
Enriquez et al. Parasites & Vectors           (2022) 15:37  
https://doi.org/10.1186/s13071-022-05152-7

RESEARCH

Over-dispersed Trypanosoma cruzi parasite 
load in sylvatic and domestic mammals 
and humans from northeastern Argentina
Gustavo Fabián Enriquez1,2*, Jacqueline Bua3, María Marcela Orozco2, Natalia Paula Macchiaverna1,2, 
Julián Antonio Alvarado Otegui1,2, Hernán Darío Argibay4, María del Pilar Fernández5, 
Ricardo Esteban Gürtler1,2 and Marta Victoria Cardinal1,2 

Abstract 

Background: The distribution of parasite load across hosts may modify the transmission dynamics of infectious 
diseases. Chagas disease is caused by a multi-host protozoan, Trypanosoma cruzi, but the association between host 
parasitemia and infectiousness to the vector has not been studied in sylvatic mammalian hosts. We quantified T. cruzi 
parasite load in sylvatic mammals, modeled the association of the parasite load with infectiousness to the vector and 
compared these results with previous ones for local domestic hosts.

Methods: The bloodstream parasite load in each of 28 naturally infected sylvatic mammals from six species captured 
in northern Argentina was assessed by quantitative PCR, and its association with infectiousness to the triatomine Tria-
toma infestans was evaluated, as determined by natural or artificial xenodiagnosis. These results were compared with 
our previous results for 88 humans, 70 dogs and 13 cats, and the degree of parasite over-dispersion was quantified 
and non-linear models fitted to data on host infectiousness and bloodstream parasite load.

Results: The parasite loads of Didelphis albiventris (white-eared opossum) and Dasypus novemcinctus (nine-banded 
armadillo) were directly and significantly associated with infectiousness of the host and were up to 190-fold higher 
than those in domestic hosts. Parasite load was aggregated across host species, as measured by the negative binomial 
parameter, k, and found to be substantially higher in white-eared opossums, cats, dogs and nine-banded armadillos 
(range: k = 0.3–0.5) than in humans (k = 5.1). The distribution of bloodstream parasite load closely followed the “80–20 
rule” in every host species examined. However, the 20% of human hosts, domestic mammals or sylvatic mammals 
exhibiting the highest parasite load accounted for 49, 25 and 33% of the infected triatomines, respectively.

Conclusions: Our results support the use of bloodstream parasite load as a proxy of reservoir host competence 
and individual transmissibility. The over-dispersed distribution of T. cruzi bloodstream load implies the existence of a 
fraction of highly infectious hosts that could be targeted to improve vector-borne transmission control efforts toward 
interruption transmission. Combined strategies that decrease the parasitemia and/or host–vector contact with these 
hosts would disproportionally contribute to T. cruzi transmission control.
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Background
The transmission of infectious diseases generally follows 
the Pareto principle or “80–20 rule,” namely that 80% of 
disease transmission is triggered by 20% of infected hosts 
[1, 2]. In vector-borne diseases, host infectiousness is 
the ability of an infected host to infect the vector. Infec-
tiousness can be measured directly by xenodiagnosis or 
indirectly by host parasitemia. Consequently, an over-dis-
persed distribution of parasitemia (i.e. aggregated distri-
bution of parasites) may modify transmission dynamics 
[3]. Mathematical modeling of host infectiousness in 
relation to parasitemia can provide further insights into 
this key relationship [4]. For multi-host parasite systems, 
it is particularly important to evaluate host competence, 
i.e. the ability of a host to acquire and transmit pathogens 
to other susceptible hosts or vectors [5], and to iden-
tify the (usually small) fraction of hosts that would dis-
proportionally contribute to transmission. This fraction 
could be the target for optimized control strategies.

Chagas disease, one of the most important neglected 
tropical diseases in Latin America, is a vector-borne 
disease with a multi-host etiologic agent, Trypanosoma 
cruzi (Kinetoplastida, Trypanosomatidae) and several tri-
atomine species that act as vectors. Trypanosoma cruzi 
is currently classified into seven discrete typing units 
(DTUs): TcI–TcVI and TcBat [6, 7]. All mammals are sus-
ceptible to T. cruzi infection, but dogs, cats, humans and 
synanthropic rodents play important roles as domestic 
reservoir hosts [8]. Dasypus novemcinctus (nine-banded 
armadillo) (Cingulata, Dasypodidae), Didelphis albiven-
tris (white-eared opossum) (Didelphimorphia, Didelphi-
dae) and several species of rodents are frequent sylvatic 
hosts of T. cruzi [9, 10]. The infectiousness of T. cruzi-
infected hosts has been found to vary widely between 
and within host species, possibly implying that some spe-
cies and individuals may contribute disproportionally to 
T. cruzi transmission [8, 9, 11–13].

