
            

PAPER • OPEN ACCESS

Cascading failures in isotropic and anisotropic
spatial networks induced by localized attacks and
overloads
To cite this article: Ignacio A Perez et al 2022 New J. Phys. 24 043045

 

View the article online for updates and enhancements.

You may also like
Improving robustness of complex networks
by a new capacity allocation strategy
Jun Liu and  

-

Cascading failures in anisotropic
interdependent networks of spatial
modular structures
Dana Vaknin, Amir Bashan, Lidia A
Braunstein et al.

-

Analysis of overload-based cascading
failure in multilayer spatial networks
Min Zhang,  , Xiao-Juan Wang et al.

-

This content was downloaded from IP address 152.171.163.46 on 03/06/2022 at 20:10

https://doi.org/10.1088/1367-2630/ac652e
/article/10.1088/1674-1056/abb3f1
/article/10.1088/1674-1056/abb3f1
/article/10.1088/1367-2630/ac2e3c
/article/10.1088/1367-2630/ac2e3c
/article/10.1088/1367-2630/ac2e3c
/article/10.1088/1674-1056/aba275
/article/10.1088/1674-1056/aba275


New J. Phys. 24 (2022) 043045 https://doi.org/10.1088/1367-2630/ac652e

OPEN ACCESS

RECEIVED

20 December 2021

REVISED

17 March 2022

ACCEPTED FOR PUBLICATION

7 April 2022

PUBLISHED

28 April 2022

Original content from
this work may be used
under the terms of the
Creative Commons
Attribution 4.0 licence.

Any further distribution
of this work must
maintain attribution to
the author(s) and the
title of the work, journal
citation and DOI.

PAPER

Cascading failures in isotropic and anisotropic spatial networks
induced by localized attacks and overloads

Ignacio A Perez1,∗ , Dana Vaknin Ben Porath2 , Cristian E La Rocca1,
Sergey V Buldyrev3,4 , Lidia A Braunstein1,4 and Shlomo Havlin2,4

1 Instituto de Investigaciones Fı́sicas de Mar del Plata (IFIMAR), Departamento de Fı́sica, FCEyN,
Universidad Nacional de Mar del Plata-CONICET, Deán Funes 3350, (7600) Mar del Plata, Argentina

2 Department of Physics, Bar-Ilan University, Ramat-Gan 52900, Israel
3 Department of Physics, Yeshiva University, NY 10033, United States of America
4 Physics Department, Boston University, 590 Commonwealth Ave., Boston, MA 02215, United States of America
∗ Author to whom any correspondence should be addressed.

E-mail: ignacioperez@mdp.edu.ar

Keywords: cascading failures, complex networks, anisotropy, overloads

Supplementary material for this article is available online

Abstract
Cascading failures are catastrophic processes that can destroy the functionality of a system, thus,
understanding their development in real infrastructures is of vital importance. This may lead to a
better management of everyday complex infrastructures relevant to modern societies, e.g.,
electrical power grids, communication and traffic networks. In this paper we examine the
Motter–Lai model (2002 Phys. Rev. E 66 065102) of cascading failures induced by overloads in
both isotropic and anisotropic spatial networks, generated by placing nodes in a square lattice and
using various distributions of link lengths and angles. Anisotropy has not been earlier considered
in the Motter–Lai model and is a real feature that may affect the cascading failures. This could
reflect the existence of a preferred direction in which a given attribute of the system manifests,
such as power lines that follow a city built parallel to the coast. We analyze the evolution of the
cascading failures for systems with different strengths of anisotropy and show that the anisotropy
causes a greater spread of damage along the preferential direction of links. We identify the critical
linear size, lc, for a square shaped localized attack, which satisfies with high probability that above
lc the cascading disrupts the giant component of functional nodes, while below lc the damage does
not spread. We find that, for networks with any characteristic link length, their robustness
decreases with the strength of the anisotropy. We show that the value of lc is finite and independent
of the system size (for large systems), both for isotropic and anisotropic networks. Thus, in
contrast to random attacks, where the critical fraction of nodes that survive the initial attack, pc, is
usually below 1, here pc = 1. Note that the analogy to pc = 1 is also found for localized attacks in
interdependent spatial networks (Berezin et al 2015 Sci. Rep. 5 8934). Finally, we measure the final
distribution of functional cluster sizes and find a power-law behavior, with exponents similar to
regular percolation. This indicates that, after the cascade which destroys the giant component, the
system is at a percolation critical point. Additionally, we observe a crossover in the value of the
distribution exponent, from critical percolation in a two-dimensional lattice for strong spatial
embedding, to mean-field percolation for weak embedding.

