitable substitute for Uchiyama’s class CMO. More precisely we say that a symbol
b is in CMO∞ρ if for some θ ≥ 0 there exists a sequence of C∞0 symbols {bn}n∈N
such that

b = lim
n→∞

bn,

where the limit is taken in the sense of the norm in BMOθ
ρ, that is,

(7) sup
B(x,r)

Oscθρ(bn − b, B(x, r))→ 0

when n→∞.
Let us observe that if we take θ = 0 in (4) as well as in (5) and (7), we recover

Muckenhoupt classes and the spaces BMO and CMO respectively. So the new
classes of symbols contain their classical counterparts but, as we shall see, they are
in fact larger.
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4 B. BONGIOANNI, E. HARBOURE AND P. QUIJANO

More importantly, we remark that the above definitions do not depend on the
potential V directly, only through the function ρ. Furthermore, all the properties of
the above classes, Aρ,∞p and BMO∞ρ are proved using the inequalities for ρ contained
in (3) above.

So our strategy will be working with a general family of operators related to
a given critical radius function ρ, that is ρ : Rd → (0,∞) satisfying (3). When
this function derives from a Schrödinger differential operator whose potential sat-
isfies the aforementioned conditions, our family contains all the operators we are
interested in. In this general setting, we will prove our results for boundedness and
compactness of commutators of such operators with symbols and weights as defined
above, all in terms of ρ (see Theorems 1 and 2 below). Then, we apply those re-
sults to operators related to the Schrödinger setting to obtain Lp(w) boundedness
and compactness for commutators of operators such as all first and second order
Riesz transforms with symbols in BMO∞ρ and CMO∞ρ respectively. We remark
that regarding boundedness, many of the particular cases, for instance first order
Riesz transforms, were already known (see [7]). Nevertheless, our analysis includes
commutators of the second order Riesz transforms ∇2L−1 and V 1/2∇L−1 which,
to our knowledge, are new.

Now we formally introduce the family of operators we are going to deal with. As a
motivation we recall that, in the Schrödinger context, Shen proved that some Riesz
transforms are not always Lp bounded for all values of p. Rather, very often, they
are bounded over some finite interval (1, p0] and hence their adjoints are bounded
over [p′0,∞). Therefore such operators are not Calderón-Zygmund in the classical
sense. In fact, their kernels have just integral estimates, showing singularity at the
diagonal like in the Calderón-Zygmund case but with a better behaviour at infinity.
This behaviour leads us to introduce, as in [4], the following class of operators
modelling the adjoints of Schrödinger-Riesz Transforms. Again our definition will
depend only on the function ρ and all the properties of such operators can be
derived from inequalities (3), so we may forget about the Schrödinger context for
a while.

Suppose we are given a critical radius function ρ. Then for each 1 < s <∞ and
0 < δ ≤ 1 we shall say that a linear operator T is a ρ-Schrödinger-Calderón-
Zygmund operator of type (s, δ) if

(Is) T is bounded from Ls
′

into Ls
′,∞.

(IIs) T has an associated kernel K : Rd × Rd → R, in the sense that

Tf(x) =

ˆ
Rd
K(x, y)f(y)dy, f ∈ Ls

′

c and x /∈ suppf.

Further, for each N > 0 there exists a constant CN such that

(8)

(
1

Rd

ˆ
R<|x0−y|<2R

|K(x, y)|sdy

)1/s

≤ CNR−d
(

1 +
R

ρ(x)

)−N
,

for |x− x0| < R/2, and there exists C such that

(9)

(
1

Rd

ˆ
R<|x0−y|<2R

|K(x, y)−K(x0, y)|sdy

)1/s

≤ CR−d
( r
R

)δ
,

for |x− x0| < r ≤ ρ(x0), r < R/2.

IMAL PREPRINT # 2021-0052
ISSN 2451-7100 
Publication date: March 25, 2021

Prep
rin

t



BOUNDEDNESS AND COMPACTNESS FOR COMMUTATORS... 5

Besides, we shall say that a linear operator T is a ρ-Schrödinger-Calderón-
Zygmund operator of type (∞, δ) if the above conditions are satisfied for all s,
1 < s <∞, meaning that T is of weak type (s′, s′) and the kernel satisfies (8) and
(9) for any 1 < s <∞.

Remark 1. By taking a logarithmic convex combination of (8) and (9) it is possible
to obtain, for any 0 < δ′ < δ and every N > 0,
(10)(

1

Rd

ˆ
R<|x0−y|<2R

|K(x, y)−K(x0, y)|sdy

)1/s

≤ CR−d
( r
R

)δ′ (
1 +

R

ρ(x)

)−N
,

for |x− x0| < r ≤ ρ(x0), r < R/2. We refer to Lemma 4 in [4] for details.

Remark 2. We also point out that if T is of weak type (s′, s′) for all 1 < s < ∞
and its kernel satisfies the following pointwise inequalities

(11) |K(x, y)| ≤ CN
|x− y|d

(
1 +
|x− y|
ρ(x)

)−N

(12) |K(x, y)−K(z, y)| ≤ C|x− z|δ

|x− y|d+δ
,

as long as |x−z| < |x−y|/2, then T is a ρ-Schrödinger-Calderón-Zygmund operator
of type (∞, δ), since (11) and (12) imply (8) and (9) for any finite s. In fact weak
type for any s′ (that certainly implies boundedness in Lp for all 1 < p < ∞) may
be replaced by weak type (1, 1) (see [4]). Nevertheless, in all the concrete examples
any of those requirements will be fulfilled.

Now we are in position to state the main results of this work.

Theorem 1. Given a critical radius function ρ, let T be a ρ-Schrödinger-Calderón-
Zygmund operator of type (s, δ) for 1 < s ≤ ∞ and δ > 0 and let b be a BMO∞ρ
symbol. Then the commutator Tb = [T, b] is a bounded operator on Lp(w) for any
p > s′ and w ∈ Aρ,∞p/s′ .

Theorem 2. Given a critical radius function ρ, let T be a ρ-Schrödinger-Calderón-
Zygmund operator of type (s, δ) for 1 < s ≤ ∞ and δ > 0 and let b be a CMO∞ρ
symbol. Then the commutator Tb = [T, b] is a compact operator on Lp(w) for any
p > s′ and w ∈ Aρ,∞p/s′ .

With the aid of these two general theorems, we will be able to obtain, in the
Schrödinger context, continuity and compactness for commutators of operators like
L−1/2∇, L−1∇2, L−γV γ , L−γ∇V 1−2γ and Liα. Then, since Lp(w) are Banach
spaces, we can derive continuity and compactness results over the dual spaces for
Schrödinger Riesz Transforms themselves. The precise statements will be given in
Section 4.

Let us remark that in [13], the authors consider a family of operators whose
kernels have also integral conditions, but their size and smoothness conditions are
tailored for classical singular integrals. In fact they obtain compactness results
for commutators with symbols in CMO, as in Uchiyama’s work. Even though
they applied such compactness result to commutators with operators related to the
Schrödinger semigroup, the stronger decay of the kernel in terms of the function
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6 B. BONGIOANNI, E. HARBOURE AND P. QUIJANO

ρ is not taken into account, so that the class of symbols remains the same. For
related results see also [14].

Later, in Section 5, we examine the question of whether a description similar
to classic CMO may be obtained for our new space CMO∞ρ . Under some mild
extra assumption on ρ (we assume ρ to be a bounded function) we can prove
that suitable conditions in the Uchiyama’s spirit characterize functions in CMO∞ρ .
Let us mention that when V is a positive polynomial, the associate ρ falls into
our scope so, in particular, that characterization is valid for the Hermite operator
H = −∆ + |x|2. We also provide examples showing that, for a general function ρ,
there are symbols in CMO∞ρ that are not in CMO. In fact such examples are not
even in BMO, proving also that BMO is properly contained in BMO∞ρ for any given
critical function ρ. To our knowledge, last assertion is new, although examples were
known for some special cases of ρ.

We finish this work with a comment on how boundedness and compactness of
commutators of non-linear operators such as maximal operators or square functions
could be handled by using the theory of vector valued operators.

2. Boundedness for commutators of
ρ-Schrödinger-Calderón-Zygmund Operators

In this section we discuss Theorem 1. First we are going to give some definitions
and previous results that we need in order to give a proof.

As usual, a weight means a non-negative, locally integrable function. As we men-
tioned before, given a critical radius function ρ we will consider classes of weights
that properly contain the Muckenhoupt Ap classes. Following [6], for p > 1 we
define Aρ,∞p =

⋃
θ≥0A

ρ,θ
p where Aρ,θp is the set of weights w satisfying (4).