Quantification of T. cruzi bloodstream load by quanti-
tative (q) PCR in humans has shown heterogeneous lev-
els of parasite concentration associated with age, DTU, 
stage of infection (i.e. chronic or acute), congenital infec-
tion and coinfection with other pathogens [14–21]. The 
parasite load of domestic animals and sylvatic hosts has 
been less frequently evaluated; wide variations have been 
reported and the tendency to be higher than in humans 
[11, 22–26]. Whether T. cruzi parasite load is aggre-
gated or not and its degree of aggregation have not been 
addressed in domestic and sylvatic hosts, unlike in Leish-
mania and Plasmodium infections [27–29].

The Gran Chaco region is the distribution center of 
the main domestic vector of Chagas disease, Triatoma 
infestans (Hemiptera, Triatominae). As part of a broader 
research program on the eco-epidemiology and control 
of this infectious disease in the Argentine Chaco [30], 
we assessed T. cruzi infection in humans, dogs, cats and 
several sylvatic mammalian species by means of sero-
diagnosis, xenodiagnosis and PCR (both conventional 
and qPCR). Trypanosoma cruzi TcV and TcVI were the 
most prevalent DTUs found in domestic hosts [31, 32], 
while T. cruzi TcI and TcIII were the only DTUs found in 
white-eared opossums and various species of armadillos, 
respectively [13], implying separated transmission cycles. 
The mean infectiousness to the vector was higher in D. 
novemcinctus (74%) and D. albiventris (56%), followed by 
dogs (48%) and cats (44%), and was only 5% in humans. 
Median parasite load estimated by qPCR displayed a sim-
ilar trend as infectiousness for domestic hosts [11–13]. 
However, the parasite load of sylvatic hosts has not yet 
been quantified in the Gran Chaco region.

In this study, we assessed the bloodstream parasite load 
of six sylvatic host species infected with T. cruzi, namely 
D. novemcinctus, D. albiventris, Euphractus sexcinctus 
(six-banded armadillo) (Cingulata, Dasypodidae), Tol-
ypeutes matacus (southern three-banded armadillo) 
(Cingulata, Dasypodidae), Chaetophractus vellerosus 
(screaming hairy armadillo) (Cingulata, Dasypodidae) 
and Conepatus chinga (Molina’s hog-nosed skunk) (Car-
nivora, Mephitidae), from two eco-regions of northern 
Argentina and evaluated its association with infectious-
ness to T. infestans. We compared these results with pre-
vious ones for humans (n = 88), dogs (n = 70) and cats 
(n = 13) from rural areas of Pampa del Indio, Chaco, 
quantified the degree of parasite over-dispersion and 
modeled the relationship between host infectiousness 
and parasite load. We hypothesized that: (i) the blood-
stream parasite load of both sylvatic mammals (i.e. D. 
novemcinctus, D. albiventris) would be directly associ-
ated with host infectiousness; (ii) the bloodstream para-
site loads of both sylvatic mammals would be higher than 
that of humans and domestic animals; and (iii) the para-
site load would be highly aggregated across host species 
and fit the Pareto principle.

Methods
Study area
Samples were mainly collected in the municipality of 
Pampa del Indio (26°2′0″S, 59°55′0″W), Chaco Prov-
ince, Argentina, which is located in the transition zone 
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between the dry and humid Chaco. The rural area of the 
municipality was divided in four sections (areas I–IV); in 
all four sections, a similar intervention protocol to sup-
press the vector-borne transmission of T. cruzi had been 
scaled up since 2007. Triatoma infestans house infesta-
tion prior to a community-wide residual spraying with 
pyrethroid insecticide ranged from 21% to 46% [33–35]. 
Sustained control actions led to a substantial reduction of 
T. cruzi infection in the human and dog populations that 
was compatible with the interruption of domestic vector-
borne transmission to humans [30]. In order to increase 
the sample size of sylvatic hosts, we additionally included 
four D. albiventris samples from the Southern Cone Mes-
opotamian savannah eco-region. These samples were col-
lected in the Capital (27°24′S, 55°55′W) and Candelaria 
(27°22′S, 55°34′W) Departments of Misiones Province, 
Argentina [36], which had been certified to be free of T. 
infestans-mediated transmission of T. cruzi in 2011 [37].