1. Introduction

Real-world infrastructures such as power grids, sewer networks, and telecommunication systems can be
particularly affected by a process known as cascading failures (CF). This is a dynamic process in which the
malfunction of one or a few components of the system leads to the failure of other components, and so on,
and could cause a large fraction of the system to collapse. Motter and Lai [1] modeled the process of CF
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induced by overloads. In their model, at each time step, some relevant physical quantity (e.g., energy or
information) is exchanged between every pair of nodes and transmitted along the shortest path [3, 4]
between them. Then, the load Li at node i is defined as the total number of shortest paths passing through
this node, and the capacity Ci is the maximum load that the node can handle. Since in man-made networks
capacity is limited by cost, Motter and Lai [1] assumed that the capacity of node i is proportional to the
original load L0

i , i.e., Ci = (1 + α)L0
i , where the constant α � 0 is the tolerance of the system to overloads.

The failures of nodes cause the redistribution of shortest paths. As a result, the load at some nodes can
increase and exceed their capacities Ci. These overloaded nodes then fail and, since the shortest paths
change, this may cause further overloads and subsequent failures, in a cascade manner [5]. This kind of CF
can be catastrophic, meaning that even a small amount of initial failures can damage a substantial portion
of the system, and eventually cause its total collapse [1, 6–8].

Usually, infrastructures are embedded in space, and thus several models of CF in spatially-embedded
networks have been proposed for approaching this problem [9, 10]. Zhao et al [9] modeled a cascade of
failures induced by overloads in a square lattice. They triggered the cascade with a localized attack (LA),
which usually occurs in natural catastrophes or malicious attacks by removing nodes at the center of the
network. They found that failures spread radially from the center of the initial attack with an approximately
constant velocity, which decreases with increasing tolerance. However, real systems are rarely found to be
perfect lattices and present, instead, a characteristic Euclidean link length ζ , such as the European power
grid and the inter station local railway lines in Japan [11–13]. This feature can be modeled by assuming that
links connecting different nodes in a lattice have a link length distribution P(r) ∼ exp(−r/ζ) [11], where r
is the Euclidean distance between two nodes and ζ determines the typical length of links in the spatial
embedding. For ζ →∞ all link lengths are equally likely and spatial effects vanish, while for smaller values
of ζ the strength of the spatial embedding increases, as shorter link lengths are favored.

Within spatial networks, a prominent characteristic of many real infrastructures (e.g., grids, pipeline
systems, and transportation networks) is the presence of anisotropy in the orientation of the connections
between nodes. Usually, the disposition of links is not the same in all directions, they rather follow the
distribution of the population, which can be anisotropic since, in many cases, it spreads along geographical
landscapes (e.g., rivers, sea coasts, mountain ranges) or major transportation routes. It is expected that
these deviation from an isotropic lattice will change significantly the characteristics of CF spread.

In this paper we study both the critical damage size that will disrupt a spatially-embedded network and
the effects of anisotropy in the embedding on CF induced by overloads. Without loss of generality, we study
here the case where the overload failures are triggered by a square shaped, LA at the center of the network.
We introduce anisotropy as a preferential direction in which links are more likely to form. We find that,
although anisotropy hinders the propagation of failures along the orthogonal direction, it deteriorates the
overall robustness of the system, and that the initial critical damage size is independent of the system size.
Analyzing the distribution of functional cluster sizes, ns, at the end of the CF, we find that, as a result of the
network fragmentation, the distribution behaves like a power-law, ns ∼ s−τ . Furthermore, we observe a
crossover for the exponent τ , which changes from the known exponent value of critical percolation in
two-dimensional lattices, for high spatial embedding, to the mean field value as the embedding declines.

