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� A SIR Leptospirosis model considering hydroclimatic variables is proposed.
� The model is implemented in 3 important cities of Argentina, for the 2009–2018 period.
� Results are in good agreement with the registered data for a leptospirosis outbreak.
� The tool could constitute a climatic service for the public health system.
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A B S T R A C T

The transmission of leptospirosis is conditioned by climatic variables. In northeastern Argentina leptospirosis
outbreaks occur mainly in coincidence with periods of abundant precipitation and high hydrometric level. A
Susceptible-Infectious-Recovered Epidemiological Model (SIR) is proposed, which incorporates hydroclimatic
variables for the three most populated cities in the area (Santa Fe, Paran�a and Rosario), during the 2009–2018
period. Results obtained by solving the proposed SIR model for the 2010 outbreak are in good agreement with the
actual data, capturing the dynamics of the leptospirosis outbreak wave. However, the model does not perform
very well in the last months of the year when isolated cases appear outside the outbreak periods, probably due to
non- climatic factors not explicitly considered in the present version of the model. Nevertheless, the dynamic
modeling of infectious diseases considering hydroclimatic variables constitutes a climatic service for the public
health system, not yet available in Argentina.
1. Introduction

Leptospirosis is a zoonosis found worldwide and it is a major public
health issue in many rural and urban surroundings in temperate and
tropical climates. This vector disease is present especially in many
countries of Latin America and South-East Asia. No vaccine is available,
so prevention is largely dependent on sanitation measures that may be
difficult to implement, especially in developing countries. The reported
yearly incidence usually ranges from 0.1 to 1 per 100,000 inhabitants in
temperate climates and is higher than 10 per 100,000 inhabitants in
z).
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tropical regions (Haake and Levett, 2015). The animal reservoir includes
mostly rodents, they excrete leptospires in their urine and thus contam-
inate hydric environment, transmitting the disease to other animals or to
humans (Bharti et al., 2003; McBride et al., 2005). Leptospirosis out-
breaks emergence are associated with flooding caused by rivers levels
increases or by abundant precipitation (Lacerda et al., 2015; L�opez et al.,
2019). Flooding may lead to disruption of health services and damage to
households and water and sanitation networks, displacing populations
and increasing the risk of exposure to rats and pathogens (Lau et al.,
2010). Generally, floods mainly affect the most vulnerable social groups
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with little knowledge of the risk factors and transmission of the disease
(Ricardo et al., 2018).

Northeastern Argentina is severely and recurrently affected by floods,
caused by increasingly abundant and intense rains (Lovino et al., 2018a,
b). This region accounts for the highest annual number of cases and
deaths due to leptospirosis, being a top priority health issue at a regional
level (Moral et al., 2014). The National Epidemiological Surveillance
System of Argentina (SIVILA) has defined leptospirosis as a notifiable
disease (SIVILA 2013). L�opez et al. (2019) analyzed the spatio-temporal
variation of leptospirosis for the provinces of Entre Ríos and Santa Fe in
northeast Argentina. The incidence of leptospirosis was significantly
higher in flooded areas near rivers or in lowlands affected by extreme
precipitation. Outbreaks of leptospirosis occurred in months with mod-
erate temperatures (late summer, early autumn) mainly coincident with
El Ni~no event periods, characterized by abundant precipitation and high
hydrometric level (close to or above the evacuation level) (L�opez et al.,
2016, 2019). The most affected cities were those with the largest popu-
lation within each province. Although some cities have infrastructure to
control floods, leptospirosis outbreaks also appeared during extreme
climatic events. A model that facilitates knowing the behavior of the
disease considering hydroclimatic variables, it would be a very useful
analysis, prediction and prevention tool.

The most classic model is the Susceptible-Infectious-Recovered
Epidemiological Model (SIR) that has been used to describe the trans-
mission dynamics of many infectious diseases. The SIR model was
initially proposed by Kermack and Mckendrick (1927) and can be
modified to adapt it to different infectious diseases for example Dengue
(Andraud et al., 2012) or the recent COVID-19 (Carcione et al., 2020).
SIR model divides the human population into three compartments: Sus-
ceptible, Infected, and Recovered, then the total human population is
defined as the sum of the populations in each compartment. Massad et al.
(2011) faced with the evidence of the impact of climate change on the
spread of vector-borne infections, highlighted the need to incorporate
this component in the epidemiological modeling. In that sense, Triampo
et al. (2007) and Pimpunchat et al. (2013) described the transmission
dynamics of leptospirosis in Thailand (Asia) through a SIR model where
the infection rate varies in relation to precipitation, since in such zone
there is a strong rainy season determined by the Monsoon regimes. More
recently and for the same region, Chadsuthi et al. (2021) compared 10
different leptospire transmission models, between humans, livestock,
and the contaminated environment, also involving flooding and weather
conditions. They found that the contact with contaminated environments
under flood conditions leads to a higher number of infected individuals.