Study design
This study profits from previous cross-sectional studies 
in which T. cruzi infection was assessed in sylvatic and 
domestic mammals by serological, parasitological and/
or molecular tests between 2008 and 2017 [11–13, 22, 36, 
38]. Humans, dogs and cats were considered to be sero-
positive to T. cruzi if shown to be reactive by at least two 
different serological tests [39]. Dogs and cats were also 
examined by xenodiagnosis; they were considered to be 
infected with T. cruzi if seropositive or xenodiagnosis-
positive [40]. Sylvatic mammals were considered to be 
infected if xenodiagnosis-positive or if kinetoplast DNA-
PCR (kDNA-PCR) results (based on guanidine–EDTA 
blood samples [GEB]). For further confirmation, kDNA-
PCR-positive GEB samples from sylvatic hosts that were 
xenodiagnosis-negative were subsequently tested by sat-
ellite DNA-PCR (SAT DNA-PCR) or the rectal contents 
of triatomines used in the xenodiagnosis were tested 
by kDNA-PCR [13, 36]. In this study, we quantified the 
bloodstream parasite loads of infected sylvatic host spe-
cies and compared these with previous estimates of 
parasite loads and infectiousness of T. cruzi-seropositive 
dogs, cats and humans [11, 12, 22]. A thorough descrip-
tion of the origin of the samples (including host species, 
prevalence of infection, infectiousness, parasite load and 
parasite DTU) is given in Additional file 1: Table S1 and 
Additional file 2: Dataset S1.

Xenodiagnosis and host infectiousness
Artificial xenodiagnosis tests were performed on T. 
cruzi-seropositive humans. For each test, 20 fourth-
instar nymphs of laboratory-reared T. infestans (kept 
unfed for at least 3 weeks) were fed 3 ml of heparinized 
blood from each patient using a blood-feeding device. 

Plastic centrifuge tubes (50 ml) with their ends cut were 
used for collecting heparinized blood. A latex membrane 
was attached to the tubes by means of a rubber O-ring; 
a copper tube was coiled around the centrifuge tubes 
containing the blood to maintain it at 37  °C; and hot 
water running inside the tube was pumped by means of 
an electric motor [12]. The elapsed time between blood 
extraction and the onset of feeding was < 5 min. Natural 
xenodiagnosis in dogs and cats was performed with 10 or 
20 uninfected, laboratory-reared fourth-instar nymphs 
of T. infestans exposed to each animal’s belly for 20 min. 
Anaesthetized sylvatic animals were examined by natu-
ral xenodiagnosis using 5–20 uninfected fourth-instar 
nymphs of T. infestans (depending on body size) applied 
onto the belly of the host for 25  min [13]. All humans 
and animals tested by xenodiagnosis were subsequently 
re-exposed for 10 min if following the initial exposure 
most insects had not blood-fed to repletion as evaluated 
by the naked eye. Each triatomine was individually exam-
ined for T. cruzi infection by optical microscopy (OM) 
at ×400 magnification at 30 and 60 days after exposure. 
Triatomine molting rates averaged 11% for humans, 12% 
for dogs, 8% for cats and 14% for sylvatic mammals. The 
infectiousness to the vector was calculated as the total 
number of triatomines infected with T. cruzi divided by 
the total number of triatomines exposed to the infected 
host and examined for infection at least once. Infectious-
ness results from sylvatic mammals included in this study 
have been published elsewhere [13, 36, 38].