2. The ζ-model

We model the process of CF produced by spreading of overloads, in a spatially-embedded and weighted
network, which we call the ζ-model [14]. The nodes of the network are placed in the vertices of a square
lattice of size L × L. The lengths, r, of the links are taken from the distribution P(r) ∼ exp(−r/ζ). That is, ζ
is the characteristic length of the links. Also, we use here rigid boundary conditions, but similar results can
be obtained for periodic boundary conditions. To model the isotropy and the anisotropy, the directions of
links (i.e., the angles θ that links form with the horizontal axis), are taken from a uniform distribution
U[0,2π) or a Gaussian distribution N(θp,σ2), where θ and θ + 2π correspond to the same direction. In the
anisotropic distribution, N(θp,σ2), the angle θp represents the preferential direction for the connections,
while σ is the corresponding standard deviation, which controls the strength of the anisotropy. For instance,
σ → 0 represents the case of a unique possible angle for the connections between nodes, while σ →∞
corresponds to an isotropic network, where links appear with equal probability in all directions. The weight
of a link represents, e.g., the time needed to traverse it, if the optimal path is defined as the path with a
minimal travel time. We take the weights, which are independent of r, from a Gaussian distribution
Nω(ω∗,σ2

ω), where ω∗ is the average weight and σω is the corresponding standard deviation.
To construct the ζ-model network, we assign (x, y) integer coordinates (x, y ∈ [1, L]) for each of the

N = L × L nodes. Then we select, at random, a node i with coordinates (xi, yi) and draw a ray of length r
and angle θ above the horizontal axis, which are randomly selected from the distributions P(r)
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Figure 1. (a) Constructing the network’s links. First, a node i with coordinates (xi, yi) in the lattice (blue circle) is selected at
random. A link is created between this node and node j (red circle), which is the closest node to the site
(px, py) = (xi + r cos θ, yi + r sin θ) marked as a green square. The link is represented with a straight line and is assigned a weight
ω. Nodes in the remaining sites of the lattice are not shown for clarity. In the bottom figures, we show two different networks
from our model with: (b) high anisotropy (σ = 0.05) and (c) isotropy, both for L = 20 and ζ = 3.

and N(θp,σ2), respectively. Next, we connect the node i with the node j that is closest to the end point of
the ray, p, with real coordinates (px, py) = (xi + r cos θ, yi + r sin θ) (see figure 1(a)), and assign to the link a
weight ω from the distribution Nω(ω∗,σ2

ω). We repeat the process until the total number of links in the
network is N〈k〉/2, where 〈k〉 is the average number of links per node (self and multiple links are not
allowed). In figures 1(b) and (c), we show representations of anisotropic and isotropic networks,
respectively.

The dynamic process of CF develops as follows. Initially, at time t = 0, all nodes are functional, and the
load at node i is L0

i ≡ Li(t = 0), which is computed as the total number of optimal paths [1, 15] between all
pairs of nodes that pass through node i. Then, the capacity of node i, Ci, is defined as Ci = (1 + α)L0

i ,
where α is the homogeneous (i.e., the same for all nodes) tolerance of the system to overloads. We assume
that α, and thus Ci, are constants throughout the entire process. At time t = 1, we generate a square shaped,
LA of Δl = l × l nodes which fail at the center of the network. Due to this attack, the optimal paths may be
redistributed, changing the load of some nodes. Then, at time t > 1, all nodes fail if their loads (which must
be computed at every single time step) are above their capacities, i.e., if Li(t) > Ci. The process continues
until the failures produced at a given time step cause no new nodes to fail at a posterior time.