In the northeast of Argentina, the system is as complex as in Thailand
because, besides the precipitation events, there are other hydroclimatic
indicators that also would be influencing the rate of transmission disease,
as the ONI index and the hydrometric level (L�opez et al., 2019). Thus an
epidemiological model such as SIR would be a useful tool to understand
the behavior of the disease in a system in which precipitation would not
be the only determinant factor for a disease outbreak.

Among the most relevant works about dynamical modelling of
leptospirosis it can be mentioned the work of Holt et al. (2006) who
propose to model the dynamics of infection with an African rodent
(Mastomys natalensis) that is thought to be the main source of infection in
some regions of Tanzania. The model, representing the climatic condi-
tions in central Tanzania, suggests a strong seasonality in the force of
infection on humans with a peak in the abundance of infectious mice
between January and April in agricultural environments. The results
indicate that removal of animals by trapping rather than reducing the
suitability of the environment for rodents will have the greater impact on
reducing human cases of leptospirosis. On other hand, Zaman (2010) and
Zaman et al. (2012), based on the model of Triampo et al. (2007), pre-
sented two-linear models combined of human and vector populations
and made a rigorous mathematical analysis of the global stability and
optimal control strategies to reduce the proportion of the infected
human, in terms of a control variable (antibiotics). In the work published
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by Sadiq et al. (2014) the authors consider a leptospirosis epidemic
model with nonlinear saturated incidence by applying the optimal con-
trol techniques to eradicate the infection in the human population. In
order to find such optimal control techniques for the eradication of lep-
tospira in the host population, they define three control variables, one for
humans and the second and third one for the vector population. Except
for the works of Triampo et al. (2007), Zaman et al. (2010 and 2012) and
the recent one of Chadsuthi et al. (2021), the others did not calibrate
their models against observed or registered data, they only did practical
mathematical exercises based on physical-biological hypotheses of the
interaction between the vector and the susceptible population.

According to our background review, in South America, and specif-
ically in the study region, there is no scientific literature on the imple-
mentation of this type of models combined with hydroclimatic variables
(L�opez et al., 2018). However, it could be mentioned the recent work of
Gualtieri and Hecht (2019) who designed a simple deterministic model
based on differential equations with promising results, but only explored
the model dynamics by computational simulations without testing it with
registered data.

In this paper, we proposed a model for leptospirosis outbreaks using
the classical SIR Epidemiological Model but incorporating hydroclimatic
variables that influence the disease transmission in the northeast of
Argentina, fitting the model to the actual data reported in outbreak
events. The incorporation of these variables into a SIR model will enable
us to better understand the behavior of the disease in outbreak events by
making a contribution that may improve public health policies in the
region. The model is implemented in the three most populated cities in
the area, Santa Fe, Rosario and Paran�a, which have latitudinal and
topographic differences. Each of the cities has experienced at least one
outbreak in a decade of reported cases (2009–2018).

The paper is structured, first with the introduction to the problem,
then section 2 presents the datasets and the methodology used: the
preparation of two functions that incorporate hydroclimatic variables
into the SIR model, the structure of the model and a sensitivity analysis.
Section 3 presents the results and discussion of the previous analysis, the
model implementation and the sensitivity analysis. Finally, section 4
concludes about the numerical results of the model and its potential as a
prediction tool.

2. Materials and methods

2.1. Study area

The study area is shown in Figure 1. It spans over the Santa Fe and
Entre Ríos provinces located in the northeast of Argentina, southeastern
South America (Figure 1a). The region is an extended plain crossed by
numerous watercourses (Figure 1b). The predominant climate is
temperate with hot summers and no dry season, according to K€oppen-
Geiger's climate classification (Peel et al., 2007).

The Paran�a River is one of the most important rivers of South America
and the main one in northeastern Argentina (Figure 1b). The upper and
middle portions of the Paran�a River have a maximum river level in late
austral summer. The upper Paran�a basin (south of Brazil) provides the
largest amount of water to the Paran�a River flow. The dynamic of the
Middle Paran�a River floodplain is strongly shaped by cycles of water level
rises and falls, and due to its flat landscape, it is highly susceptible to
flooding due to river overflows following heavy precipitation (Drago,
2007). Thus, the Paran�a floods in northeastern Argentina are a direct
consequence of excess precipitation in the upper Paran�a Basin that has a
close link with El Ni~no events (Berri et al., 2002a). The Salado river is
also an important one, particularly in the study area, that crosses the
north of Argentina from northwest to southeast (Figure 1b). This river
flows into a secondary channel of the Paran�a River in the city of Santa Fe
(capital of the Santa Fe province).