Molecular analysis
All GEB samples were heated in boiling water. Prior to 
DNA extraction, an internal amplification control DNA 
(IAC) was added to a 400-μl GEB aliquot and DNA was 
extracted as previously reported [11]. Purified DNA was 
eluted in 200  μl of distilled water and used as template 
for qPCR amplification. Bloodstream parasite load was 
quantified by amplifying a T. cruzi satellite DNA with a 
standard curve reflecting a dynamic range of T. cruzi 
between 0.1 and  106 parasites/ml, as described elsewhere 
[14]. DNA quantification was normalized according to 
the identified DTU [41]. Parasite load of 66 humans with-
out DTU identification was normalized as if they were 
infected with TcV given that this DTU predominates in 
human samples from the Argentinean Chaco [32, 42–44]. 
We expressed parasite DNA concentration as equivalent 
amounts of parasite DNA per ml (Pe/ml). The cut-off 
value of this method is 0.14 Pe/ml [14]. Samples in which 
parasite DNA was not detected by qPCR were consid-
ered to have zero parasite load. Twenty-six samples (22 
humans, 3 dogs, 1 cat) fell within the detectable but non-
quantifiable range of the dynamic curve (i.e. > 0 and < 0.14 
Pe/ml).
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Host infectiousness model
Host infectiousness of domestic and sylvatic mammals 
was estimated using a mechanistic non-linear model 
described by Miller et al. [14] (i.e. Model 1). This model 
considers that the probability of a vector becoming 
infected in a single feeding event depends on host para-
sitemia, vector blood meal size, the minimum number of 
parasites required to infect the vector and the probability 
of becoming infected related to intrinsic factors, such as 
incompatibility with vector gut microbiota. The model 
has two parameters: B1, the probability that a vector 
acquires the infection, and B2, the probability that a host 
harboring a parasite load of one parasite per milliliter 
infects a vector. Blood meal size (υ) and the minimum 
number of parasites necessary to infect a vector (θ) are 
components of B2. In the case of T. cruzi, both υ and θ 
are related to vector species and stage. We fitted the data 
to Model 1 and to a second model without B1 (Model 2).

Model 1 is expressed as:

where x represents parasitemia.
Alternatively, a logistic model was fitted to the data 

(Model 3). This model also has two parameters (obtained 
from the logistic curve graph [45]) that differ from the 
coefficients B1 and B2 used in model 1 as is expressed as:

Model 3

where x represents parasitemia, xmid is the inflection 
point on the curve and scal is a growth scale. The initial 
value for the xmid parameter is the parasite load at which 
half of the maximum observed infectiousness is reached. 
The initial value for the scal parameter comes from the 
difference between the parasite load corresponding to an 
infectiousness of 0.75 (i.e. 75% of the asymptote, which 
is equal to 1, the maximum proportion of infected tri-
atomines) and that corresponding to the xmid [45].

Data analysis
Wilson binomial 95% confidence intervals (CIs) were 
used for proportions. Given that skewed parasite distri-
butions among hosts are usually observed, we calculated 
the median bloodstream parasite load and its confidence 
interval [46]. We compared the median parasite loads of 
sylvatic and domestic host species by means of a Moods 
median test [46]. This test does not allow samples with an 
amount equal to zero; therefore, we added 0.01 Pe/ml to 
each of these samples. We also compared the medians of 
bloodstream parasite load by sex and stage within each 
host species by Kruskal–Wallis non-parametric tests. The 

Infec(x) = B1 ∗ (1− (exp(−x ∗ B2))

Infec(x) = 1
/(

1+ exp(xmid− x)
/

scal
)

probability used for nominal statistical significance was 
5%. Didelphis albiventris opossums were assigned to life-
stage class (juvenile, pre-adult or adult) based on tooth 
eruption [13]. Didelphis albiventris samples from Mis-
iones and Chaco provinces were pooled for analysis.

The relationship between infectiousness to the vec-
tor of T. cruzi-infected D. albiventris, D. novemcinctus, 
dogs, cats and humans and bloodstream parasite load 
was analyzed using generalized linear models (GLMs) 
implemented in the R environment (version 4.0.2; 2020; 
R Foundation for Statistical Computing, Vienna, Austria) 
with the packages MuMIn [47], ResourceSelection [48] 
and car [49]. Infectiousness was the response variable, 
and a binomial distribution with logit link function was 
considered. We assessed whether the dependent variable 
was associated with bloodstream parasite load (a contin-
uous variable, in Pe/ml) and host species (with humans 
as the reference level) and adjusted it by the triatomine 
molting rate on individual hosts as a proxy of blood 
intake. Multicollinearity was evaluated by the variance 
inflation factor (VIF), and interaction terms were added 
and dropped from the final model if found not to be sig-
nificant at a nominal significance level of 5%.

To assess whether bloodstream parasite load was asso-
ciated with host species and sex we performed a nega-
tive binomial regression. The dependent variable was a 
continuous variable (in Pe/ml). The independent vari-
ables were host species (five levels: 1 = humans; 2 = dogs; 
3 = cats; 4 = D. albiventris; 5 = D. novemcinctus) and 
sex (0 = female; 1 = male). DTU was excluded from the 
regression model due to multicollinearity, as determined 
by the VIF. Interaction terms were added and dropped 
from the final model if found to be not significant at a 
nominal significance level of 5%. The likelihood-ratio 
test (LR) was used to assess over-dispersion by the alpha 
parameter of dispersion from the Poisson distribution 
(i.e. alpha = 0 means Poisson regression presents a better 
fit to the data).