We also introduce for p > 1, localized classes Aρ,locp as the weights w that satisfy

(13) w(B)1/p[w−1/(p−1)(B)]1/p
′
≤ C|B|,

for all B = B(x0, r0) such that r0 ≤ ρ(x0). Notice that ρ,∞
p ⊂ρ,locp for any p > 1.

As usual, we set Aρ,∞∞ =
⋃
p>1A

ρ,∞
p and Aρ,loc∞ =

⋃
p>1A

ρ,loc
p .

We state now two properties of weights in Aρ,∞p that will be needed in what
follows. The first one is a self-improvement property that can be found as Lemma 5
in [6]. The second one is a doubling property and we refer the reader to Lemma 2.5
in [3].

Lemma 1. (a) If w ∈ Aρ,∞p , 1 < p < ∞, then there exists ε > 0 such that

w ∈ Aρ,∞p−ε. Consequently

(14)
⋃

1<r<p

Aρ,∞p/r = Aρ,∞p .

(b) Let w ∈ Aρ,θp , 1 < p <∞, θ ≥ 0. If r < R, there exists a constant C such that

for any 0 < r < R and x ∈ Rd the following inequality holds

(15) w(B(x,R)) ≤ Cw(B(x, r))

(
R

r

)dp(
1 +

R

ρ(x)

)θp
.
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BOUNDEDNESS AND COMPACTNESS FOR COMMUTATORS... 7

We will also consider some maximal operators related to a critical radius function
ρ. Given σ > 0 and a Young function φ we define

(16) Mρ,σ
φ f(x) = sup

B(x0,r0)3x
‖f‖φ,B(x0,r0)

(
1 +

r0
ρ(x0)

)−σ
,

and

(17) Mρ,loc
φ f(x) = sup

B(x0,r0)3x
r0≤ρ(x0)

‖f‖φ,B(x0,r0),

where, as usual,

(18) ‖f‖φ,B = inf

{
λ > 0 :

 
B

φ

(
|f |
λ

)
≤ 1

}
.

Whenever the function φ(t) = tr, r ≥ 1, we will simply denote Mρ,σ
r its associated

maximal. Further, if r = 1 we just write Mρ,σ. The relation between the latter
maximal operators and the classes of weights Aρ,∞p is stated in the next result.

Proposition 1. Let p > r ≥ 1. A weight w ∈ Aρ,∞p/r if and only if there exists

σ > 0 such that Mρ,σ
r is bounded on Lp(w).

Proof. For r = 1 we refer to Proposition 3 in [1]. If r > 1 and w ∈ Aρ,∞p/r there

exists σ > 0 such that Mρ,σ is bounded on Lp/r(w). Then, for this σ,ˆ
[Mρ,σ

r f(x)]pw(x)dx =

ˆ
[Mρ,σfr(x)]p/rw(x)dx

≤ C
ˆ
|f(x)|pw(x)dx

�

Now we turn our attention to the linear operators defined in the previous section.
Boundedness of Schrödinger type singular integrals on weighted Lebesgue spaces
was studied in several previous works (see, for example [6], [1] and [4]). We tran-
scribe here results stated in Theorem 1 and Corollary 1 of [4], since they sum up
boundedness properties for the precise class of operators defined above.

Theorem 3 (see Theorem 1 and Corollary 1 in [4]). Let 1 < s ≤ ∞ and 0 < δ ≤ 1.
If T is a ρ-Schrödinger-Calderón-Zygmund operator of type (s, δ), then T is bounded
on Lp(w) for s′ < p < ∞ and every w ∈ Aρ,∞p/s′ . Consequently, its adjoint operator

is bounded on Lp(w) for 1 < p < s and every w such that w1−p′ ∈ Aρ,∞p′/s′ and it is

of weak type (1, 1) with respect to w as long as ws
′ ∈ Aρ,∞1 .

Theorem 1 will follow essentially from the following result that can be found as
Theorem 7 in [2].

Theorem 4. Let 0 < p < ∞, w ∈ Aρ,loc∞ and b ∈ BMOθ
ρ. Suppose T is an

integral operator of weak type (s′, s′) for some 1 < s <∞ with associated kernel K
satisfying (8) and that for every N ≥ 0 there exists CN such that
(19)∑

k≥1

k(2kr)d/s
′
(

1 +
2kr

ρ(x0)

)N (ˆ
2k+1B\2kB

|K(x, y)−K(x0, y)|sdy

)1/s

≤ C,
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8 B. BONGIOANNI, E. HARBOURE AND P. QUIJANO

a.e. x ∈ B, for every ball B = B(x0, r) with r ≤ ρ(x0). Then, for any σ > 0, there
exists a constant C such that

(20)

ˆ
Rd
|[T, b]f(x)|pw(x)dx ≤ C‖b‖BMOθρ

ˆ
Rd
|Mρ,σ

ψ f(x)|pw(x)dx,

for every f bounded and with compact support, where ψ(t) = ts
′
log(1 + t)s

′
.

Let us point out that the dependence on ‖b‖BMOθρ
is not explicit in the given

reference, nevertheless it can be traced back to Proposition 6 of the same work.
We give now a proof of Theorem 1.

Proof of Theorem 1. Let T be a ρ-Schrödinger-Calderón-Zygmund operator of type (s, δ)
for some 1 < s <∞. To apply Theorem 4 we only need to show that the kernel K
associated to T satisfies (19). Applying (9) together with Remark 1, we have for
0 < δ′ < δ,∑

k≥1

k
(
2kr
)d/s′ (

1 +
2kr

ρ(x0)

)N (ˆ
2k+1B\2kB

|K(x, y)−K(x0, y)|sdy

)1/s

≤ C
∑
k≥1

k
(
2kr
)d/s′+d/s−d

2−kδ
′

≤ C
∑
k≥1

k2−kδ
′
≤ C.

Now, let p > s′, w ∈ Aρ,∞p/s′ and b ∈ BMO∞ρ . By part (a) of Lemma 1, there

exists r ∈ (s′, p) such that w ∈ Aρ,∞p/r . Using Proposition 1, there exists σ > 0 such

that Mρ,σ
r is bounded on Lp(w). Since b ∈ BMO∞ρ implies b ∈ BMOθ

ρ for some
θ ≥ 0, applying Theorem 4 with such σ and θ, together with the obvious inequality
Mρ,σ
ψ f(x) ≤Mρ,σ

r f(x) it followsˆ
Rd
|[T, b]f(x)|pw(x)dx ≤ C‖b‖BMOθρ

ˆ
Rd

[Mρ,σ
ψ f(x)]pw(x)dx

≤ C‖b‖BMOθρ

ˆ
Rd

[Mρ,σ
r f(x)]pw(x)dx

≤ C‖b‖BMOθρ

ˆ
Rd
|f(x)|pw(x)dx.

The case s = ∞ is a simple consequence of applying what has been proved for
s <∞ and equality (14).

�

3. Compactness for commutators of
ρ-Schrödinger-Calderón-Zygmund Operators

In this section we will give a proof of Theorem 2. We will apply the following
version of the Frechet-Kolmogorov criterion for compactness of subsets of Lp(w)
that can be found as Lemma 4.1 in [21].

Proposition 2. Let 1 < p <∞. Let w be a weight on Rd such that w−p
′/p is also

a weight on Rd. Let G be a subset of Lp(w). Then G is relatively compact in Lp(w)
if it satisfies the following three conditions:

(a) There exists K > 0 such that ‖f‖Lp(w) ≤ K for all f ∈ G.
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BOUNDEDNESS AND COMPACTNESS FOR COMMUTATORS... 9

(b) For any ε > 0 there exists R > 0 such that(ˆ
|x|>R

|f(x)|pw(x)dx

)1/p

< ε, for any f ∈ G.

(c) For any ε > 0 there exists δ > 0 such that(ˆ
Rd
|f(x+ h)− f(x)|pw(x)dx

)1/p

< ε, for any f ∈ G and |h| < δ.

Remark 3. Notice that w ∈ Aρ,∞p is a sufficient condition to apply last proposition.

Before giving a proof of Theorem 2, we make two reductions. First we show that
it is enough to consider symbols b ∈ C∞0 . Given b ∈ CMO∞ρ , by definition, there is

θ ≥ 0 and a sequence of functions {bn}n∈N ⊂ C∞0 that approximates b in the BMOθ
ρ

norm. Therefore, if T is a ρ-Schrödinger-Calderón-Zygmund operator of type (s, δ),
p > s′ and w ∈ Aρ,∞p/s′ , by Theorem 1,

(21) ‖Tbf − Tbjf‖Lp(w) = ‖Tb−bjf‖Lp(w) ≤ C‖b− bj‖BMOθρ
‖f‖Lp(w).