The three most important cities of the two provinces are located on
the river banks: Santa Fe and Rosario (Santa Fe province) and Paran�a



Figure 1. Study area in Argentina. (a) Santa Fe and Entre Ríos provinces. (b) Hydrography of the area and location of the studied cities in red.
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(Entre Rios province), indicated in Figure 1b. The city of Santa Fe has a
flat riverine topography and the Paran�a and Salado rivers influence it.
This city is protected in its limits by defenses that avoid flooding by the
surrounding rivers. It also has electric pumps that evacuate excess water
from fluvial or rainy floods. Rosario city has a flat topography but is
located higher above sea level than Santa Fe city and over the coast of the
Paran�a River presents a ravine geomorphology. Paran�a city presents hills
that condition the water runoff and, like Rosario, has ravine topography
on the Paran�a River coast. Santa Fe and Paran�a are only separated by the
Paran�a River, at the same latitude, while the city of Rosario is located
about 180 km south from the other two cities (Figure 1b).

The location of these cities makes them highly vulnerable to flood
episodes or extreme precipitation events (Lovino et al., 2018c). Addi-
tionally, the migration of people from smaller cities or the countryside to
larger cities in search of better working conditions also increases the
vulnerability. This migration of people causes the occupation of
non-habitable lands, near rivers or in low-lying areas, increasing poverty
and vulnerability (Alberto, 2012). A study carried out in the city of Santa
Fe reveals that 22% of the population presented high vulnerability to
floods and a 27.88% very high socio-environmental vulnerability
(G�omez, 2007). This is mainly due to the occupation of non-urban land in
the flood valley of the Salado river and the lack of urban services (Car-
doso, 2019). In the case of Rosario city, the areas of high vulnerability are
located towards the periphery of the city, with some exceptions in the
interior of the city that are generally a consequence of irregular popu-
lation settlements. The potential for disasters increases due to the com-
bination of such environmental conditions with the large population with
high vulnerability (Ruiz et al., 2019).

2.2. Hidroclimatic datasets

Hydroclimatic datasets include in-situ monthly total precipitation,
monthly mean temperature, maximum monthly hydrometric level and
3

the Oceanic Ni~no Index (ONI, NOAA/NWS/CPC). Precipitation and
temperature data were provided by the National Meteorological Service
(SMN) of Argentina. The meteorological stations include Sauce Viejo
Aero (near the city of Santa Fe), Rosario Aero and Paran�a Aero. The
National Water Institute (INA) of Argentina provided hydrometric data,
while the Argentine Naval Prefecture (PNA) provided river evacuation
level data. The ONI Index is used to determine the years and months
under El Ni~no, La Ni~na or Neutral conditions, and is defined as the 3-
month running mean SST anomaly for the Ni~no 3.4 region (5�N-5�S,
120�-170�W, https://ggweather.com/enso/oni.htm).

2.3. Epidemics datasets

This study is carried out for the cities of Santa Fe, Paran�a and Rosario
that reported leptospirosis outbreaks in recent years. The leptospirosis
epidemics are documented between 2009 and 2018 (no data yet avail-
able for 2019 and 2020). National System of Epidemiological Surveil-
lance by Laboratories of Argentina (SIVILA) was implemented in 2009,
and since then the notification of leptospirosis is mandatory in Argentina.
Prior to this year, the registration of cases was not mandatory in health
centers, nor was it systematized or standardized, so there are no reliable
records in the region Moral et al. (2014) provide guidelines for the
confirmation of leptospirosis cases in Argentina which is carried out by:
(a) a positive MAT (microscopic agglutination test), bacterial isolation
and detection of bacterial genome by PCR1 (Plant Cadmium Resistance
protein), (b) MAT seroconversion in two or more samples, preferably
with an evolution of more than 10 days, (c) verification of exposure to the
same source and at the same time as a confirmed case (a) or (b). The
Ministry of Health of each province analyzes the laboratory, clinical and
epidemiology information and makes the classification according to the
confirmation criteria. We assess only the confirmed cases according to
the information provided by the Directorate for Health Promotion and
Prevention, Ministry of Health of the Santa Fe province and the

https://ggweather.com/enso/oni.htm
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Epidemiology Division of the Entre Ríos province. The total number of
confirmed leptospirosis cases between 2009 and 2018 was 263; 94 for
Santa Fe, 97 for Rosario and 72 for Paran�a. This study does not analyze
probable cases neither nor suspected or unconfirmed cases.

