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Abstract: Intending to increase the knowledge about cytogenetics of Physalaemus 
and the sparsely studied P. gracilis group, we analyzed the karyotypes of P. carrizorum, 
P. gracilis, P. lisei, and P. sp. aff. gracilis. We studied chromosome morphology, 
heterochromatin patterns, Ag-NORs location and mapped the repetitive DNA sequence 
PcP190. All species showed diploid karyotypes composed of 22 bi-armed chromosomes 
and similar C- bands and Ag-NOR patterns. C-bands were mainly centromeric and 
pericentromeric; non-centromeric C-bands were detected on the telomeres of pair 1 in P. 
lisei, although polymorphic, and interstitially on pair 10 of P. gracilis. This last character 
is useful to distinguish P. gracilis from its sibling species P. sp. aff. gracilis. The Ag-
NOR sites were detected on the long arms of chromosome pair 8 but with a variable 
position among species. Clusters of PcP190 showed centromeric and pericentromeric 
positions coincident with conspicuous C-bands, on pairs 2 and 9 in P. gracilis and P. 
sp. aff. gracilis, pair 3 in P. carrizorum, and pair 7 in P. lisei. These results significantly 
increase the knowledge about Physalaemus cytogenetics and encourage further studies 
on the satellite PcP190 in other genera of Leiuperinae to better understand its taxonomic 
distribution and the evolutionary dynamics.
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INTRODUCTION

The foam-nesting frog genus Physalaemus 
is a monophyletic group of Neotropical 
leptodactylids belonging to the sub-family 
Leiuperinae that inhabits several South 
American ecoregions, from the southern part of 
the Guianas and Venezuela to central Argentina, 
including a large portion of Brazil, southeastern 
Colombia, eastern Bolivia, Paraguay and 
Uruguay (Frost 2019). Current knowledge about 
the phylogenetic relationships of these frogs 
arranges them into two major clades. The P. 
signifer clade comprises the P. deimaticus and 
P. signifer species groups, plus P. maculiventris 
and P. nattereri. Additionally, the P. cuvieri clade 

consists of five species groups: P. biligonigerus, 
P. cuvieri, P. henselii, P. olfersii, and P. gracilis, 
and the species P. cicada unassigned to any 
group (Lourenço et al. 2015).

The cytogenetics of Physalaemus has 
provided valuable information to elucidate 
the taxonomic relations and chromosome 
evolution of these frogs. Only 27 of the 48 
currently recognized species have been 
karyotyped (Quinderé et al. 2009, Tomatis et 
al. 2009, Vittorazzi et al. 2014a, 2016, Lourenço 
et al. 2015 and references therein). As a rule, 
Physalaemus species have diploid karyotypes 
with 2n = 22, although two different fundamental 
numbers (FN) can be observed (42 and 44). The 
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karyotypes with FN = 42 have a small telocentric 
chromosome and are found in all species of the 
P. signifer clade and P. fernandezae, whereas a 
FN = 44 is present in all the remaining species of 
the P. cuvieri clade.

Characteristic of many Physalaemus species 
is the location of the Nucleolar Organizer 
Regions (NORs) on small-sized chromosomes 
(i.e., pairs 8 to 11). However, the homology of this 
character among species should be interpreted 
cautiously, since it showed broad intraspecific 
variability (Ananias et al. 2007a, Quinderé et al. 
2009, Vittorazzi et al. 2014a, Nascimento et al. 
2019) or could be homoplastic (Lourenço et al. 
2015). Within the P. cuvieri clade, most species 
show NORs on pair 8, which is a plesiomorphic 
condition of the genus (Lourenço et al. 2015). 
Similarly, C-bands are other interesting 
characters that may be phylogenetically 
informative. For instance, all karyotyped species 
of the P. cuvieri group share an interstitial C- 
band on the metacentric pair 5, and almost all 
species of the P. biligonigerus group share a 
pericentromeric C- band on the short arm of pair 
3 (Vittorazzi et al. 2014a, and references therein). 
Besides, the satellite DNA (satDNA) sequence 
PcP190 that was mapped in several species 
of Engystomops, Physalaemus, and Pseudis is 
a promissory marker for the establishment of 
chromosomal homologies and its variation can 
reveal phylogenetically informative patterns 
in anurans (Vittorazzi et al. 2011, 2014b, 2016, 
Targueta et al. 2018, Gatto et al. 2016, 2018, 2019).