Then commutators with smooth symbols Tbj converge to Tb as operators on Lp(w).
Since limit of compact operators is compact it suffices to prove compactness for
commutators assuming b ∈ C∞0 .

Given an operator T with kernel K and a number η > 0, we will denote T η the
truncated operator

(22) T ηf(x) =

ˆ
|x−y|>η

K(x, y)f(y)dy,

and T ρmax the maximal integral operator associated to the critical radius function ρ

(23) T ρmaxf(x) = sup
0<η≤ρ(x)

|T ηf(x)|.

Now, following the ideas of [9], we prove the next result that will allow us to
analyse only compactness of T ηb , i.e. commutators of T η with C∞0 symbols.

Lemma 2. Let T be a ρ-Schrödinger-Calderón-Zygmund Operator of type (s, δ)
with 1 < s < ∞ and δ > 0 and b ∈ C∞0 . Then, for every σ ≥ 0 there exists a
constant Cσ such that

(24) |Tbf(x)− T ηb f(x)| ≤ CσηMρ,σ
s′ f(x),

holds for almost every x ∈ Rd. As a consequence T ηb is bounded on Lp(w) and
lim
η→0
‖Tb − T ηb ‖Lp(w)→Lp(w) = 0 whenever s′ < p <∞ and w ∈ Aρ,∞p/s′ .

Proof. Let T be a ρ-Schrödinger-Calderón-Zygmund Operator of type (s, δ) for
1 < s <∞ and δ > 0, b ∈ C∞0 and σ ≥ 0 fixed. Using the smoothness of b, splitting
in annulus and applying the size estimate (8), we obtain, for any f ∈ Lp(w) and
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10 B. BONGIOANNI, E. HARBOURE AND P. QUIJANO

almost every x ∈ Rd,
|Tbf(x)− T ηb f(x)|

≤
ˆ
|x−y|≤η

|b(x)− b(y)||K(x, y)||f(y)|dy

≤ ‖∇b‖∞
ˆ
|x−y|≤η

|x− y||K(x, y)||f(y)|dy

≤ ‖∇b‖∞η
∞∑
j=0

2−j

(ˆ
2−j−1η<|x−y|≤2−jη

|K(x, y)|sdy

)1/s(ˆ
|x−y|≤2−jη

|f(y)|s
′
dy

)1/s′

≤ CN‖∇b‖∞η
∞∑
j=0

2−j
(

1 +
2−jη

ρ(x)

)−N ( 
|x−y|≤2−jη

|f(y)|s
′
dy

)1/s′

≤ Cσ‖∇b‖∞ηMσ
s′f(x)

∞∑
j=0

2−j ≤ CσηMρ,σ
s′ f(x),

choosing N = σ. Then, inequality (24) holds for any σ ≥ 0. Next, by Proposition 1,
we may select σ ≥ 0 such that the maximal on the right hand side is bounded on
Lp(w). In this way, the remaining assertions also follow.

�

Finally, we state and prove the following boundedness result for T ρmax that is the
last tool we need in order to prove Theorem 2. As expected, boundedness properties
for T ρmax are similar as those obtained for T .

Theorem 5. Let T be a ρ-Schrödinger-Calderón-Zygmund operator of type (s, δ)
for 1 < s ≤ ∞ and δ > 0. For s′ < p <∞, the operator T ρmax is bounded on Lp(w)
as long as w ∈ Aρ,∞p/s′ .

Proof. We are going to analyse first the case s < ∞. Let p > s′, f ∈ Lp(w) and
w ∈ Aρ,∞p/s′ . As in the classical case, we will prove first the following Cotlar type

inequality: for each ν > s′ and σ ≥ 0 there is a constant C such that for almost
every x ∈ Rd.

(25) T ρmaxf(x) ≤ C
[
Mρ,σ
s′ f(x) +Mρ,loc

ν f(x) +Mρ,loc(Tf)(x)
]
.

We first check that T εf(x) is finite for almost every x ∈ Rd. Applying estimate (8)
we obtain, for any σ ≥ 0,ˆ

|x−y|>ε
|K(x, y)||f(y)|dy

≤
∞∑
j=1

(ˆ
2j−1ε<|x−y|≤2jε

|K(x, y)|s
)1/s(ˆ

|x−y|≤2jε
|f(y)|s

′

)1/s′

≤ CN
∞∑
j=1

(
1 +

2kε

ρ(x)

)−N
(2kε)−d/s

′

(ˆ
|x−y|≤2jε

|f(y)|s
′

)1/s′

≤ CNMρ,σ
s′ f(x)

∞∑
j=1

(
1 +

2kε

ρ(x)

)−N+σ

.

(26)
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BOUNDEDNESS AND COMPACTNESS FOR COMMUTATORS... 11

By Proposition 1, there exists σ ≥ 0 such that Mρ,σ
s′ is bounded on Lp(w). Choosing

that σ and N = σ + 1ˆ
|x−y|>ε

|K(x, y)||f(y)|dy ≤ CσMρ,σ
s′ f(x)

∞∑
j=1

ρ(x)

2kε
≤ C(σ, ε, x)Mρ,σ

s′ f(x),(27)

where C(σ, ε, x) is a finite number for any x. Therefore, for any ε > 0, T εf(x) is
finite as long as Mρ,σ

s′ f(x) is so and by the choice of σ this happens for almost every
x ∈ Rd.

Set fx1 = fχB(x,ε) and fx2 = fχB(x,ε)c . Notice that

Tfx2 (x) =

ˆ
K(x, y)fx2 (y) =

ˆ
|x−y|≥ε

K(x, y)f(y)dy = T εf(x).

Observe that for almost every z ∈ Rd, Tfx2 (z) is finite. So, for z ∈ B(x, ε/2), we
apply the smoothness estimate (10) to obtain

|Tfx2 (x)− Tfx2 (z)| =

∣∣∣∣∣
ˆ
|x−y|≥ε

[K(x, y)−K(z, y)]f(y)dy

∣∣∣∣∣
≤
∞∑
j=1

(ˆ
2j−1ε≤|x−y|<2jε

|K(x, y)−K(z, y)|sdy

)1/s(ˆ
|x−y|<2jε

|f(y)|s
′
dy

)1/s′

≤ CN
∞∑
j=1

2−jδ
′
(

1 +
2jε

ρ(x)

)−N ( 
|x−y|<2jε

|f(y)|s
′
dy

)1/s′

≤ CσMρ,σ
s′ f(x),

choosing N = σ and 0 < δ′ < δ.
Therefore, for z ∈ B(x, ε/2),

|T εf(x)| = |Tfx2 (x)|
≤ |Tfx2 (x)− Tfx2 (z)|+ |Tfx2 (z)|
≤ CMρ,σ

s′ f(x) + |Tfx1 (z)|+ |Tf(z)|.

Now, taking average over B(x, ε/2) we obtain

|T εf(x)| ≤ CMρ,σ
s′ f(x) +

 
B(x,ε/2)

|Tfx1 (z)|dz +Mρ,loc(Tf)(x).

To bound the second term of the last expression we can pick ν ∈ (s′, p) and use the
boundedness of T on Lν to obtain

 
B(x,ε/2)

|Tfx1 (z)|dz ≤

( 
B(x,ε/2)

|Tfx1 (z)|νdz

)1/ν

≤ C
(

1

|B(x, ε/2)|

ˆ
Rd
|fx1 (z)|νdz

)1/ν

≤ C

(
1

|B(x, ε/2)|

ˆ
B(x,ε)

|f(z)|νdz

)1/ν

≤ CMρ,loc
ν f(x),

leading to (25) once we have taken the supreme on 0 < ε ≤ ρ(x).
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12 B. BONGIOANNI, E. HARBOURE AND P. QUIJANO

Now, given p > s′ and w ∈ Aρ,∞p/s′ we apply Lemma 1 to obtain ν ∈ (s′, p) such

that w ∈ Aρ,∞p/ν . Then, by Proposition 1, there exists σ > 0 such that Mρ,σ
ν is

bounded on Lp(w). Applying (25) for such ν and σ,

T ρmaxf(x) ≤ C
[
Mρ,σ
s′ f(x) +Mρ,loc

ν f(x) +Mρ,loc(Tf)(x)
]

≤ C [Mρ,σ
ν f(x) +Mρ,σ

ν (Tf)(x)] .

Finally, the boundedness of T ρmax on Lp(w) follows from the boundedness on
Lp(w) of Mρ,σ

ν and T , the last one provided by Theorem 3. If s = ∞, the result
follows from the case of s finite we just proved together with part (a) of Lemma 1
as was done in the proof of Theorem 1. �

Now we have all set up to proceed with the proof of the main result of this
section.