Data about population indicators were retrieved from the 2010 Na-
tional Population, Household and Housing Census, National Statistics
and Census Institute (INDEC) of Argentina.
2.4. Methodology approach

A series of previous analyses was performed to define the parameters
that would be incorporated into the epidemiological model.

Following the methodology used in L�opez et al. (2019), a Principal
Component Analysis (PCA) was carried out to determine the hydro-
climatic indicators that influence the presence of outbreaks in the three
cities and that would finally be explicitly incorporated into the model.
The hydroclimatic indicators considered in PCA were monthly total
precipitation, maximum monthly hydrometric river level, the ONI; and
the number of cases is the variable used to quantify the magnitude of the
outbreak in the 2009–2018 period.

In order to determine the function between the hydrometric level and
the flooded area in each city, Landsat images TM5 and 8/OLI (approxi-
mate error of 30 m, one pixel) were analyzed using the Quantum Gis
software. A buffer of 6 km2 was defined around the hydrometer of each
city to calculate the flooded area in three situations: minimum hydro-
metric level (year 2009), average hydrometric level (year 2015) and
maximum hydrometric level (year 2016). Therefore, three Landsat im-
ages per city were analyzed whose scenes are 227-082 path-row for Santa
Fe and Paran�a cities and 228-083 path-row for Rosario city. Figure 2
presents the satellite products used in the analysis. Figures 2a, 2b, 2c
show the satellite images of the cities of Santa Fe and Paran�a, and
Figures 2d, 2e, 2f, the images for Rosario city, that represent, from left to
right, the low, medium and high hydrometric level, respectively. The
images were processed in the reflectivity values and the applied atmo-
spheric correction was Dark Object Subtraction (DOS) method (Chavez,
1988). The modified normalized difference water index (MNDWI) has
been successfully used to delineate surface water features (Xu, 2006).
From the Landsat imagery, a binary water mask was created using the
Figure 2. Landsat images TM5 and 8OLI of the study area used to build the ΔFA funct
year 2009, minimum hydrometric level; b) and e) year 2015, average hydrometric l
around the cities of Santa Fe and Paran�a. Lower row (d, e and f) around Rosario cit
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MNDWI in which any negative value was classified as water (Xu, 2006).
The MNDWI of Landsat data is defined by:

MNDWI ¼ (GREEN-SWIR)/(GREEN þ SWIR) (1)

where GREEN is the radiance at green wavelengths (0.52–0.60 μm) and
SWIR is the radiance at the Short-wavelength infrared (1.55–1.75 μm).
Once the flooded areas were obtained according to each hydrometric
level (h), the mathematical function of the variation of the flooded area
(ΔFA) was determined for each city (ΔFA ¼ f(h,t)). At difference of
Chadsuthi et al. (2021) who counted the number of flooded pixels to
calculate an index of land flooding, here a function that relates hydro-
metric level and flooded area is obtained and it is directly incorporated to
the model.

Finally, raw precipitation data cannot be directly used into the
structure of the differential equations of the SIR model, but rather a
mathematical function of few parameters is usually used to simplify
programming. Based on the methodology of Triampo et al. (2007), the
monthly distribution of precipitation of each year is modelled with a
Gamma probability distribution function and incorporated into the SIR
model. The Γ ðt; a; locÞ distribution is defined using non-linear least
squares to fit the function to data of precipitation, where t is the time, a is
the shape parameter, and loc is the location parameter.

Monthly precipitation is divided by the annual precipitation in each
city, in order to normalize it and obtain comparable values in the three
studied cities.
2.5. Epidemiological model

The adopted model is based on the work of Triampo et al. (2007),
which considers a deterministic model for the transmission of leptospi-
rosis in the Thai population. As many classical SIR models, it takes into
account the following hypotheses: (a) the total size number of human
population is constant; (b) the natural death constant rate λH is taken to
be the same for all population subgroups; (c) the individuals are unaf-
fected by age or disease status so that the vital statistics of all individuals
are the same, the life expectancy is the same for everyone and is 1/λH; (d)
deaths are balanced by births (birth rate being μH) and (e) all newborn
are considered not to be immunized and so become vulnerable instantly.
ion. The areas occupied by water are white; areas of dry land are black. a) and d)
evel; c) and f) year 2016, maximum hydrometric level. Upper row (a, b and c)
y.
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In addition, there are a few assumptions in particular to the spread of
leptospirosis such as: (a) only infected vectors can be infected human,
this means that an infected human cannot infect another human; (b)
infected humans cannot infect the susceptible vectors: (c) once infected,
a susceptible vector becomes instantly infectious with no incubation time
needed for the infectious agents to develop; (d) the infected human can
be cured by the antibiotic medicines and they become immune at a rate r1
and immune individuals (humans) become susceptible again at a con-
stant rate r2; (e) As a difference of Triampo's model, this considers the
rate of transmission of leptospirosis from an infected vector to a sus-
ceptible human varies with the amount of rainfall that follows a gamma
distribution (Γ) and the function of variation of the flooded area (ΔFA);
(f) Γ and ΔFA modulate the strength of infection assuming that they
increase or decrease the probability of an encounter between a vector and
a human host. Figure 3 shows the diagram of the proposed model.