To evaluate the degree of aggregation of bloodstream 
parasite load, we estimated the values of the parameter 
of dispersion “k” from the negative binomial distribution 
using maximum likelihood procedures [46]; we expected 
k  ≤ 5 in the case of aggregation [50]. We used the Pareto 
fraction to evaluate the heterogeneous distribution of 
parasite load and its relationship with the total number 
of T. cruzi-infected T. infestans obtained by xenodiag-
nosis by host species. The Pareto fraction is defined as 
the proportion of the total hosts (by species) for which 
it is possible to say that a proportion X with the highest 
bloodstream parasite load accounted for a proportion 
1 − X of the total bloodstream parasite load and of T. 
cruzi-infected T. infestans. We excluded from analysis a 
D. novemcinctus with an extreme parasite load (8325 Pe/
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ml) because it was an outlier data as determined by the 
distribution of studentized residuals. If this sample were 
to be included in the aggregation analysis, the k index 
would drop to 0.25 (i.e. a greater degree of aggregation) 
and the 10% of D. novemcinctus samples with the high-
est parasite loads would harbor 85% of the quantified 
parasites.

The infectiousness models were fitted by non-linear 
regression with mixed effects [45] implemented in the R 
environment (version 4.0.2; 2020; R Foundation for Sta-
tistical Computing, Vienna, Austria) using the package 
“nlme” for domestic hosts. Because of the low number 
of sylvatic hosts, we only included D. albiventris opos-
sums and D. novemcinctus armadillos and fitted the 
models using the “nls2” package without mixed effects. 
Three models (Models 1–3) and two parasite load data-
sets were used (one dataset for dogs, cats and humans, 
and one dataset for D. novemcinctus and D. albiventris). 
For the domestic hosts’ dataset, we included the “var-
ConstPower” variance function from the “nlme” library 
in the models and host age (in years) as a stratification 
variable for the estimation of variance parameters. We 
used the Akaike’s information criterion (AIC) for model 
selection [51]. All confidence intervals were estimated 
using a hierarchical bootstrapping method by resampling 
with replacement both at the level of the group (i.e. the 
random variable which was the type of host) and within 
groups; in this level, the method samples the  residu-
als and adds them back to the predictions [52].

Results
Bloodstream parasite load in sylvatic hosts
Of the 28 sylvatic host blood samples, 23 (82%) fell within 
the quantifiable range of parasite load (i.e. ≥ 0.14 Pe/ml); 
no parasite DNA was detectable in the remaining five 
samples. All qPCR-negative mammals were from Pampa 
del Indio: three D. albiventris and one E. sexcinctus were 
negative by xenodiagnosis and kDNA-PCR-positive, and 
one T. matacus armadillo was xenodiagnosis-positive 
and kDNA-PCR-negative. The median parasite load did 
not differ significantly between the nine D. albiventris 
opossums from Pampa del Indio (10.7 Pe/ml; 95% CI: 
0.1–61.1) and the four opossums captured in Misiones 
(median = 52.5 Pe/ml; Moods median test, two-sided 
P = 0.55). The median parasite load of all D. albiventris 
opossums (13.8 Pe/ml; 95% CI: 0.1–61.1) was not sig-
nificantly different from that of D. novemcinctus arma-
dillos (38.3 Pe/ml; 95% CI 4.1–269.1; Moods median 
test, two-sided P = 0.39). The parasite loads of the only 
T. cruzi-infected specimens of E. sexcinctus, C. vellero-
sus and C. chinga were 4.2, 40.0 and 7.0 Pe/ml, respec-
tively. In D. albiventris opossums, the median parasite 
load did not differ significantly between life-cylce stages 

(Kruskal–Wallis H-test, H = 2.04, df = 1, P = 0.18) or 
sexes (Kruskal–Wallis H-test, H = 0.46, df = 1, P = 0.52). 
Median parasite load was lower in female armadillos 
(38.3 Pe/ml) than in males (108.3 Pe/ml) but the dif-
ference was not significant (Kruskal–Wallis H-test, 
H = 0.53, df = 1, P = 0.55).