Proof of Theorem 2. We will consider first the case s <∞. Let s′ < p <∞, b ∈ C∞0
and w ∈ Aρ,∞p/s′ . Since the limit in operator norm of compact operators is compact

and in view of Lemma 2, it suffices to prove compactness for T ηb on Lp(w) for η > 0
and small enough.

Notice that we can apply Proposition 2 since in particular w ∈ Aρ,∞p (see Re-

mark 3). Consider G = {T ηb f : ‖f‖Lp(w) ≤ 1}. Condition (a) of Proposition 2 is
satisfied since T ηb is a bounded operator on Lp(w) according to Lemma 2.

To check condition (b) of Proposition 2 we consider R0 such that supp b ⊂ B0 =
B(0, R0) and x such that |x| > 2R0, and then b(x) = 0. Then, if y ∈ supp b,
|x|/2 ≤ |x− y| ≤ 3|x|/2 and

|T ηb f(x)| =
∣∣∣∣ˆ [b(x)− b(y)]Kη(x, y)f(y)dy

∣∣∣∣
≤ ‖b‖∞

ˆ
supp b

|K(x, y)||f(y)|w1/p(y)w−1/p(y)dy

≤ ‖b‖∞
(ˆ

B0

|K(x, y)|sdy
)1/s(ˆ

B0

|f(y)|pw(y)dy

)1/p

×
(ˆ

B0

w−γ/p(y)dy

)1/γ

,

where γ > 1 is such that s−1 + p−1 + γ−1 = 1. Simple calculations show that
w ∈ Aρ,∞p/s′ implies w−γ/p ∈ L1

loc. Then, applying the size estimate (8) we obtain

|T ηb f(x)| ≤ C‖b‖∞‖f‖Lp(w)

(ˆ
|x|/2≤|x−y|≤3|x|/2

|K(x, y)|sdy

)1/s

≤ CN
|x|d/s′

(
1 +

|x|
ρ(x)

)−N
≤ CN
|x|d/s′

(
1 +

|x|
ρ(0)

) −N
N0+1

,

where the last inequality follows from the right hand side inequality given in (3).

By Lemma 1 there exists q < p such that w ∈ Aρ,∞q/s′ which implies w ∈ Aρ,θq/s′ for

some θ ≥ 0. Using this fact and the doubling property stated also in Lemma 1 we
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BOUNDEDNESS AND COMPACTNESS FOR COMMUTATORS... 13

obtain that for R > 2R0,

ˆ
|x|>R

|T ηb f(x)|pw(x)dx ≤ CN
ˆ
|x|>R

(
1 +

|x|
ρ(0)

) −Np
N0+1 w(x)

|x|dp/s′
dx

≤ CN
∞∑
j=1

(2jR)−dp/s
′
ˆ
2j−1R<|x|≤2jR

(
1 +

|x|
ρ(0)

) −Np
N0+1

w(x)dx

≤ CN
∞∑
j=1

(2jR)−dp/s
′
(

1 +
2jR

ρ(0)

) −Np
N0+1

w(B(0, 2jR))

≤ CN
∞∑
j=1

(2jR)
−dp+dq

s′

(
1 +

2jR

ρ(0)

) −Np
N0+1+

θq
s′

w(B(0, 1))

≤ CR
d(q−p)
s′

∞∑
j=1

2
jd(q−p)

s′ ,

choosing N > θq(N0 + 1)/(ps′). Since q < p, the series is convergent and the last
term goes to 0 as R goes to infinity as we wanted to show.

Finally, we are going to check condition (c) of Proposition (2). In order to do
that we write

T ηb f(x)− T ηb f(x+ h) =

ˆ
[b(x)− b(y)]Kη(x, y)f(y)dy

−
ˆ

[b(x+ h)− b(y)]Kη(x+ h, y)f(y)dy

= [b(x)− b(x+ h)]

ˆ
Kη(x, y)f(y)dy

+

ˆ
[b(x+ h)− b(y)][Kη(x, y)−Kη(x+ h, y)]f(y)dy

= A+B.

First, we notice that A = 0 if x /∈ 2B0 since we may suppose |h| < R0. Set
ρ0 = inf

z∈2B0

ρ(z). That ρ0 > 0 follows from the left hand side of (3). In fact, taking

there y = z and x = 0 we obtain

ρ(z) ≥ c−1ρ ρ(0)

(
1 +

|z|
ρ(0)

)−N0

≥ c−1ρ ρ(0)

(
1 +

2R0

ρ(0)

)−N
,

whenever |z| < 2R0. Then, going back to A, for η < ρ0 and |x| > 2R0, we obtain

|A| = |b(x)− b(x+ h)|

∣∣∣∣∣
ˆ
|x−y|>η

K(x, y)f(y)dy

∣∣∣∣∣ ≤ ‖∇b‖∞|h|T ρmaxf(x).

By Theorem 5, T ρmax is bounded on Lp(w) and then

‖A‖Lp(w) ≤ C|h|‖f‖Lp(w),

and the last term goes to zero with |h| as we wanted to show.
To deal with B we first note that the integrand is zero if |x + h − y| < η and

|x− y| < η, so we only need to integrate over I = [B(x, η) ∩B(x+ h, η)]c. To this

IMAL PREPRINT # 2021-0052
ISSN 2451-7100 
Publication date: March 25, 2021

Prep
rin

t



14 B. BONGIOANNI, E. HARBOURE AND P. QUIJANO

end we suppose |h| < η/2 and decompose I = I1 ∪ (I \ I1) where

I1 = {y ∈ Rd : |x− y| > η, |x+ h− y| > η}

and we observe that

I \ I1 ⊂ I2 = {y ∈ Rd : η − |h| < |x− y| < η + |h|}.
Accordingly, we decompose B in two terms, B1 and B2, integrating over I1 and

I \ I1 respectively. For the first term we can suppose that |h| is small enough to
use the smoothness estimate for K given in (10) (in fact |h| < η/2 will work). Also,
since w ∈ Aρ,∞p/s′ we know there exists σ > 0 such that Mρ,σ

s′ is bounded on Lp(w)

for p > s′ by Proposition 1. Then

|B1| ≤
ˆ
I1

|b(x+ h)− b(y)||K(x, y)−K(x+ h, y)||f(y)|dy

≤ 2‖b‖∞
ˆ
|x−y|>η

|K(x, y)−K(x+ h, y)||f(y)|dy

≤ 2‖b‖∞
∞∑
j=1

(ˆ
2j−1η<|x−y|<2jη

|K(x, y)−K(x+ h, y)|sdy

)1/s

×

(ˆ
|x−y|<2jη

|f(y)|s
′
dy

)1/s′

≤ CN‖b‖∞
∞∑
j=0

(
|h|
2jη

)δ′ (
1 +
|x− y|
ρ(x)

)−N ( 
|x−y|<2jη

|f(y)|s
′
dy

)1/s′

≤ CN‖b‖∞
∞∑
j=0

(
|h|
2jη

)δ′ (
1 +
|x− y|
ρ(x)

)−N ( 
|x−y|<2jη

|f(y)|s
′
dy

)1/s′

≤ Cσ
(
|h|
η

)δ′
‖b‖∞Mρ,σ

s′ f(x)

∞∑
j=1

2−jδ
′
≤ C|h|δ

′
Mρ,σ
s′ f(x).

Here, we have chosen N = σ and 0 < δ′ < δ.
Now, we may apply the boundedness of Mρ,σ

s′ on Lp(w) for p > s′ to obtain,

‖B1‖Lp(w) ≤ C|h|δ
′
‖f‖Lp(w),

and the last term goes to zero with |h| as we wanted to show.
To deal with the second term, we pick as before R0 such that supp b ⊂ B(0, R0).

Choosing h and η such that |h| < η/4 < R0 we have supp b(·+ h) ⊂ B(0, 2R0). If
|x| > 4R0, b(x+ h) = 0 and b(y) = 0 since for y ∈ I2,

|y| ≥ |x| − |x− y| > 4R0 − 3η/2 > 4R0 − 3R0 = R0.

Hence, to estimate B2 it is enough to take care of |x| < 4R0. In this case we observe
that

I2 ⊂ B(x, 3η/2) \B(x, η/2)

since η + |h| < 3η/2 and η − |h| > η/2. Also,

B(x, 3η/2) ⊂ B(0, 7R0)
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BOUNDEDNESS AND COMPACTNESS FOR COMMUTATORS... 15

since |y| ≤ |x− y|+ |x| ≤ 3η/2 + |x| ≤ 3R0 + 4R0 = 7R0.
Hence, for |x| < 4R0,

|B2| ≤ 2‖b‖∞
[ˆ

I2

|K(x+ h, y)||f(y)|dy +

ˆ
I2

|K(x, y)||f(y)|dy
]

= 2‖b‖∞[B21 +B22].