The Ordinary Differential Equations (ODE) system that describes the
dynamic SIR model is as follows:

dSH
dt

¼ μH � λHSH � βHSHIV þ r2RH

dIH
dt

¼ βHSHIV � λHIH � r1IH

dRH

dt
¼ r1IH � λHRH � r2RH (2)

dSV
dt

¼ μVSV � λVSV � βVSV IV

dIV
dt

¼ μV IV � λV IV þ βVSV IV

The model parameters are μH human birth rate; λH human death rate;
βH infection rate, r1 human antibiotics recovery rate; r2 human immunity
loss rate; μV vector birth rate; λV vector death rate and βV vector infection
rate. Infection rate βH is non constant in time and is defined as a function
of Γ and ΔFA as:

βH ðtÞ¼ kΓðt; a; locÞΔFAðtÞ (3)

where k is a scale parameter.
The ODE system (2) is implemented on a python code, solved with the

my_ls_func function from the scipy library, and it is fitted using a
nonlinear dog-box method with the least squares function (SciPy Refer-
ence Guide, Release 1.4.1).
Figure 3. Model description. SH (Susceptible Human), IH (Infected Human), RH

(Recovered Human); SV (Susceptible vector), IV (Infected Vector). Adapted from
Triampo et al. (2007).
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Normalizing each run of the model, the initial conditions of the ODE
systemwere set up as SH(0)¼ 1, IH(0)¼ 0; RH (0)¼ 0; SV(0)¼ 1–1�10�2

and IV ¼ 1 � 10�2.
The model parameters were set up considering the model hypothesis

mentioned in the methods section. The life expectancy of a human (1/
λH) is about 75 years old and so the mortality rate of the human (λH) is 1/
(365 � 75) per day. This value is slightly higher than reported from
Triampo et al. (2007) since it was updated and adapted to the population
of the study region. The life span under natural conditions of the vectors
(rats) is 1.5 years. Therefore, the death rate of the vectors (λV ) is 1/(1.5�
365) per day. The βV vector infection rate, recovery rate of an infectious
human, or immunity (r1Þ and the rate of loss of immunity (r2 ) are pa-
rameters that were adjusted by calibrating the model to the actual data in
each city. Infection rate βH was calculated as previously explained (Eq.
3), incorporating hydroclimatic variables, by means of Γ and ΔFA
functions.

The Root Mean Square Error is used to compare observed and
modeled data, according to Eq. (4), where x is the number of leptospirosis
cases at time i, and n is the total number of time steps at which the model
is evaluated.

RMSE¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
1
n

�Xn

i¼1

ðxobserved � xmodeledÞ2
s

(4)

The RMSE is always positive and has the same units as the variable, so
is a good measure of the goodness of fit to real values, with the smaller
RMSE the better fit of the model.

2.6. Sensitivity analysis

In relatively complex models such as the one presented here, sensi-
tivity analysis provides confidence about its general behavior when the
input parameters are modified one at a time. The objectives of the
sensitivity analysis can be several, for example define model adjustment
sequence, focusing on those parameters that cause more sensitivity in the
model results, or to provide a range of uncertainty both for the actual
values and physical meaning of the parameters involved as well as in the
results obtained, among others (Pianosi et al., 2016).

A sensitivity analysis of the model results in a change of the most
relevant parameters was performed using the data of Santa Fe city for
year 2010 as a benchmark case. The corresponding effect on modeled
leptospirosis cases was analyzed varying the infection rate between
humans and vectors and the proportion of infected vectors population,
which are the two relevant parameters that control the outbreak
evolution.

3. Results and discussion

Prior to advance in the discussion of the model results, Figure 4 shows
the time series of registered leptospirosis cases for the 2009–2018 period
in the three selected cities. Four marked outbreaks events appeared in
2010, 2013, 2014 and 2015 in the three cities, being the 2010 and 2015
the largest ones. In the three cities, the data during both years show a
seasonality that occurs in late summer and early fall (between January
and March), with the main peaks in cases in February, as already
analyzed by L�opez et al. (2019). The outbreaks of the years 2013 and
2014 presented fewer cases and their behavior was not so similar in the
three cities, showing even more than one peak in different months. It
should be noted that the city of Santa Fe, despite being 2.5 times smaller
than the city of Rosario, during 2010 outbreak presented total values of
leptospirosis cases similar to the latter.