The infectiousness of infected D. albiventris and D. 
novemcinctus steeply increased with bloodstream para-
site load, reaching 100% between 6 and 13 Pe/ml (Fig. 1). 
Infectiousness was positively associated with blood-
stream parasite load (odds ratio [OR]: 1.02; 95% CI: 
1.01–1.03; P = 0.03) and host species. Dasypus novemci-
nctus exhibited the highest odds ratio (OR: 60.73; 95% CI: 
6.87–1501.36: P < 0.01), followed by D. albiventris (OR: 
12.95; 95% CI: 2.32–78.46; P < 0.01), dogs (OR: 12.64; 
95% CI: 4.58–43.03; P < 0.01) and cats (OR: 9.50; 95% CI: 
1.82–49.73; P < 0.01) (Fig. 3). Infectiousness was not sig-
nificantly associated with triatomine molting rate (OR: 
2.83; 95% CI: 0.14–69.83; P = 0.50).

Parasite load and infectiousness in domestic and sylvatic 
hosts
The median bloodstream parasite load of D. albiventris 
and D. novemcinctus was 1.4- to 190-fold higher than 
that of cats (9.7 Pe/ml; 95% CI: 1.6–96.9), dogs (5.5 Pe/
ml; 95% CI: 2.6–13.0) and humans (0.2 Pe/ml; 95% CI: 
0.1–0.3). The negative binomial regression model was 
found to fit the data better than the Poisson model when 
the model for bloodstream parasite load included host 
species and sex as independent variables (alpha = 2.2; 
95% CI: 1.8–2.7; P < 0.01). Bloodstream parasite load was 
significantly associated with host species but not with sex 
(P = 0.59) (LR: 238.3; P < 0.01) (Table 1).

The frequency distribution of parasite load was highly 
skewed across all host species with a unimodal pat-
tern for each species. The majority of armadillos and 
white-eared opossums exhibited high parasite loads; for 
example, 70% of D. novemcinctus and 46% of D. albiven-
tris exhibited a bloodstream parasite load ≥ 30.0  Pe/ml 
(Fig.  2). In contrast, most humans exhibited low para-
site loads whereas most dogs and cats had intermediate 
ones. The bloodstream parasite load of most seropositive 
humans (85%) was < 1 Pe/ml, with parasitaemia unde-
tectable by qPCR in 18% of these. Nearly half of the study 
dogs (44%) and cats (46%) had parasite loads between 1 
and 10 Pe/ml (Fig. 2). Parasite aggregation measured by 
the negative binomial parameter k was higher in cats 
and white-eared opossums (k = 0.3) and in nine-banded 
armadillos and dogs (k = 0.4 and 0.5, respectively) than in 
humans (k = 5.1) (Table 2).

Didelphis albiventris and D. novemcinctus were more 
infectious to the vector than any domestic host species 
(i.e. humans, dogs and cats) across the range of parasite 
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loads observed (Fig.  3). The greatest difference between 
domestic and sylvatic hosts was between 1 and 10 Pe/
ml. Dogs, cats, white-eared opossums and nine-banded 
armadillos were similarly infectious for ≥ 30 Pe/ml 
(Fig. 3).

Pareto analysis
The bloodstream parasite load was aggregated across 
host species and found to closely fit the Pareto prin-
ciple, with 20% of host samples with the highest 
parasite loads in each species harboring 70–90% of par-
asite equivalents measured by qPCR in 1 ml of blood 

(Fig.  4a). In Fig.  4, the point at which the distribution 
line of each host species crosses the line 1 − X (grey 
line) is the Pareto fraction for each host species. The 
Pareto fraction for parasite load distribution across spe-
cies was approximately 75–24 for D. albiventris, 80–20 
for D. novemcinctus, 78–22 for humans and dogs and 
84–16 for cats. The Pareto fraction for T. cruzi-infect-
edT. infestans across species was very distant from the 
“80–20 rule,“ with the 20% of humans exhibiting the 
highest parasite load accounting for 49% of the infected 
bugs. Similarly, the 20% of domestic or sylvatic mam-
mals displaying the highest parasite load was responsi-
ble for 25–33% of the infected bugs (Fig. 4b).