It is important to note that initially, the giant component (GC) in the network (i.e., the biggest group of
nodes where each node has a path to each other) spans the system reaching all four boundaries.

3. Results

Before presenting the actual results of this study, we note that in the limit of an isotropic network (σ →∞)
and for small values of ζ (e.g., ζ = 1), our model coincides with the lattice model of reference [9]. In the
supplementary information (https://stacks.iop.org/NJP/24/043045/mmedia) section, we provide results that
support this statement. For all simulations (including those in the SI section) we use, without loss of
generality, 〈k〉 = 4, θp = 0, ω∗ = 5, and σω = 0.1.

Now, we begin with the analysis of our model and study the evolution of the cascade and the spatial
distribution of the failures for a fixed size of the initial attack, in networks with different degrees of
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Figure 2. (a) Number of failures, Ft, as a function of time t, for different values of σ. (b) Evaluating the extent of the failures in
the preferential and orthogonal directions, Rp and Ro , respectively, for the same values of the parameters shown in (a). (c) Ratio
R∞

o /R∞
p between the extent of the failures in each direction, at the end of the cascade. (d) Demonstrating individual realizations

of the network showing the final spatial distribution of failed nodes (the exact disposition of failures may vary slightly between
realizations). Anisotropy favors the propagation of failures along the preferred horizontal direction (θp = 0) over the orthogonal
direction. This is since the rare vertical links become overloaded and fail at the beginning of the cascade. The parameters of the
simulations are L = 200, ζ = 3, α = 0.25, and l = 6. Results in (a)–(c), have been averaged over Nrea = 35 realizations. Note
that all networks have initially (before the LA) a GC that spans the entire system, all four edges.

anisotropy. We denote the number of nodes that fail at time t as Ft ≡ F(t), while Rp ≡ Rp(t) and Ro ≡ Ro(t)
are the standard deviations of the coordinates of all nodes failed during all time steps from 0 to t, in the
preferential (horizontal) and orthogonal directions, respectively.

In figures 2(a) and (b), we show Ft, Rp, and Ro for networks with L = 200, ζ = 3, α = 0.25, l = 6, and
different values of σ. We observe that the initial attack produces a CF in the network, where the maximum
amount of failing nodes at a certain time t—the peak value of Ft in figure 2(a)—increases with increasing
σ, i.e., as the strength of the anisotropy decreases. In this way, fewer nodes will remain functional due to
overloads, at the end of the cascading, in the isotropic case, as compared to the anisotropic case. Also,
anisotropy affects the spatial distribution of failures over time, limiting the propagation in the orthogonal
direction (θ = π/2) compared to that in the preferred direction (θp = 0), i.e., Ro < Rp (see figure 2(b)).
However, as σ increases and the network loses its characteristic anisotropy, the gap between the extents
along the two directions becomes smaller.

Additionally, in figures 2(c) and (d), we plot the ratio R∞
o /R∞

p (R∞ ≡ R(t →∞)) and the final
distribution of failures in the network, respectively, which help in clarifying the effects of anisotropy at the
end of the cascade process. In figure 2(c), we observe a convergence towards a final isotropic state
(R∞

o /R∞
p → 1) for large values of σ. For high anisotropy (small σ), the observed ratio approaches zero and

the damage does not spread vertically. This is since the shortage of vertical links makes them to break at
early stages due to overloads (see figure 8 of the SI section, where we show the same behavior for other α
values). Finally, in figure 2(d) we depict examples of the spread of failures for different degrees of anisotropy
and particular realizations of the cascade process. This gives us a visual image of the total damage caused by
the initial attack, and how it is reduced in the orthogonal direction as the anisotropy increases (i.e., as σ
decreases).