To bound the first integral, we apply Hölder’s inequality to obtain

B21 ≤
(ˆ

I2

|K(x+ h, y)|sdy
)(ˆ

|f |pw
)1/p [

w−γ/p(I2)
]1/γ

,

where γ is such that s−1 + p−1 + γ−1 = 1 as above. Now, since I2 ⊂ B(x, 3η/2) \
B(x, η/2), using (8), we get

B21 ≤ Cη−d/s
′
‖f‖Lp(w)

[
w−γ/p(I2)

]1/γ
.

Therefore, since η is fixed we are led to

‖B21‖pLp(w) ≤ C
ˆ
|x|<4R0

[
w−γ/p(I2)

]p/γ
w(x)dx = C

ˆ
|x|<4R0

gh(x)w(x)dx,

where gh(x) =
[
w−γ/p(I2)

]p/γ
since I2 depends on h and x. Since w ∈ Aρ,∞p/s′

we have that w−γ/p ∈ L1
loc and then, for each x, gh(x) → 0 with h. Also, since

I2 ⊂ B(0, 7R0) we have

gh(x) ≤
[
w−γ/p(B(0, 7R0))

]p/γ
≤ C.

Therefore, we can apply the Dominated Convergence Theorem to conclude

‖B21‖pLp(w) ≤ C
ˆ
|x|<4R0

gh(x)w(x)dx→ 0,

when |h| → 0, as we wanted to show. To deal with B22 we proceed in a similar
way.

Altogether, we have proved that for small values of η the operator T ηb satisfies
the three conditions required by the compactness criterion given in Proposition 2 as
long as s <∞. Finally, to deal with the case s =∞ we follow the same procedure
as in the proof of Theorem 1.

�

4. Applications

In this section we will apply Theorem 1 and Theorem 2 to obtain continuity and
compactness on Lp(w) for commutators of several examples of operators related
to L = −∆ + V with potentials satisfying a reverse Hölder condition as stated in
the introduction. Therefore, from now on, ρ will be the critical radius function
associated to the potential by means of (2).

The operators to be considered here are the following:

• The first order Schrödinger-Riesz Transform R1 = ∇L−1/2,
• the second order Schrödinger-Riesz Transform R2 = ∇2L−1,
• the family of operators Tγ = V γL−γ for 0 < γ < d/2 and

• the family of operators Sγ = V γ−1/2∇L−γ for 1/2 < γ ≤ 1,
• the family of operators Liα for α ∈ R.
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16 B. BONGIOANNI, E. HARBOURE AND P. QUIJANO

The Schrödinger-Riesz transforms were first studied by Shen in [17], together
with the operators Tγ for γ = 1/2 and γ = 1, Sγ for γ = 1, and Liα for α ∈ R.
There, he proved the Lp boundedness of these operators for p in an interval of the
form (1, s] or (1,∞).

It is important noting that the class of operators considered in Theorem 1 and
Theorem 2, models, in most cases, not the operators listed above but their adjoints.
Therefore, many times, we are going to show that the adjoint operators of the
mentioned examples fit into these classes.

In the following proposition we summarize the results obtained in [4], where the
Schrödinger-Calderón-Zygmund classes of operators are widely discussed. However,
it is worth mentioning that some of the estimates given there can be traced back
to [17] and [7]. For shortness we will use the notation SCZ to mean a ρ-Schrödinger-
Calderón-Zygmund operator when ρ is the critical radius function derived from the
potential V .

Proposition 3. Let V ≥ 0 satisfying a reverse Hölder inequality of order q > d/2
with d > 2 Then, for some δ > 0, which may be different at each occurrence, we
have:

(i) R1 and R∗1 are SCZ of type (∞, δ) if we further ask q ≥ d.
(ii) R∗1 is a SCZ of type (p0, δ), with p0 such that 1/p0 = 1/q − 1/d.

(iii) R∗2 is a SCZ of type (q, δ).
(iv) L−γV γ is a SCZ of type (q/γ) for 0 < γ < d/2.
(v) L−γ∇V γ−1/2 is a SCZ of type (qγ , δ) where qγ is such that

(28) 1/qγ = (1/q − 1/d)
+

+ (2γ − 1)/2q

with 1/2 < γ ≤ 1.

Proof. In [17], Shen proves that R1 is a Calderón-Zygmund operator. From that it
follows the continuity in all Lp and the smoothness of the kernel in each variable.
The size condition with the extra decay also appears there as inequality (6.5). So,
R1 and R∗1 are of type (∞, δ).

To prove (ii), we recall that strong boundedness on Lp
′
0 was proved in [17]. The

required kernel conditions can be found in [7] (see Lemma 6 and Lemma 7 there).
As for (iii), we observe that Theorem 0.3 in [17] gives the strong type (q′, q′) and

the remaining conditions follow from Proposition 8 in [4].
Finally, (iv) and (v) can be found as Proposition 7 and Proposition 6 from [4]. �

Regarding the operator Liα, from [17], it is easy to check that the following
proposition holds.

Proposition 4. Let V ≥ 0 satisfying a reverse Hölder inequality of order q > d/2
with d > 2. For α ∈ R, Liα is a SCZ of type (∞, δ) for some δ > 0.

Proof. The proof of this statement is contained in Theorem 0.4 of [17]. There
it is proved that Liα is a standard Calderón-Zygmund operator. Therefore, the
weak type (p, p) for all p > 1 is guaranteed. From this fact, we also obtain the
smoothness estimate (12). As for the size, we refer to equation (4.3) in [17], which
shows that (11) also holds. The result follows then by Remark 2. �

Now, as a consequence of the last results, Theorem 1 and Theorem 2, we establish
the continuity and compactness on Lp(w) for commutators of singular integral
operators associated to L.
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BOUNDEDNESS AND COMPACTNESS FOR COMMUTATORS... 17

All along the following theorems we will assume that V ∈ RHq with d/2 < q <∞
and b ∈ BMO∞ρ for the function ρ given by (2).

First, for the commutator of R1 we have the following result. The boundedness
property stated below recovers Theorem 2 in [7]. Compactness of commutators
with CMO∞ρ symbols is new.

Theorem 6. Let p0 satisfying 1/p0 = (1/q − 1/d)+. Then, for any 1 < p < p0
and w such that w1−p′ ∈ Aρ,∞p′/p′0 , the commutator [R1, b] is a bounded operator on

Lp(w). Further, if b ∈ CMO∞ρ , it is compact.
In particular, if q ≥ d, the above statements are valid for any 1 < p < ∞ and

w ∈ Aρ,∞p .

Proof. If q < d, boundedness and compactness follow by a standard duality argu-
ment once we have applied Theorem 1 and Theorem 2 to R?1 which, according to
Proposition 3, is a ρ-Schrödinger-Calderón-Zygmund operator of type (p0, δ). If
q ≥ d we can apply Theorem 1 and Theorem 2 directly to R1.

�

For commutators associated to the second order Schrödinger-Riesz transform
R2, both boundedness and compactness results are new. In the next theorems it is
worth noting that V ∈ RH∞ implies V ∈ RHq for all q > 1.

Theorem 7. For any 1 < p < q and w such that w1−p′ ∈ Aρ,∞p′/q′ , the commutator

[R2, b] is a bounded operator on Lp(w). Further, if b ∈ CMO∞ρ , it is compact.
Moreover, if V ∈ RHq for all 1 < q <∞, the above statements are valid for any

1 < p <∞ and w ∈ Aρ,∞p .

Proof. If V ∈ RHq for some q <∞, the boundedness and compactness follow again
by a duality argument once Theorem 1 and Theorem 2 are applied to R?2 which
is a ρ-Schrödinger-Calderón-Zygmund operator of type (q, δ) according to Propo-
sition 3. If V ∈ RHq for all 1 < q < ∞ we obtain boundedness and compactness
for commutators of R?2 for any p, 1 < p < ∞ and weights in Aρ,∞p , according to

Lemma 1. By duality, since w1−p′ ∈ Aρ,∞p′ is equivalent to w ∈ Aρ,∞p , the last
assertion of the theorem follows.

�

Following similar arguments to the last proof we can easily derive the two follow-
ing theorems concerning Tγ and Sγ . The boundedness of the commutators [Tγ , b]
and [Sγ , b] on Lp(w) with BMO∞ρ symbols was obtained by Tang in [18] but only for
the cases γ = 1 and γ = 1/2 for Tγ and γ = 1 for Sγ . Here we show that continuity
results hold for a range of γ that includes the mentioned cases. The compactness
results obtained for [Tγ , b] and [Sγ , b] are completely new. Mirar este parrafo,

hay otras citas pero
creo que no van

Theorem 8. Let 0 < γ < d/2. Then, for any 1 < p < q/γ and w such that

w1−p′ ∈ Aρ,∞p′/(q/γ)′ , the commutator [Tγ , b] is a bounded operator on Lp(w). Further,

if b ∈ CMO∞ρ , it is compact.
Moreover, if V ∈ RHq for all 1 < q <∞, the above statements are valid for any

1 < p <∞ and w ∈ Aρ,∞p .