The Physalaemus gracilis group is composed 
of six species (P. barrioi, P. carrizorum, P. 
evangelistai, P. gracilis, P. jordanensis, and P. lisei) 
that inhabit southeastern Brazil, northeastern 
Argentina, and Uruguay (Nascimento et al. 2005, 
Lourenço et al. 2015, Cardozo & Pereyra 2018). 
Cytogenetic data for this group is scarce and 
restricted to P. barrioi (Provete et al. 2012) and P. 
gracilis (Brum-Zorrilla & Sáez 1968, de Lucca et 

al. 1974), which have karyotypes of 22 bi-armed 
chromosomes (FN = 44). In P. barrioi, there is 
additional information regarding the position of 
NORs terminal on pair 10 and C-banding pattern 
that is mostly centromeric and pericentromeric, 
except for an interstitial band present on the 
long arm of pair 4 (Provete et al. 2012).

In this paper, we cytogenetically studied 
four species of the Physalaemus gracilis group: 
P. carrizorum, P. gracilis, P. lisei, and a different 
species from Uruguay referred herein as P. sp. aff. 
gracilis. We provide information concerning Ag-
NORs, C-banding patterns, and the chromosomal 
location of the repetitive sequence PcP190, and 
discuss our findings under the view of current 
taxonomy and phylogenetic hypotheses.

MATERIALS AND METHODS

We studied 13 specimens of Physalaemus 
carrizorum, 4 of P. gracilis, 7 of P. sp. aff. gracilis, 
and 7 of P. lisei. Mitotic metaphases were 
obtained from intestines and bone marrow 
tissue following Schmid et al. (2010). The 
chromosome number and morphology were 
studied on preparations stained with buffered 
Giemsa solution (10%). C-bands and Ag-NOR 
were obtained according to Sumner (1972) 
and Howell & Black (1980), respectively. The 
satDNA sequence PcP190 (Vittorazzi et al. 2011) 
was mapped to mitotic preparations by in situ 
hybridizations after Pinkel et al. (1986). Probes 
consisted of PcP190 sequences amplified from 
a cloned type 1-PcP190 fragment (KX170909) 
using a PCR dig Probe Synthesis Kit (Roche) and 
were detected with Rhodamine conjugated with 
anti-digoxigenin (Roche). Chromosomes were 
measured using the software DRAWID (Kirov 
et al. 2017), excluding secondary constrictions 
in measurements, and classified either as 
metacentric (m), submetacentric (sm), and 
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subtelocentric following Green & Sessions 
(1991). In the karyograms, the chromosome 
pairs were ordered to reflect our hypotheses of 
chromosomal homeologies (Lourenço et al. 2015, 
Targueta et al. 2018), regardless of chromosome 
size.

Collected specimens are housed in the 
herpetological collections of the Laboratorio 
de Genética Evolutiva, Instituto de Biología 
Subtropical, Posadas, Misiones, Argentina 
(LGE), and Museo Nacional de Historia Natural, 
Montevideo, Uruguay (MNHN), and the Collection 
of tissue and chromosome preparation “Shirlei 
Maria Recco Pimentel”, Department of Structural 
and Functional Biology at the Biology Institute 
of the University of Campinas,  São Paulo, Brazil. 
The collections of specimens were approved by 
the Ministerio de Ecología y Recursos Naturales 
Renovables (Argentina, MEyRNR 061/2015, 
073/2016, 035/2017 and 047/2018), Instituto Chico 
Mendes de Conservação da Biodiversidade 
and Sistema de Autorização e Informação em 
Biodiversidade (Brazil, ICMBio/SISBIO 32483-3), 
and División Fauna (Uruguay, MGAP Res 195/06). 
Protocols of euthanasia and preservation of 
specimens were performed with the approval 
of the Ethics Committee in Animal Use (CEUA 
UNICAMP 4802-1 and MNHN 1/2019). The sex and 
collection information of studied specimens are 
detailed below.