In light of these results, one might be tempted to conclude that systems with a structural anisotropy are
more robust against LAs, compared to isotropic systems. However, measures such as the total amount of
failures or their spatial extension might not be the most relevant for revealing the effects that anisotropy
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Figure 3. Robustness of the system against LAs. (a) Scheme of a critical curve for the linear attack size lc as function of the
tolerance α. Below the curve (green region), the GC holds stable and the damage is only localized. Above the curve (red region),
the functional GC breaks down, i.e., it cannot reach, at least, one of the network edges (isotropic networks) or it can not extend
throughout all the vertical length of the system (anisotropic networks). (b) Critical linear size of attack lc(α) for isotropic
networks with linear sizes L = 50, 100, 150, 200, and characteristic link lengths ζ = 3, 10. Figures (c) and (d) show lc(α) for
anisotropic networks with ζ = 3 and ζ = 10, respectively, and for σ = 0.25, 1. The existence of a preferred direction for the links
(θp = 0), which causes the shortage of vertical connections, impairs the robustness of the system, since lc decreases as σ
decreases. The spatial embedding also debilitates the system and makes it easier to collapse when links are shorter. Note that the
critical linear size lc does not depend on the system length L, both for isotropic and anisotropic networks, with the exception of
finite size effects for L = 50. These results were obtained by computing, by means of a binary search, the curve αc(l) from an
average over Nrea = 20 realizations, and then inverting this curve (see figure 11 in the SI section for the dispersion of these
values).

produces in the systems that we are exploring. In particular, note that in figure 2(d), while the damage is the
smallest for σ = 0.05, the system is no longer functional since the GC is vertically broken.

Next we ask what is the critical linear size of attack lc, for a given tolerance α, such that above this value
the GC of functional nodes, at the end of the cascade, breaks down (red region in figure 3(a)), and below it
the damage is only localized (green region in figure 3(a)). We define the critical condition for computing lc
as follows. For isotropic systems, lc defines the limit where the GC, above this value, does not reach, at least,
one of the four edges of the network. For anisotropic systems, attacks with l > lc will break the GC in the
vertical direction, i.e., the GC will not reach, at least, the upper edge or the bottom edge of the network. We
make this distinction because, in anisotropic networks, links are more abundant along the preferred
direction (θp = 0 in this case) than along the perpendicular direction. Therefore, it is more likely for the GC
to break apart due to failures that propagate vertically throughout the system. It is worth mentioning that,
in order to get the values of lc(α), we generate 20 realizations of networks and, for each attack size l, we use
a binary search to detect the critical tolerance, αc. Then, we average the results of αc for the different
networks (we show dispersion values in figure 11, in the SI section), obtaining the curve αc(l), which we
adjust to present as lc(α). Accordingly, the probability of complete destruction of the GC sharply increases
near lc.

First we present, in figure 3(b), the critical linear size of attack lc(α) for the isotropic case and different
values of the system size L and the characteristic link length ζ. For attack sizes that are below these curves,
i.e., l < lc(α) (recall figure 3(a)), the GC spans the entire system, both along the preferred (horizontal) and
the orthogonal direction, while above lc(α) it does not, i.e., the GC breaks and cannot reach, at least, one
edge of the network. We can see that the critical size lc increases with the tolerance α, since nodes with
larger capacities are less likely to become overloaded and fail, thus making the network more robust against
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Figure 4. Visualization of clusters before (left figures) and after (right figures) the LA. In (a) and (b) we show an anisotropic
network with σ = 0.25. From a GC that spans a huge part of the network (black region in (a)), we see that, after the LA, clusters
retain some of the characteristic anisotropy, as they are rather stretched in the preferred horizontal direction. In (c) and (d) we
present a more isotropic system, with σ = 1, in which the finite clusters, after the LA, do not have a defined shape. Note that red
squares at the center of the networks in (b) and (d) represent the LA, of a square of linear size l = 6, while different clusters are
depicted with circles of different colors. In order to simplify the display, in (b) and (d) we only show clusters with sizes between
10 and 100 nodes. The remaining parameters of the networks are L = 200, ζ = 3, and α = 0.25. Clusters shown are the result of
a single realization of networks and the corresponding attacks.