3.1. Pre-model analysis

To determine if the selected hydroclimatic indicators are correlated
with the presence of an outbreak, a PCA analysis was performed in the



Table 1. ΔFA functions for the three selected cities.

City ΔFA function Parameters

Santa Fe ΔFA ¼ c1hþ c2 c1 ¼ 85:828; c2 ¼ 1531:5

Paran�a ΔFA ¼ c1h2 þ c2hþ c3 c1 ¼ 218:71; c2 ¼ � 1345:4; c3 ¼ 4095:1

Rosario ΔFA ¼ c1h2 þ c2hþ c3 c1 ¼ 679:16; c2 ¼ � 3320:1; c3 ¼ 7851:4
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previous work of L�opez et al. (2019). The results are shown in Figure 5
and the data in Table 2 of the mentioned paper. In the figure it can be
observed how the three selected cities with outbreaks are grouped to the
right of the biplot and correlate with the analyzed indicators. i.e.,
monthly total precipitation, maximum monthly hydrometric level of the
river and ONI. Gualeguaychú city was not considered because is not
located over the Paran�a River, which is the main watercourse considered
in the model. All the hydroclimatic indicators evaluated in the PCA
analysis are highly correlated with the leptospirosis outbreaks in the
studied cities, with a coefficient of correlation of 0.998. In this sense, an
integrating analysis of the hydrometric indicators is necessary given the
complexity of the system in the northeast of Argentina.

It must be mentioned that ONI is not completely independent of the
rest of the analyzed variables since in this region during El Ni~no years,
precipitation is higher than normal, as well as the hydrometric level
(Berri et al., 2002b). Therefore despite the index correlates with the
leptospirosis outbreaks is not considered at this stage of the modeling in
order to obtain a model with few variables, which simplifies the results
interpretation.

Additionally, the variation of the flooded area was analyzed accord-
ing to the hydrometric level and, as expected, it increases with increasing
hydrometric levels, but differently for each of the cities. Table 1 shows
the functions and their corresponding parameters for each of the cities. In
the case of Santa Fe city, a linear function was obtained, while for Paran�a
and Rosario cities, a quadratic relationship between hydrometric river
level and flooded area was obtained. It is likely that the topography of the
cities is determining these functions. Paran�a and Rosario have ravines on
their coasts of the Paran�a River, while Santa Fe presents a flat topography
with a smooth topographic gradient towards the alluvial plain of the
Paran�a River, which could be the cause of the different relationship
structure between the hydrometric level and the flooded area in each
city.

As hydrometric river level varies with time, h(t), ΔFA is ΔFA(t) as
well, and each function is calculated and incorporated in the model in
each time step, once the hydrometric level is known. As an example,
Figure 5 shows the ΔFA functions throughout a particular year, 2010, for
each of the three cities, calculated for the time steps of the model and
using the hydrometric Paran�a River level data. The year 2010 is selected
because it is one of the years when disease outbreaks occur in the three
cities, as it was mentioned in the previous section. The figure shows a
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linear behavior of the function for Santa Fe city, and a quadratic one for
the other two cities.

In summary, the flooded area function considers the orographic
component since it relates hydrometric river levels with water occupied
areas and behaves linearly over smooth coasts and quadratically in ravine
environments.

In the case of the Γ distribution the procedure is similar. First, it is
adjusted to the precipitation data in order to obtain the ða; locÞ pa-
rameters, and then the Γ function is incorporated into the SIR model.
Figure 6 shows the normalized precipitation data of Santa Fe city in 2010
and its Gaussian adjustment.
3.2. Model results