Physalaemus sp. aff. gracilis — URUGUAY: 
San José: Estancia Maitea, Sierra de Mahoma, 
MNHN 9984 (♀), 9985 (♂), 9986 (♂); Maldonado: 
Route 109 2 km southern Aiguá, MNHN 9982 (♂), 
9984 (♂), LGE 15682 (♀); Treinta y Tres: Bañado 
de Los Oliveras, MNHN 9511 (♀).

Physalaemus gracilis — BRAZIL: Rio Grande 
do Sul: Gravataí, SMRP 37.16 (♂), 37.17 (♂), 37.18 
(♂), 37.19 (♂)

Physalaemus carrizorum — ARGENTINA: 
Misiones: Moconá Provincial Park, LGE 15317(♂), 
LGE 15318, 15319 (♂), 15320 (♂); Arroyo Los 

Muertos, near Provincial route N°2, LGE 24602 (♂), 
LGE 15325 (♀); Piñalito Provincial Park, LGE 24602 
(♂), 20450 (♂), 20453 (undetermined); Provincial 
route N°18, 25 km west Bernardo de Irigoyen, 
LGE 20433 (♂), 20434 (♂); Provincial route N° 18, 
45 km northwest Bernardo de Irigoyen, LGE 3383 
(♂); National route N° 14 km northwest Tobuna, 
LGE 21828 (♂). 

Physalaemus lisei — BRAZIL: Rio Grande do 
Sul: Gravataí, SMRP 38.9 (♀), 38.10 (♀), 38.11 (♀), 
38.12 (♀), 38.13 (♀), 38.14 (♂), 38.15 (♂).

RESULTS

The four species studied herein presented 
similar karyotypes with 11 bi-armed chromosome 
pairs (2n = 2x = 22; FN = 44), containing seven 
large to medium-sized and four small-sized 
ones. Pairs 1, 2, 5, 6, and 9–11 were metacentric, 
while pairs 3, 4, and 7 were submetacentric. Pair 
8 invariably showed secondary constrictions, 
being metacentric in Physalaemus gracilis, P. sp. 
aff. gracilis, and P. lisei but submetacentric in P. 
carrizorum (Figure 1 a,d, Table I).

The Ag-NORs were detected only on the 
long arms of chromosome pair 8, coinciding 
with secondary constrictions in Giemsa stained 
metaphases. They were terminal in Physalaemus 
sp. aff. gracilis and P. gracilis, but interstitial in P. 
carrizorum and P. lisei (Figure 1 a,d). Besides, one 
female of P. sp. aff. gracilis (MNHN 9511) and one 
male of P. gracilis (SMRP 37.16) showed different 
sizes for the Ag-NORs between homologues 
(Figure 1 a,d).

Heterochromatic bands were observed 
in the centromeric regions and stained more 
intensely on (peri)centromeres of pair 3 in 
the four species and pair 7 in Physalaemus 
lisei (Figure 2a, c, e, g). In Physalaemus sp. aff. 
gracilis and P. gracilis, the NORs were also 
associated with C-bands (Figure 2c, e). In P. 
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gracilis, an additional interstitial C-band was 
observed in pair 10. Moreover, in P. lisei, we 
observed polymorphisms for terminal C-bands 
associated with chromosomes of pair 1. Of the 
four specimens analyzed by this technique (3♀, 
1♂), the three females showed positive C-bands 
on both homologues in 1q while the male was 
heterozygous for such band, being present in 
only one chromosome. On the other hand, two 
of these females showed additional C-bands in 
both homologues in 1p (Figure 2i).

FISH with PcP190 probe showed fluorescent 
centromeric/pericentromeric marks in one 
chromosome pair of Physalaemus carrizorum 
and P. lisei, and in two chromosome pairs in P. sp. 
aff. gracilis and P. gracilis, always associated with 
heterochromatin but with a different location 
between species: pairs 2 and 9 in P. gracilis and 
P. sp. aff. gracilis, pair 3 in P. carrizorum, and pair 
7 in P. lisei (Figure 2b, d, f, h).

DISCUSSION

Previous reports on cytogenetics of the 
Physalaemus gracilis group only referred to 
the chromosome number of specimens from 

Uruguay (presumably P. sp. aff. gracilis, as P. 
gracilis, Brum-Zorrilla & Sáez 1968), karyotype 
descriptions of P. gracilis from an uncertain 
locality in Brazil (de Lucca et al. 1974), and of 
P. barrioi from the type locality of the species 
(Serra de Bocaina-Brazil, Provete et al. 2012). To 
date, there is no cytogenetic information about 
P. evangelistai and P. jordanensis.