Theorem 9. Let 1/2 < γ ≤ 1 and qγ as defined in (28). Then, for any 1 < p < qγ
and w such that w1−p′ ∈ Aρ,∞p′/q′γ , the commutator [Sγ , b] is a bounded operator on

Lp(w). Further, if b ∈ CMO∞ρ , it is compact.
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18 B. BONGIOANNI, E. HARBOURE AND P. QUIJANO

Moreover, if V ∈ RHq for all 1 < q <∞, the above statements are valid for any
1 < p <∞ and w ∈ Aρ,∞p .

Remark 4. We point out that even in the above theorems we obtain similar results
for R1, R2, Tγ and Sγ under stronger assumptions on V , the situation is not the
same in all cases. Pointwise estimates as (11) and (12) are known for the kernels
of R1 and R?1 when V ∈ RHd. However, the situation is different for R?2, T ?γ and
S?γ since, to our knowledge, such estimates have not been proved.

As for the operator Liα, the following result follows straightforwardly from The-
orem 1, Theorem 2 and Proposition 4. The boundedness of [Liα, b] on Lp(w) with
BMO∞ρ symbols was already obtained by Tang in [18]. The compactness result is
new.

Theorem 10. Let V ≥ 0 satisfying a reverse Hölder inequality of order q > d/2
with d > 2 and α ∈ R. Then, for any 1 < p < ∞ and w ∈ Aρ,∞p , the commutator

[Liα, b] is a bounded operator on Lp(w). Further, if b ∈ CMO∞ρ , it is compact.

5. On a characterization of CMOρ

As in Uchiyama, we present here a description of our space for the symbols in
terms of smallness of (ρ, θ) mean oscillations. More precisely we introduce the class
SMO∞ρ as those functions in BMO∞ρ such that for some θ ≥ 0 satisfy the following
three conditions

(i) limδ→0 sup
{

Oscθρ(f,B(x, r)) : x ∈ Rd, r ≤ δ
}

= 0

(ii) limλ→∞ sup
{

Oscθρ(f,B(x, r)) : x ∈ Rd, r ≥ λ
}

= 0

(iii) lim|x|→∞Oscθρ(f,B(x, r)) = 0, for each fixed r > 0.

When the above conditions are satisfied with some particular θ we say that
f ∈ SMOθ

ρ. Notice that if they hold for some θ, they are also true for any larger
value. The above three conditions can be rephrased in a very useful way.

Lemma 3. Let f ∈ SMOθ
ρ for some θ ≥ 0. Then, for each ε > 0 there exists δ, λ

and R such that

Oscθρ(f,B(x, r)) < ε

for any x provided r < δ or r > λ and for any r as long as |x| > R.

Proof. According to (i) and (ii) we choose δ and λ with the desired properties. Pick
now two integers i and j such that 2i ≤ δ < 2i+1 and 2j−1 ≤ λ < 2j . Clearly we
may assume i < j. Now, for all i < k < j, according to (iii) and being a finite set
of radius, we may choose R such that

Oscθρ(f,B(x, 2k)) < c ε for |x| > R,

where c < 1 is a fixed constant that will be chosen later. Now we analyse what
happens for any 2i < r < 2j . In fact, pick k such that 2k < r < 2k+1 with i ≤ k ≤ j.
Then, since B(x, r) ⊂ B(x, 2k+1) and 2k+1/r < 2, we easily obtain

Oscθρ(f,B(x, r)) ≤ C Oscθρ(f,B(x, 2k+1)),

where the constant C depends only on θ and the dimension. Therefore, choosing
c = C−1 we arrive to the desired conclusion. �
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BOUNDEDNESS AND COMPACTNESS FOR COMMUTATORS... 19

Observe also that for each θ ≥ 0, the space SMOθ
ρ is a vector subspace of BMOθ

ρ.
Moreover it is closed with respect to the ‖ · ‖BMOθρ

norm. In fact, suppose f is in

the closure of SMOθ
ρ and let ε > 0 be given. Then there exists a function g ∈ SMOθ

ρ

such that

sup
B(x,r)

Oscθρ(f − g,B(x, r)) < ε/2.

For this function g there exist δ0 and λ0 such that for any x and either r < δ0
or r > λ0,

Oscθρ(g,B(x, r)) < ε/2.

Moreover, for any given r there is some R = R(r) such that

sup
|x|>R

Oscθρ(g,B(x, r)) < ε/2.

Using now

Oscθρ(f,B(x, r)) ≤ Oscθρ(f − g,B(x, r)) + Oscθρ(g,B(x, r)),

it follows that f also satisfies the three required conditions to be in SMOθ
ρ.

Another observation is that C∞0 , the space of functions with infinitely many

derivatives and compact support, is contained in SMOθ
ρ. Moreover this is true

for continuous functions of compact support. In fact a such function is uniformly
continuous, and so, given ε > 0 for some δ we have |x−y| < δ implies |f(x)−f(y)| <
ε. Therefore, for r < δ,

Oscθρ(f,B(x0, r)) ≤ Osc(f,B(x0, r)) ≤
1

|B|2

ˆ
B

ˆ
B

|f(x)− f(y)|dxdy < ε.

Next, as f is integrable,

Oscθρ(f,B(x0, r)) ≤ 2|fB(x0,r)| ≤
C

rd

ˆ
Rd
|f |,

and the right hand side goes to zero when r tends to infinity.
Finally, suppose that the support of f is contained in a ball B(0, R0). Then, if

for a fixed r we take |x0| > r +R0, we get f = 0 over B(x0, r).

In view of the above properties for SMOθ
ρ and the definition of CMOθ

ρ it follows

that CMOθ
ρ ⊂ SMOθ

ρ for every θ ≥ 0, and so we have

CMO∞ρ ⊂ SMO∞ρ .

The remain of the section is devoted to analyse the other inclusion. First we
observe that if θ1 ≤ θ2 then SMOθ1

ρ ⊂ SMOθ2
ρ and therefore we can write SMO∞ρ =

∪θ≥1SMOθ
ρ. So, to show SMO∞ρ ⊂ CMO∞ρ , it will be enough to prove

SMOθ
ρ ⊂ CMOθ

ρ, for θ ≥ 1.

However, we are able to do that assuming that the critical function ρ is bounded
over the whole space. Even though it imposes some restriction, the characteriza-
tion will hold for a large class of potentials, for instance, for positive polynomial
potentials, in particular for the Hermite operator Hu(x) = −∆u(x) + |x|2u(x).

We will prove the inclusion SMOθ
ρ ⊂ CMOθ

ρ for bounded ρ and θ ≥ 1 by per-

forming a series of approximations. First we reduce to the case f ∈ SMOθ
ρ and

bounded, then we approximate by a bounded function with compact support lying
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20 B. BONGIOANNI, E. HARBOURE AND P. QUIJANO

in SMOθ
ρ and finally by a C∞0 function, always with respect to the norm (6). Let

us point out that only for the second step we will make use of the extra condition
on ρ. First we need to prove some technical lemmas.

Lemma 4. Let f be a function in SMOθ
ρ and c any constant. Then g = min {f, c}

belongs also to SMOθ
ρ and moreover it satisfies

Oscθρ(g,B(x0, r)) ≤ 2 Oscθρ(f,B(x0, r)),

for any ball B(x0, r).

Proof. First observe

min {f(x), c} =
1

2
(f(x) + c− |f(x)− c|) ,

so that

|g(x)− g(y)| ≤ 1/2 (|f(x)− f(y)|+ ||f(x) + c| − |f(y)− c||)
≤ |f(x)− f(y)|.

Therefore, for any ball B(x0, r),ˆ
B(x0,r)

ˆ
B(x0,r)

|g(x)− g(y)| dx dy ≤
ˆ
B(x0,r)

ˆ
B(x0,r)

|f(x)− f(y)| dx dy,

and the conclusion follows for any ρ and θ. �

Lemma 5. Let ρ be a critical radius function, and x and z two points of Rd.
Then, there exists a constant C, depending only on the constant in (3), such that
if |x− z| ≤ 1, we have ρ(x)/ρ(z) ≤ C.

Proof. From (3) we have

1

ρ(z)
≤ 1

ρ(0)

(
1 +

|z|
ρ(0)

)N0

and

ρ(x) ≤ ρ(0)

(
1 +

|x|
ρ(0)

) N0
N0+1

.