As it was mentioned before, the time series of leptospirosis cases
shows an important outbreak in 2010 in the three cities (L�opez et al.,
2019), so that the model is evaluated in that particular year. Figure 7
shows registered cases of leptospirosis in the three cities, as well as the
SIR model results for 2010. The Santa Fe city outbreak lasted only three
months, from January to March 2010, with a maximum peak of 19 cases
in February and 40 confirmed cases in total. In the same year, Rosario
city presented 40 confirmed cases, also concentrated between January
and March with its peak of 16 cases in February, and Paran�a city had 17
cases in total with an outbreak peak of 6 cases in March. In the three cities
it can be observed some isolated cases during the winter months which
may be associated with the specific activities of affected people (rural
environment or in contact with contaminated water). The number of
cases of leptospirosis infections obtained in the three cities by solving the
proposed SIR model for 2010 are in good agreement with the actual data.
The model is able to reproduce the peak behavior in Santa Fe, Rosario
and Paran�a, as can be observed in Figures 7a, 7b and 7c respectively.
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Calculated RMSE are 4.1; 3.5 and 0.6 cases, for Santa Fe, Rosario and
Paran�a cities, respectively. The higher values in the first two cases may be
due to the fact that the actual number of cases at the peak of the outbreak
is relatively greater and the model needs a longer tail to decrease that
peak, so that it overestimates the number of cases during the subsequent
months. Its means the model is no capable of reproducing the duration of
the outbreak throughout the year, especially in Santa Fe and Rosario
cities. Even in Santa Fe, the model never return values of zero cases in the
last months of the year. Triampo et al. (2007) obtained a similar result
when they simulate at the state level which allows to infer that this
behavior could be due to the rigid structure of the coupled differential
equations used. Certainly, this constitutes a limitation of the model to
take into account at the time of take preventive actions.

The calibrated value of the parameters cannot be directly compared
with literature since the structure of models of other authors has been
developed for different purposes so that it is slightly different from the
one presented here. However, works of Zaman (2010, 2012); Minter
et al. (2018) or Gualtieri and Hetch (2019) have obtained similar results
under equivalent interpretations of the physical meaning of the
parameters.

The last aspect to point out is that, in years when a disease outbreak is
not evident, the model does not perform very well. To exemplify this,
Figure 8 shows the results for Santa Fe city in every year of the study
period. In the outbreaks of 2010, 2014 and 2015, the model reproduces
the observed data with RMSE of 4.1, 1.5 and 2.6, respectively. Instead, in
the rest of the years when there are only isolated cases that do not show
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an outbreak wave, the model reaches the amount of cases in the first
months of the year forced by the function of rainfall and flooded areas,
but it does not capture the isolated cases of the following months. The
low RMSE values in those years is due to the low number of cases that
occur, unlike the years mentioned with outbreaks (2010, 2014 and
2015). This aspect can be a consequence of the model structure that as-
sumes a higher probability of an outbreak when it detects an increase in
precipitation and flooded areas. However, when these variables are not
increased, the model cannot detect the increase in the number of cases.

These results are in concordance with Chadsuthi et al. (2021) who
pointed out that when the numbers of cases is low or medium the analysis
cannot provide a significant result with determinist models like the one
used in this work. Nevertheless, it remains valid in years with obvious
outbreaks which constitutes an advance in the modeling of this infectious
disease in the region.

The non-appearance of an outbreak in the most of years (except from
2010, 2014 and 2015) could be due to environmental conditions were
not the precursors to outbreaks or because of social factors such as social
vulnerability (represented by factors like social status, hygienic condi-
tions, financial possibilities) or prophylaxis measures that are not
explicitly considered in the model, but are issues to be incorporated into
future work. Following the findings of Chadsuthi et al. (2021) another
hydroclimatic variable to explore in next work is temperature. They
concluded that including the effect of temperature improved their
transmission model by only a modest amount, but in a climate change
context like the present one, when the temperatures are steadily
increasing, its possible effect on the incidence of leptospirosis should not
be underestimated and a modeling application can be very useful to
evaluate it.

In summary, as a next step it would be important to evaluate two
additional variables: one that would be reducing them in years that
outbreaks would be expected (prophylaxis) and another that would
apparently influence the increase in cases (temperature).

3.3. Sensitivity analysis

The infection rate βH (eq. 3) indicates the probability of transmission
when a susceptible human is exposed to the infectious agent through
contaminated water, by floods either due to precipitations or river levels
increases, and arises as a combination of both Γ and ΔFA functions.
Those functions are obtained independently from themodel, as explained
before, and cannot be modified. However, it is possible to test the in-
fluence of the scaling parameter k in the transmission rate, by increasing
and decreasing it in 10 and 25 % from its calibrated value. The variation
of modeled data results for Santa Fe city due to changes in parameter k is
shown in Figure 9a and reveal a proportional behavior, as expected.
When k increases, the transmission rate increases proportionally, while a
drop in k causes a decrease in the peak of the outbreak.

Although apparently the curve that increases the value of k by 25%
fits better the peak of the outbreak, the RMSE for all the simulated time
steps is 2.8, in the same order of magnitude of the calibrated dataset. This
is because in the months of the year when there are no cases, the model
with k increased by 25% overestimates the number of cases.