The basic chromosome number (x = 11) 
observed in the Physalaemus gracilis group 
is shared by all currently analyzed species of 
the genus (Lourenço et al. 2015, and references 
therein; present study). Within Leptodactylidae, 
this character is widespread in the remaining four 
genera of Leiuperinae, Engystomops, Edalorhina, 
Pleurodema, and Pseudopaludicola (Barrio & 
Rinaldi de Chieri 1970, Lourenço et al. 2000, 2006, 
Targueta et al. 2011, 2018, Cardozo et al. 2016, 
2018, and also in Leptodactylus (Leptodactylinae, 
Coelho et al. 2016, and references therein). In 
contrast, different numbers are observed in 
Paratelmatobiinae (x = 12 in Paratelmatobius and 
Scythrophrys, Lourenço et al. 2008), and in other 
genera of Leptodactylinae (x = 9 in Lithodytes 
and x = 12 and 13 in Adenomera, Bogart 1970, 
Zaracho & Hernando 2011, Coelho et al. 2016). 

Figure 1. Giemsa stained karyotypes of four species of the Physalaemus gracilis group. (a) P. carrizorum, (b) P. 
gracilis, (c) P. sp. aff. gracilis, (d) P. lisei. The insets (*) show chromosomes with Ag-NORs. Bar = 10 μm.
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Moreover, within the higher taxon Hyloidea, 
this character state is shared by the families 
Brachycephalidae, Craugastoridae (Schmid et 
al. 2010, and references therein), Bufonidae 
(Baldo et al. 2012, and references therein), and 
Odontophrynidae (Ananias et al. 2007b, Rocha et 
al. 2017, and references therein). It is remarkable 
that in some recent phylogenomic analyzes, all 
these taxa were recovered within the major clade 
Commutabirana that includes the superfamily 
Brachycephaloidea (Brachycephal idae, 
Craugastoridae, Eleutherodactylidae) and 
the families Allophrynidae, Bufonidae, 
Centrolenidae, Dendrobatidae, Leptodactylidae, 
and Odontophrynidae (Feng et al. 2017, Streicher 
et al. 2018), and in which the state x = 11 
optimizes as a synapomorphy. Alternatively, 
in a more inclusive phylogenetic hypothesis 
recently proposed by Jetz & Pyron (2018), x = 11 
optimizes as a synapomorphy for a minor clade 
that excludes Brachycephaloidea.

As previously stated, among the Physalaemus 
karyotypes, are observed two distinct FN, FN = 44 

and FN = 42 (Vittorazzi et al. 2016, and references 
therein). Karyotypes composed of only bi-armed 
chromosomes (FN = 44) are present in species 
of the P. cuvieri clade but also among the other 
genera of leiuperines Edalorhina, Engystomops, 
Pleurodema, and Pseudopaludicola (Barrio 
& Rinaldi de Chieri 1970, Lourenço et al. 2000, 
2006, Targueta et al. 2011, 2018, Cardozo et al. 
2016, 2018. Conversely, karyotypes with one 
small pair of telocentric chromosomes (FN = 
42) were reported for species of the P. signifer 
clade and P. fernandezae (P. cuvieri clade), and 
with one small or medium pair in some species 
of Engystomops (Tomatis et al. 2009, Lourenço 
et al. 2015, Targueta et al. 2018). The similar FN 
observed in these three taxa likely corresponds 
to homoplasy, and the character state FN = 
42 could be considered a synapomorphy of 
the P. signifier clade (Lourenço et al. 2015). It 
should be stressed that the relation between P. 
fernandezae and P. henselii, and the remaining 
species of the P. cuvieri clade is poorly supported 
(Lourenço et al. 2015) and, in this regard, future 

Table I. Chromosome measurements of species of the Physalaemus gracilis group. The chromosome percentage is 
relative to the haploid set. Centromeric index ± Standard Deviation. Chromosome morphology: metacentric (m); 
submetacentric (sm); subtelocentric (st).