Therefore, since ρ(0) is a positive number we arrive to

ρ(x)

ρ(z)
≤ C (1 + |x|)

N0
N0+1

(1 + |z|)N0
.

Now, if |x| ≤ 2 the quotient is bounded by a constant. Otherwise, for |x| > 2 and
since |x − z| ≤ 1 we have |z| ≥ |x|/2 and also 1 + |x| ≤ 3|x|/2, so the ratio is

bounded by a constant times |x|−
N2

0
N0+1 which is at most one.

�

Now we present the announced result.

Proposition 5. Let ρ be a bounded function and θ ≥ 1 . Then given f ∈ SMOθ
ρ

and ε > 0, there is a function h ∈ C∞0 such that ‖f − h‖BMOθρ
< ε.
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BOUNDEDNESS AND COMPACTNESS FOR COMMUTATORS... 21

Proof. First suppose that f ∈ SMOθ
ρ and bounded. Given ε > 0 pick δ, λ and R as

in the conclusion of Lemma 3. We may assume that R > λ and R ≥ (Cρε)
−1, where

C−1ρ = ‖ρ‖∞. Choose a function ψR smooth, ψR = 1 in B(0, 2R), 0 ≤ ψR ≤ 1,
ψR = 0 in B(0, 4R)c with |∇ψR| ≤ 1/R. We set g = ψRf , so g is a bounded
function with compact support. Since

|g(x)− g(y)| ≤ ‖f‖∞|ψR(x)− ψR(y)|+ |f(x)− f(y)|,

we have

(29) Oscθρ(g,B(x0, r)) ≤ ‖f‖∞ Oscθρ(ψR, B(x0, r)) + Oscθρ(f,B(x0, r)).

Now we estimate the oscillations of ψR. By the Mean Value Theorem we have
|ψR(x)− ψR(y)| ≤ |x− y||∇ψR(ξ)|, for some ξ, and hence

Oscθρ(ψR, B(x0, r) ≤
r

(1 + rCρ)
θ

1

R
,

with C−1ρ = ‖ρ‖∞. Since θ ≥ 1 we have for any x0 and r

Oscθρ(ψR, B(x0, r) ≤
1

CρR
≤ ε,

due to our assumption on R. Plugging the last estimate in (29) we get

Oscθρ(g,B(x0, r)) ≤ (‖f‖∞ + 1)ε,

whenever r < δ or r > λ and all x0 or if |x0| > R and any r > 0. Therefore, for
such balls we have

Oscθρ(f − g,B(x0, r)) ≤ (‖f‖∞ + 2)ε.

It remains to analyse balls B(x0, r) with |x0| < R and δ < r < λ. However
in that case, B(x0, r) ⊂ B(0, 2R) and hence ψR = 1 and so f − g = 0. That

the function g actually belongs to SMOθ
ρ, even it is not necessary, it is true. In

fact conditions (ii) and (iii) follow from the integrability and its compact support
respectively. Regarding condition (i), if we take limit for r → 0 in (29), both terms

go to zero since f ∈ SMOθ
ρ and ψR is an uniformly continuous function.

Next, we approximate g ∈ SMOθ
ρ, bounded and with compact support, by a C∞0

function. To that end, take any non negative C∞0 function Φ with support contained

in the unit ball such that
´

Φ = 1. Then Φ ∗ g ∈ C∞0 and hence Φ ∗ g ∈ SMOθ
ρ.

Now we claim that there is a constant C such that for any ball B(x0, r),

(30) Oscθρ(Φ ∗ g,B(x0, r)) ≤ C sup
|ξ|≤1

Oscθρ(g,B(x0 − ξ, r)).

In fact,
ˆ
B(x0,r)

ˆ
B(x0,r)

|Φ ∗ g(x)− Φ ∗ g(y)| dx dy

≤
ˆ

Φ(ξ)

(ˆ
B(x0,r)

ˆ
B(x0,r)

|g(x− ξ)− g(y − ξ)|dxdy

)
dξ

≤ sup
|ξ|≤1

ˆ
B(x0−ξ,r)

ˆ
B(x0−ξ,r)

|g(x′)− g(y′)|dx′dy′,
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22 B. BONGIOANNI, E. HARBOURE AND P. QUIJANO

where we used that Φ has its support contained in the unit ball and its integral

is one. Now, multiplying both sides by c2dr
−2d (1 + r/ρ(x0))

−θ
, where cd is the

measure of the unit ball, we arrive to

Oscθρ(Φ ∗ g,B(x0, r)) ≤ sup
|ξ|≤1

(1 + r/ρ(x0 − ξ))θ

(1 + r/ρ(x0))
θ

Oscθρ(g,B(x0 − ξ, r)).

Since
1 + r/ρ(x0 − ξ)

1 + r/ρ(x0)
≤ 1 +

ρ(x0)

ρ(x0 − ξ)
,

using Lemma 5 we get (30). Observe that the claim holds for any smooth function
Φ with integral one and whose support lies inside the unit ball. Therefore, taking
a particular function ζ such that 0 ≤ ζ ≤ 1, supp ζ ⊂ B(0, 1) and

´
ζ = 1 , we can

apply inequality (30) to ζn(x) = nζ(nx), n ≥ 1 with a uniform constant.

Now, let hn = ζn ∗ g, n ≥ 1. For a given ε > 0, since g ∈ SMOθ
ρ, pick δ, λ and

R > λ satisfying the conclusion of Lemma 3. Then for r < δ or r > λ and any x0,
by (30) and the above remark, we have

Oscθρ(hn − g,B(x0, r)) ≤ Oscθρ(hn, B(x0, r)) + Oscθρ(g,B(x0, r))

≤ 2C sup
|ξ|≤1

Oscθρ(g,B(x0 − ξ, r))

≤ 2C ε.

Also, assuming R ≥ 1, for |x0| ≥ 2R and any r we will have |x0 − ξ| ≥ R and
using again (30) we arrive to the same inequality. Again, it remains to consider
oscillations for balls B(x0, r) with |x0| ≤ 2R and δ < r < λ. In that case

Oscθρ(hn − g,B(x0, r)) ≤
2

|B(x0, r)|

ˆ
B(x0,r)

|ζn ∗ g − g|

≤ 2

cdδd

ˆ
B(0,3R)

|ζn ∗ g − g|,

and the last integral tends to zero for n→∞, since, being g bounded with compact
support, the integrand goes to zero a.e and it is bounded by the integrable function
2g. Altogether we have proved that for n large enough the function hn belongs to
C∞0 and satisfies

‖g − hn‖BMOθρ
< C ′ ε,

for some constant C ′.
To conclude the proof of the Proposition we assume that f ∈ SMOθ

ρ but it is not
necessary bounded.

In this case, we define for each positive N the bounded function

fN (x) =


N if f(x) > N,

f(x) if |f(x)| ≤ N,
−N if f(x) < −N,

and we prove that fN ∈ SMOθ
ρ and limN→∞ fN = f in the BMOθ

ρ sense. Let us
observe that if gN = min {f,N}, then fN = max {gN ,−N} = −min {−gN , N}. By
Lemma 4

Oscθρ(fN , B(x0, r)) ≤ 4Oscθρ(f,B(x0, r)).
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BOUNDEDNESS AND COMPACTNESS FOR COMMUTATORS... 23

Then given ε > 0 let us consider for f the parameters δ, λ and R as given in
Lemma 3. In this case we will have that

Oscθρ(f − fN , B(x0, r)) ≤ 5ε

for any x0 provided r < δ or r > λ and for any r as long as |x0| > R.
Next let us consider B(x0, r) such that δ < r < λ and |x0| ≤ R. Thus

Oscθρ(f − fN , B(x0, r)) ≤
2

|B(x0, r)|

ˆ
B(x0,r)

|f − fN | ≤
2

cdδd

ˆ
B(x0,λ)

|f − fN |.

But the last integral goes to zero when N → ∞ as a consequence of Lebesgue
Dominated Convergence Theorem.

�

As a consequence we have proved the following result.

Corollary 1. Let ρ be a bounded critical radius function. Then SMO∞ρ = CMO∞ρ .

We finish this section showing some examples of CMO∞ρ functions. The first one
shows that for any given critical radius function (not necessarily bounded) there
exists a function f ∈ CMO∞ρ such that f /∈ CMO. Moreover, our argument shows
that the classical space BMO is always strictly contained in BMO∞ρ .