Fig. 1 Distribution of infectiousness of Trypanosoma cruzi-infected sylvatic hosts to the vector Triatoma infestans, at Pampa del Indio 2008–2010 
and Misiones 2011

Table 1 Trypanosoma cruzi parasite load in domestic and sylvatic hosts, at Pampa del Indio 2008–2017 and Misiones 2011

*Statistically significant
a Two dogs and 1 cat for which sex was not determined were excluded from this analysis

Predictor Number of 
 hostsa

Median parasite load 
(Pe/ml)

incidence rate ratio Standard error 95% Confidence interval

Host species

 Humans 88 0.2 1.0 – –

 Didelphis albiventris 13 13.8 97.8 46.1 38.9–246.2*

 Dasypus novemcinctus 10 38.3 2354.3 1262.7 822.9–6735.7*

 Canis lupus familiaris 68 5.5 49.4 14.6 27.7–88.1*

 Felis catus 12 9.7 279.5 138.7 105.7–739.3*

Sex

 Female 79 0.6 1.0 – –

 Male 107 1.4 1.2 0.3 0.7–2.0
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Infectiousness model
Model 1 exhibited the lowest AIC values for both 
datasets followed by Model 2 (Table 3; Fig. 5a–d). The 
main difference between Models 1 and 2 in domestic 
hosts was observed for parasite loads > 10 Pe/ml, in 
which infectiousness reached an asymptote at 80% and 
100%, respectively, and where a wide confidence inter-
val was observed for Model 1 (Fig. 5a, b). In Model 1, 
a similar value for the B1 parameter was determined 
for both host datasets; however, the parameter B2 was 
twice as high for the sylvatic hosts’ model than for that 
of the domestic hosts (Table 3). The logistic model had 
the highest AIC value (Fig. 5c) and exhibited a poor fit 
to the data, especially for low parasite loads, in which 
the predicted infectiousness was never < 20%, unlike in 
the observed data.

Discussion
We quantified the bloodstream load of T. cruzi from six 
sylvatic host species from northeastern Argentina and 
compared these results with the parasite load deter-
mined for local domestic hosts. This study may be the 
first attempt of this kind for two of the main sylvatic 
reservoir hosts of T. cruzi, D. albiventris opossums and 
D. novemcinctus armadillos. All examined sylvatic and 
domestic host species exhibited an aggregated parasite 
load as determined by the negative binomial distribution; 
the parasite load distribution followed the Pareto princi-
ple. Over-dispersed distributions of parasite load associ-
ated with heterogeneous host infectiousness have also 
been reported for other vector-borne diseases and shown 
to influence transmission dynamics [4, 27, 53–56].

The “80–20 rule” described by Woolhouse et al. [2] sug-
gests that heterogeneities in vector-host contact rates can 
increase the basic reproductive number R0. If transmis-
sion can be directly linked to the intensity of parasitemia, 
the small fraction of hosts with the highest parasite load 
would disproportionally contribute to transmission [4, 
28]. In our study, the distribution of host infectiousness 
to the vector deviated from the Pareto principle. The 20% 
of hosts with the highest parasite load were responsible 
for 49% and nearly 30% of triatomine infections derived 
from T. cruzi-infected humans and domestic or sylvatic 
mammals, respectively. These percentages of infected 
triatomines were lower than expected; such deviations 
may be explained by the details of the xenodiagnosis pro-
tocol, which sought to maximize the likelihood of vector 

Fig. 2 Frequency distribution of parasite load of T. cruzi-infected domestic and sylvatic hosts, at Pampa del Indio 2008–2017 and Misiones 2011. The 
number of hosts is indicated above each bar

Table 2 Degree of parasite aggregation measured by the 
negative binomial dispersion index, k 

a One D. novemcinctus with 8325 parasites/ml was considered to be an outlier 
and excluded from analysis

Host species Number of 
hosts

Parasite load (Pe/ml) k

Mean Variance

Didelphis albiventris 13 43.3 3825.3 0.3

Dasypus novemcinctus 9a 157.3 66,050.9 0.4

Dogs 70 22.9 2612.7 0.5

Cats 13 121.6 90,505.9 0.3

Humans 88 0.4 0.6 5.1
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infection via exposure times. Thus, host infectiousness in 
dogs, cats and sylvatic mammals was skewed toward high 
values, with few individuals having zero infectiousness. 
Although we did not address vector–host contact rates 
specifically in this study, the small fraction of T. cruzi-
infected hosts exhibiting the highest parasite loads could 
contribute disproportionately to parasite transmission, as 
previously suggested for domestic dogs and cats infected 
by T. cruzi [57].