  P. carrizorum P. sp. aff. gracilis P. gracilis P. lisei

1 14.37 (m) 0.44 ± 0.01 15.31 (m) 0.45 ± 0.01 14.65 (m) 0.46 ± 0.02 15.15 (m) 0.43 ± 0.02

2 12.78 (m) 0.39 ± 0.01 13.04 (sm) 0.34 ± 0.03 12.81 (sm) 0.36 ± 0.03 11.74 (m) 0.38 ± 0.01

3 10.94 (sm) 0.30 ± 0.00 10.99 (st) 0.23 ± 0.07 11.11 (sm) 0.25 ± 0.02 10.61 (sm) 0.29 ± 0.03

4 10.47 (sm) 0.26 ± 0.01 10.19 (st) 0.25 ± 0.02 10.34 (st) 0.23 ± 0.02 10.55 (sm) 0.28 ± 0.03

5 9.86 (m) 0.46 ± 0.03 10.17 (m) 0.42 ± 0.01 10.43 (m) 0.43 ± 0.03 10.22 (m) 0.41 ± 0.03

6 9.77 (m) 0.45 ± 0.03 9.65 (m) 0.43 ± 0.02 9.20 (m) 0.41 ± 0.02 9.58 (m) 0.39 ± 0.04

7 8.67 (sm) 0.32 ± 0.01 8.66 (sm) 0.36 ± 0.02 8.39 (sm) 0.34 ± 0.05 8.37 (sm) 0.34 ± 0.02

8 5.15 (m) 0.45 ± 0.01 5.76 (m) 0.42 ± 0.04 5.48 (m) 0.46 ± 0.01 5.96 (m) 0.47 ± 0.02

9 6.48 (m) 0.45 ± 0.01 5.50 (m) 0.42 ± 0.07 6.43 (m) 0.44 ± 0.03 6.23 (m) 0.45 ± 0.01

10 5.83 (m) 0.45 ± 0.03 5.57 (m) 0.45 ± 0.04 5.79 (m) 0.45 ± 0.02 6.15 (m) 0.44 ± 0.03

11 5.68 (m) 0.41 ± 0.01 5.16 (m) 0.44 ± 0.03 5.37 (m) 0.44 ± 0.04 5.44 (m) 0.39 ± 0.04
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interpretations of the transformation observed 
in P. fernandezae would change as more 
information would become available.

Almost all karyotyped species of the 
Physalaemus gracilis group show the NORs 
in chromosome pair 8, excepting P. barrioi in 
which this marker is present in pair 10 (Provete 
et al. 2012). In the P. olfersii group, a clade 
phylogenetically closely related to the P. gracilis 
group, the Ag-NORs are present in pairs 3 and 7 
in P. feioi (as P. olfersii from the locality of Viçosa, 

state of Minas Gerais, Brazil, Milani et al. 2011), 3 
and 4 in P. olfersii (in specimens from Teresópolis, 
state of Rio de Janeiro, Brazil, Milani et al. 2011), 
and possibly in pair 11 in P. soaresi inferred by 
the presence of secondary constrictions (de 
Lucca et al. 1974). Moreover, in the P. biligonigerus 
group, which is phylogenetically closely related 
to the P. gracilis and P. olfersii groups, all species 
show distal Ag-NORs in pairs 8 or 9 (Amaral et 
al. 2000, Silva et al. 1999, Tomatis et al. 2009, 
Vittorazzi et al. 2014a). In this sense, NORs in pair 

Figure 2. Mitotic chromosomes of four species of the Physalaemus gracilis group after C-banding (a, c, e, g, i) and 
FISH with PcP190 satDNA (b, d, f, h). (a, b) P. carrizorum, (c, d) P. gracilis, (e, f) P. sp. aff. gracilis, (g,i) P. lisei. The 
polymorphic variation for C-bands of pair 1 in P. lisei are shown in (i). Bar = 10 μm.
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3 would be an apomorphy of a less inclusive 
clade within the P. olfersii group, pending the 
study of this marker on P. lateristriga and P. 
soaresi to confirm this assumption. Besides, the 
similar size and morphology of chromosome 
pairs 8–10 in species of the P. biligonigerus 
and P. gracilis groups allow us to assume that 
NOR-bearing chromosomes of these species 
are homeologous, with the caveat that this 
hypothesis should be tested with the aid of 
other chromosome markers. Moreover, Lourenço 
et al. (2015) stated that the NORs on pair 8 
would represent a plesiomorphic condition for 
Physalaemus, as it is shared by other genera 
of Leiuperinae and Leptodactylinae that also 
present 2n = 22 karyotypes (Bogart 1974, Lourenço 
et al. 2000, 2008, 2015, Coelho et al. 2016).