Let ρ a function satisfying (3). Using the second inequality in (3) and setting
δ = N0/N0 + 1, we have ρ(x) ≤ C(1 + |x|)δ for some constant C only depending on

ρ. Take f(x) = |x|α + 1 with 0 < α < 1− δ. We will show first that f ∈ SMOθ
ρ for

θ such that 1 < θ < (1− α)/δ. Consider a ball B(x, r). If |x| > 2r,

Oscθρ(f,B(x, r)) ≤
(

1 +
r

ρ(x)

)−θ  
B(x,r)

 
B(x,r)

|f(y)− f(z)|dydz

≤
(

1 +
r

ρ(x)

)−θ  
B(x,r)

 
B(x,r)

|z − y|(1 + |ξ|)α−1dydz

≤ C
(

1 +
r

ρ(x)

)−θ
r(1 + |x|)α−1.

(31)

Condition (i) is satisfied since, in particular, Osc(f,B(x, r)) ≤ Cr. To check the
remaining conditions recall that ρ(x) ≤ C(1 + |x|)δ. Hence,

Oscθρ(f,B(x, r)) ≤ C(1 + |x|)α−1+δθ

rθ−1
,(32)

So that condition (ii) and condition (iii) follow since θ > 1 and α− 1 + δθ < 0.
On the other hand, if |x| ≤ 2r,

Oscθρ(f,B(x, r)) ≤
(

1 +
r

ρ(x)

)−θ  
B(x,r)

 
B(x,r)

|f(y)− f(z)|dydz

≤
(

1 +
r

ρ(x)

)−θ  
B(0,3r)

 
B(0,3r)

(|z|α + |y|α) dydz

≤ C
(

1 +
r

ρ(x)

)−θ
rα.

(33)
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24 B. BONGIOANNI, E. HARBOURE AND P. QUIJANO

Condition (i) is satisfied since, in particular, Osc(f,B(x, r)) ≤ Crα. To check
condition (ii) observe that

Oscθρ(f,B(x, r)) ≤ C (1 + |x|)δθ

rθ−α
≤ Crα+δθ−θ → 0

when r →∞, since θ > 1 and α+ δθ − θ < 0. Condition (iii) follows from

Oscθρ(f,B(x, r)) ≤ C (1 + |x|)δθ

rθ−α
≤ C r

α(1 + |x|)δθ

|x|θ
,

since θ ≥ 1. In conclusion, we have shown that the function f(x) = |x|α + 1 with
0 < α < 1− δ belongs to SMO∞ρ .

Now, if ρ is a bounded function, then f ∈ CMO∞ρ by Corollary 1. If not, we
are going to show that we can approximate f by a C∞0 function. Let ε > 0. we

can still apply Lemma 3 to obtain δ, λ and R such that Oscθρ(f,B(x, r)) < ε for
any x provided r < δ or r > λ and for any r as long as |x| > R. Also, we can
assume δ < λ < R. Defining CR = f(2R) and g(x) = min{f(x), CR} we obtain, by
Lemma 4,

Oscθρ(g,B(x, r)) ≤ 2Oscθρ(f,B(x, r)) < 2ε

for any x provided r < δ or r > λ and for any r as long as |x| > R. If δ ≤ r ≤ λ and

|x| ≤ R we have B(x, r) ⊂ B(0, 2R). Therefore f ≡ g and Oscθρ(f − g,B(x, r)) = 0.

Finally, since g ∈ SMOθ
ρ is bounded an with compact support, we can proceed as

in the last step of the proof of Proposition 5 to approximate it by a C∞0 function,
proving that f ∈ CMO∞ρ . Clearly f /∈ CMO since it is known that positive powers
are not even in BMO.

We finish this section with an example to show that if ρ decreases at infinity as
a negative power, CMO∞ρ functions can increase more rapidly than those presented
above.

Let ρ(x) = (1 + |x|)−k for k ∈ N and f(x) = |x|α + 1. Since ρ is bounded we
have CMO∞ρ = SMO∞ρ . Consider a ball B = B(x, r). Suppose first that |x| > 2r.

We can use the estimate for Oscθρ(f,B(x, r)) given in (31) to obtain

(34) Oscθρ(f,B(x, r)) ≤ C r(1 + |x|)α−1

(1 + r(1 + |x|)k)θ
≤ r1−θ(1 + |x|)α−1−kθ.

So, condition (i) holds as long as θ < 1 and α− 1− kθ ≤ 0. Both requirements are
fulfilled if we take α < k + 1. To check condition (ii) we write instead

Oscθρ(f,B(x, r)) ≤ C r(1 + |x|)α−1

(1 + r(1 + |x|)k)θ
≤ r−θ(1 + |x|)α−kθ.

So, condition (ii) is satisfied as long as θ > 0 and α ≤ kθ. For condition (iii) we
observe from (34) that it is verified as long as α < kθ + 1.

It remains to analyse the case |x| ≤ 2r. From estimate for Oscθρ(f,B(x, r)) given
in (33) we obtain

Oscθρ(f,B(x, r)) ≤ C
(
1 + r(1 + |x|)k

)−θ
rα.

Condition (i) is satisfied as long as α > 0 and θ ≥ 0. Finally we observe

Oscθρ(f,B(x, r)) ≤ C(1 + |x|)−kθrα−θ.

So, condition (ii) holds for θ > α and condition (iii) holds for θ > 0.
Altogether we have obtained that if α < k + 1:
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BOUNDEDNESS AND COMPACTNESS FOR COMMUTATORS... 25

• condition (i) is true for (α− 1)/k ≤ θ1 < 1 and θ1 > 0,
• condition (ii) is true for θ2 > α,
• condition (iii) is true for θ3 > (α− 1)/k and θ3 > 0.

Due to the inequality

Oscθρ(f,B(x, r)) ≤ Oscθ
′

ρ (f,B(x, r))

when θ′ ≤ θ, choosing θ = max{θ1, θ2, θ3} we obtain that f(x) = |x|α + 1, for

α < k + 1, belongs to SMOθ
ρ ⊂ SMO∞ρ = CMO∞ρ for ρ(x) = (1 + |x|)−k. In

particular, for the Hermite operator −∆ + |x|2, since ρ(x) = (1 + |x|)−1, we have
that f(x) = |x|α+ 1 ∈ CMO∞ρ for any α < 2. Similar results can be obtained when
the potential is a positive polynomial.

6. A final comment

Up to here we have dealt with commutators of linear operators. However there
are relevant operators in the harmonic analysis related to the Schrödinger semigroup
(as well as in the Laplacian case) which are not linear, such as maximal operators
or square functions. A key idea to handle such operators is to think them as
the norm, in an appropriate Banach space B, of a linear operator mapping scalar
functions in functions taking values in B. For example, the maximal operator
W ∗f(x) = supt>0 |Wtf(x)|, where Wt is the semigroup e−tL, can be seen as the
norm in B = L∞((0,∞)) of a linear operator W mapping scalar functions into
functions with values in L∞((0,∞)). More precisely, settingWf(x) = (Wtf(x))t>0,
we clearly have W ∗(x) = ‖Wf(x)‖L∞(0,∞). Therefore boundedness of the maximal
operator W ∗ in Lp(w) means exactly that the linear operator W is bounded from
Lp(w) in LpB(w), since

‖W ∗f‖pLp(w) =

ˆ
Rd
‖Wf(x)‖pL∞(0,∞)w(x)dx = ‖Wf‖p

Lp
L∞(0,∞)

(w)
.

Such linearization also allows us to define in a natural way commutators of W ∗

with a symbol b. In fact, being W a linear operator, commutators are defined by
Wbf = bWf−W(bf). Notice that in the first term for each x we have multiplication
of an scalar by a vector in B, while in the second is just a product of numbers.
Therefore, for the maximal operator commutators should be defined as

W ∗b f =‖Wbf‖L∞(0,∞) = sup
t>0
|(Wt)bf |.

Now, the question is whether Theorem 1 and Theorem 2 can be carried out to the
context of vector valued operators. A first observation is that the same compactness
criterion holds in LpB(wdx), just changing absolute values in the conditions by B-
norm. Also, as for boundedness, it is clear that compactness of W is equivalent to
that of W ∗.

Next we may introduce the corresponding family of vector valued operators ρ-
Schrödinger-Calderón-Zygmund operators of type (s, δ), i.e. bounded from Ls

′
into

Ls
′,∞
B and with kernels satisfying conditions (8) and (9), where absolute values on

the left must be replaced by B-norm.
Even we are not going to work out the details, it is more likely that proofs of

boundedness and compactness for their commutators can be carried out obtaining
the same symbols and weights stated in Theorem 1 and Theorem 2, just following
the same steps with minor modifications.
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Consequently, such results could be applied, for instance, to maximal oper-
ators of the heat and Poisson semigroups related to the Schrödinger operator,
taking B = L∞(0,∞), as well as for the g-function introduced in [11], being
B = L2((0,∞), dt/t) this time. The needed estimates to check that their vec-
tor valued versions are vector valued ρ-Schrödinger-Calderón-Zygmund operators
of type (∞, δ) can be found in [11] and [16].
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