the attacks. It is interesting to note that the critical size lc does not depend on the system linear size, L, in
the limit L →∞. Thus a zero fraction (microscopic) of localized failures yields a macroscopic transition.
This is analogous to a similar behavior found in percolation of interdependent spatial networks [2, 16], and
is in marked contrast with random failures for which the removal of a finite fraction of the system is needed
to cause full collapse. We also observe that the spatial embedding triggers and enhance the propagation of
the failures in the system. Note that the critical initial damage size decreases with decreasing the typical link
length ζ , thus smaller attack sizes can trigger the more spatial systems to collapse (see figure 3).

Next, we analyze anisotropic systems, for which results are shown in figures 3(c) and (d), and
correspond to ζ = 3 and ζ = 10, respectively. We show results for two different values of the anisotropy
parameter, σ = 0.25, 1, in order to depict networks with rather different degrees of anisotropy. Note that, in
this case, attack sizes above the critical value lc produce an horizontal damage that disrupts the flow in the
vertical direction of the network. That is, the GC does not extend between the top and bottom edges of the
system. Regardless of the spatial embedding, we find that the critical attack size lc decreases for networks
with increasing anisotropy strength, i.e., for decreasing values of σ. In other words, the robustness of
anisotropic systems gets reduced, compared to isotropic networks, as a result of the lack of connections in
the vertical direction, which rapidly get lost, producing the fragmentation of the GC. This effect appears to
be gradual when increasing the anisotropy levels (see figure 10 in the SI section). However, we expect that
lc → 0 as σ reaches a given minimum value, below which a GC that spans the whole system cannot be
formed, prior to the LA, due to the insufficient amount of vertical links, i.e., being below the percolation
threshold. In addition, and similar to isotropic networks, the critical linear size of attack does not depend
on L, for large system sizes. We can associate the differences that the L = 50 curve presents, in figure 3(d),
with respect to the results with larger L, to finite size effects, since networks have a large characteristic link
length compared to L (ζ = 10) and the deviations appear more for large values of the attack size l too.
Furthermore, it is plausible that the critical behavior of the system (isotropic or anisotropic) is governed
only by the adimensional fraction between lengths l/ζ. Indeed, our scaling results (see figure 9 in the SI
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Figure 5. Distribution of cluster sizes, ns, before the LA of l = 6 (left figures) and after the cascade triggered by it stops (right
figures). In (a) and (b) we show ns for ζ = 3, while in (c) and (d) we show ns for ζ = 10. The LA triggers a CF process that
changes the original distribution of cluster sizes. In (d), for σ = 1, the distributions before and after the LA are practically the
same, which indicates that the tolerance α = 0.25 is large enough to avoid the disintegration of the GC due to CF. This is
consistent with the critical linear size of attack, lc ≈ 15, found in figure 3(d). When the CF develops in the whole network, a
power-law behavior is observed in the final distribution of cluster sizes, i.e., ns ∼ s−τ , which suggests that the system is near the
critical percolation state [17]. These results correspond to networks of linear size L = 200, averaged over Nrea = 70 realizations.

section), suggest that such a scaling is a good approximation. However, more extensive computations and
better statistics should be obtained in order to prove this assumption.

Lastly we analyze, at the end of the cascade process, all the connected clusters of nodes excluding the
GC, defined as the cluster touching all four edges of the system. First, in order to visualize the spatial
distribution and orientation of these clusters, we plot them in figure 4. Figures 4(a) and (c), for σ = 0.25
and σ = 1, respectively, show that the GC (in black) spans almost the entire network, before the LA. On the
other hand, at the end of the process triggered by the attack, the GC becomes fragmented and finite clusters
appear, as seen in figures 4(b) and (d). Note that in the latter figures we only considered clusters with sizes
between 10 and 100 nodes, to clarify the image. We observe that the shape of the finite clusters change with
the anisotropy of the system, and they can be located anywhere inside the network. For σ = 0.25, clusters
are mostly horizontally stretched, while for more isotropic networks (σ = 1), the clusters lose shape, as
links can remain intact in many directions.