Two specimens, one of Physalaemus 
gracilis and one of P. sp. aff. gracilis showed 
heteromorphisms for Ag-NOR size. This sort of 
variation is frequently reported as a source of 
polymorphisms in anuran cytogenetics and may 
be the consequence of different mechanisms 
such as unequal meiotic exchanges or tandem 
duplication of rDNA (Schmid 1982, Schmid et al. 
2010).

All species in the Physalaemus gracilis 
group have similar patterns of (peri)centromeric 
C-bands. Besides, P. sp. aff. gracilis and P. 
gracilis show heterochromatin associated with 
the NOR sites, and P. barrioi and P. gracilis 
have interstitial C-bands on pairs 4 and 10, 
respectively (Provete et al. 2012, this study). In P. 
gracilis, the C-band on chromosome pair 10 has 
an additional taxonomic value as it allows us 
to distinguish P. gracilis from its sibling species 
P. sp. aff. gracilis. Finally, in Physalaemus lisei, 
the detection of conspicuous telomeric C-bands 
varies among specimens for both arms (1p 
and 1q) and, although the only male studied 
by this technique had a particular pattern not 
observed in females, with a single C-band on 

one homologue of 1q, it is still necessary to 
study more males in order to exclude that this 
last polymorphism is sex-biased.

CONCLUSION

Some studies have demonstrated an extensive 
taxonomic distribution regarding the PcP190 
sequences, a satDNA probably derived from 5S 
rDNA (Vittorazzi et al. 2011). Its presence was 
confirmed for the families Leptodactylidae 
(Engystomops, Leptodactylus, and Physalaemus), 
Hylodidae (Crossodactylus), and Hylidae 
(Pseudis). This satDNA marker was previously 
mapped on the karyotypes of 8 species of 
Engystomops, 7 species of Physalaemus, and 7 
species of Pseudis (Vittorazzi et al. 2011, 2014b, 
2016, Gatto et al. 2016, Targueta et al. 2018, 
and references therein; Gatto et al. 2019). As a 
generality, the chromosome position of PcP190 
is biased towards the centromeres or proximally 
associated with C- bands (Vittorazzi et al. 
2014b). Exceptions are the sex chromosomes of 
Physalaemus ephippifer and species of Pseudis, 
in which PcP190 clusters were detected in 
interstitial heterochromatic bands, suggesting 
a possible role in the differentiation of sex 
chromosomes (Vittorazzi et al. 2014b, Gatto 
et al. 2016, 2019). In a similar way to what is 
observed in other species of Physalaemus, all 
four species in the P. gracilis group analyzed 
in this work have variable PcP190 location. It 
is worth noting that its presence on pair 3 is 
a recurrent feature shown by 7 of 11 studied 
species in the genus: P. albifrons, P. albonotatus, 
P. carrizorum, P. centralis (in addition to several 
pairs), P. cuvieri (in addition to several pairs), P. 
kroyeri (in addition to pair 1), and P. ephippifer 
(in addition to the W chromosome) (Vittorazzi 
et al. 2011, 2014b, 2016, this study). This feature 
was also reported in almost all studied species 
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of Engystomops (6 of 8 species), excepting E. 
coloradorum and E. “magnus” (see Targueta et 
al. 2018). The recurring occurrence of PcP190 in 
pair 3 of both Engystomops and Physalaemus 
is a promising informative marker to establish 
homeology. However, in order to obtain a better 
picture of this character distribution within 
Leiuperinae, a more considerable amount of 
data has to be collected in the remaining groups 
of the P. cuvieri clade (i.e., P. biligonigerus, P. 
henselii, and P. olfersii groups), the P. signifer 
clade, Edalorhina, Pseudopaludicola, and 
Pleurodema (for details about the phylogenetic 
relationships of these taxa, see Lourenço et al. 
2015). Moreover, given the similarity between 
PcP190 and 5S nucleotide sequences, further 
data should also include information about the 
chromosomal mapping of 5S rDNA.
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