The k parameter evaluated is equivalent to the a transmission
parameter mentioned in Gualtieri and Hecht (2019) and both present
similar behavior. Similarly, the sensitivity analysis performed by Chad-
suthi et al. (2021) also shows that the most relevant parameter is the
transmission rate of leptospires to humans, even though they use
different model structures.

Parameter k, and globally βH both control the disease evolution, so in
terms of public health policies, control measures that would decrease
these factors, could help in preventing the outbreaks occurrence. Such
measures will be mainly diminishing the contact of susceptible pop-
ulations with contaminated water.

The other parameter analyzed is the proportion of infected vectors
population, Iv, which acts as an initial condition in the simulations. The



Figure 7. SIR model results and registered cases for the leptospirosis outbreaks in 2010 in a) Santa Fe, b) Rosario and c) Paran�a.

Figure 8. Model results of leptospirosis cases for Santa Fe city per year of the study period vs. observed data. Note: 2010 and 2015 vertical axis show a different scale
due to the increase in cases during these outbreaks.
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tested values were 0.1%, 0.5%. 5% and 10% of the vector population that
are infected with leptospirosis at time ¼ 0. Figure 9b shows the variation
of modeled data results when the percentage of infected vector
Figure 9. Variation of modeled data results in Santa Fe city, year 2010, when is mo
tion, Iv.
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population is modified, comparing them with the calibrated value of 1%
of Iv It can be observed that the model is very sensitive to this parameter,
but values of Iv greater than 1% yield unrealistic values of leptospirosis
dified: (a) the scale parameter k (b) the proportion of infected vectors popula-
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cases. In this case, the sensitivity analysis was useful to establish an upper
limit of the parameter.

Regarding the actual value to be used in the model, a rodent popu-
lation study could be performed to quantify what percentage is actually
infected, as the one carried out by Ricardo et al. (2020). On the other
hand, controlling such population and minimizing the contact with the
human population would be effective measures to reduce the impact of a
leptospirosis outbreak, just to mention an example.

4. Conclusions

The development of a model like the proposed in this paper could be a
public health management tool to improve the preparation for eventual
leptospirosis outbreaks. The influence of climatic variables, such as
precipitation and the extent of flooded areas are important variables that
directly affect the infection rate of the susceptible human population. The
model presented in this work confirmed mathematically that outbreaks
of leptospirosis occurred in months mainly coincident with El Ni~no event
periods. Since El Ni~no events can be predicted several months in advance,
thus local authorities could be warned so they can take preventive actions
like draining of floodplains, urban sanitation, organize preventive pro-
phylaxis campaigns or test families in vulnerable situations, among
others, enough well in advance.

The dynamic modeling of infectious diseases considering hydro-
climatic variables constitutes a climatic service for the public health
system, not yet available in Argentina.

Since climatic conditions vary in each region, its relevance on the
transmission of leptospirosis should be evaluated for each one and this
work aims to contribute in that direction.

The number of cases of leptospirosis infections in the three selected
cities of the northeast of Argentina, Santa Fe, Rosario and Paran�a, ob-
tained by solving the proposed SIR model for the 2010 outbreaks, are in
good agreement with the actual data. The SIR model captures the dy-
namics of the leptospirosis outbreak peak in the three cities, although in
Santa Fe and Rosario it overestimates the number of cases during the last
months of the year.

The extent of flooded areas, caused by the increase of hydrometric
levels, obtained from remote sensing, constitutes a very useful tool to
analyze its impact at regional scales. The flooded area function considers
the orographic component since it relates hydrometric levels with water
occupied areas and behaves linearly when there are smooth coasts and
quadratically in ravines environments. Knowing this relationship and the
future predictions of precipitation, the transmission rate βH could be
estimated and incorporated in the model to predict the probable number
of infected humans in advance.

Although themodeling has yielded good results for the 2010 outbreak
in the three cities, it is important to consider the underestimation of the
disease incidence and the unreliability of the registered data because
leptospirosis presents a symptomatology similar to other diseases.

Despite the ability of the model to reproduce the 2010 outbreak, it
does not perform very well when isolated cases appear outside the
outbreak periods, probably due to factors not explicitly considered in the
model. In forthcoming work we plan to generalize the model making it
more realistic by including, for example, the time delay between the
appearance of symptoms and the confirmation of an infected case. Pro-
phylaxis related variables could also be added in order to explore
epidemic control scenarios, like pharmaceutical or non-pharmaceutical
implementations.

Other improvements to the model could include gradually changing
the structure of the ODE system in terms of the precipitation or hydro-
metric level functions by testing other formulations, or explicitly
including the ONI variable and temperature. Through optimization and
control techniques, different disease outbreak control strategies can be
tested numerically, which could be applicable tools for the public health
system of the region.
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