Next, in figures 5(a) and (c) for ζ = 3 and ζ = 10, respectively, we show the distribution ns ≡ ns(s) of
cluster sizes, i.e., the probability of having a cluster of size s, prior to the LA. The attack of l = 6, which is
above the critical size, triggers a cascade and affects the GC severely, changing the distribution ns, as shown
in figures 5(b) and (d), for α = 0.25. An interesting result that can be seen in figure 5 is that the final
distribution of cluster sizes, ns, behaves like a power-law, i.e., ns ∼ s−τ , with τ > 0. Observation of the
power-law in the cluster size distribution, at the end of the cascade, is expected because the CF drive the
system to the percolation critical point, at which the GC disappears. Note that in the Motter and Lai model
[1], the betweenness of nodes in a cluster is roughly proportional to the square of its size. As soon as the GC
disappears, the CF stop because the betweenness of each node drops below its maximal load.

Finally, we analyze the exponent τ of the power-law. When fitting the initial trend of the data (up to
s ∼ 102) using logarithmic binning we extract the exponents as shown in figure 6. For instance, in a
network with strong spatial embedding (ζ = 1 in figure 6(a)), the exponents are close to the value τ = 2.05,
which corresponds to the known critical percolation exponent in two-dimensional lattices [4, 18].
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Figure 6. Final distribution of cluster sizes ns , corresponding to (a) ζ = 1, (b) ζ = 3, (c) ζ = 10, and (d) ζ = 20. The
distribution behaves partly (due to finite systems) like a power-law ns ∼ s−τ (up to s ∼ 102). Note that, for a strong spatial
embedding—(a) ζ = 1—, the exponent τ is similar to that of critical percolation in a 2D-lattice, τ = 2.05, while for large ζ of
values 10 and 20, it approaches the value τ = 2.5, corresponding to a random network with a Poisson degree distribution, i.e.,
mean field exponent. A logarithmic binning was applied to raw data, which allows a better perception of power-law behaviors.
The remaining parameters of the networks are the same as in figure 5.

Increasing the characteristic link length ζ , the spatial effects decline, and the value of the power-law
exponent tends to τ = 2.5 (figure 6(d)), which is characteristic of random networks with a Poisson degree
distribution or high dimensional lattices [4, 18] (with dimension d � 6). Note that for ζ = 10 and σ = 1
there is no cascade in the network, due to its high tolerance levels. A similar situation occurs for ζ = 20 and
σ = 0.25, 1, thus we did not include these cases in figure 6(d).

4. Conclusions

In this paper, we study the dynamic process of CF induced by overloads in both isotropic and anisotropic
spatial networks. We start the cascades from square shaped, LAs, removing l × l nodes at the center of
networks and analyze the effects of the characteristic length ζ and the angular dispersion σ of links (which
characterize the spatial embedding and the anisotropy of the system, respectively) on the process.

First, we study the evolution and spatial distribution of the failures, and find that anisotropy restricts the
failures to spread mostly along the preferential direction. This is a result of the lack of connections in the
orthogonal (vertical) direction, with respect to the preferred (horizontal) direction, so the former become
easily overloaded.

Next, we find that there exists a critical damage linear size lc, above which the GC of functional nodes
collapses. This critical size lc increases with the tolerance α and with the strength of the spatial embedding,
i.e., for small values of ζ . We find that anisotropy deteriorates the robustness of the system, as the shortage
of vertical links produces a weak connection of the GC along this direction, which become easily overloaded
and fail. In addition, these results, both for isotropic and anisotropic networks, seem not to depend on the
system size for large enough systems. Thus, in the thermodynamic limit, a zero fraction of localized failures
yields a macroscopic transition. This is in marked contrast to random failures, where a fraction of the
system size (infinite number of nodes in the thermodynamic limit) is needed to fail and cause a system
collapse.
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