The few published studies that have evaluated T. cruzi 
parasitemia in sylvatic hosts mainly focused on synan-
thropic and wild rodent species from Chile and Mexico, 
which showed a median parasite load between 1.0 and 
6.2 Pe/ml [23, 24, 26, 58] In one study, T. cruzi-infected 
marsupials, such as Didelphis marsupialis (Didelphimor-
phia, Didelphidae) and Marmosa murina (Didelphimor-
phia, Didelphidae), from Colombia were qPCR-positive, 
with a median parasite load of 27.4 and 0.2 Pe/ml, respec-
tively [25]. In our study, the parasite load of D. albiventris 

Fig. 3 Host infectiousness to T. infestans according to parasite load in T. cruzi–infected domestic and sylvatic mammals, at Pampa del Indio 
2008–2017 and Misiones 2011

Fig. 4 Pareto principle for T. cruzi parasite load (a) and for T. cruzi-infected T. infestans in xenodiagnostic tests (b) of domestic and sylvatic host 
species, at Pampa del Indio 2008–2017 and Misiones 2011
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from two regions of northern Argentina that differed in 
the intensity of T. cruzi transmission was not significantly 
different. The overall median parasite load for both D. 
albiventris populations did not differ from that deter-
mined for D. marsupialis in Colombia, and was nearly 
fourfold higher than the parasite load for rodents in Chile 
and Mexico. The parasite load of D. novemcinctus and C. 
vellerosus did not differ significantly from that recorded 
for D. albiventris in this study. The few T. matacus and E. 
sexcinctus examined showed a low parasite load, similar 
to that in rodents, with low or zero infectiousness to the 
vector. An increasing trend of bloodstream parasite con-
centration from rodent species to Didelphis sp. and D. 
novemcinctus is apparent among all the above-mentioned 
sylvatic host species. This trend agrees with the high res-
ervoir host competence reported for opossums and D. 
novemcinctus [10, 13, 59].

Immunologically competent humans in the chronic 
phase of T. cruzi infection have been found to display var-
iable parasite loads, with a median range of 0.1–2.3 Pe/ml 
across South America [15–17, 60–62]. This range is simi-
lar to the parasite load found in chronic humans from 
Pampa del Indio. The median parasite load for D. albiven-
tris and D. novemcinctus was up to 190-fold higher than 
that for humans in Pampa del Indio and elsewhere, and 
up to sevenfold higher than that of dogs and cats. A much 
lower median parasite load of 0.1 Pe/ml was reported in 
goats from Mendoza Province, Argentina [63]. This het-
erogeneous distribution of parasite load across sylvatic 
and domestic host species suggests a wide variability in 
parasite–host interactions, and is likely determined by 
multiple factors. First, (co-)infections, biotic and abiotic 
conditions and anthropogenic factors can affect the host 

immune system and contribute to the heterogeneous dis-
tribution of parasite load [64]. Secondly, a long-standing 
host–parasite association, in which the marsupial genus 
Didelphis and placental mammals, such as armadillos, 
have been proposed as the ancestral hosts of T. cruzi [10, 
65]. Co-evolution could also be associated with parasite 
genotype selection [9, 10, 65–67]. The almost exclusive 
association between sylvatic host species and parasite 
DTUs precluded us from analyzing the potential effect 
of parasite genotypes on parasitemia. Experimental stud-
ies with animal models and observations in humans sug-
gest that the diversity of parasite genotypes may in part 
account for the variability in parasite load [16, 17, 19, 59]. 
However, earlier studies found no significant differences 
in the median parasite loads of humans, dogs and cats 
with different DTUs from Pampa del Indio [11, 12].

In the present study, parasite load was directly associ-
ated with host infectiousness in all domestic and sylvatic 
host species, and may be considered a surrogate of infec-
tiousness. At similar levels of parasite load < 10 Pe/ml, 
domestic hosts showed a significantly lower infectious-
ness than the main sylvatic hosts (Fig.  3). Heterogene-
ous parasite distribution among tissues, as in Leishmania 
infected-dogs and rodents [28, 54], or intrinsic differ-
ences in growth rates among parasite DTUs may explain 
these differences in host infectiousness. Even though tri-
atomine molting rates were not significantly associated 
with infectiousness in the GLM analysis, it was twofold 
higher for D. albiventris and D. novemcinctus than for 
domestic host species (20% vs 10%) within the range of 
1–10 Pe/ml. Therefore, the observed differences in infec-
tiousness between domestic and sylvatic hosts within this 

Table 3 Estimated parameters for three non-linear models of host infectiousness for domestic and sylvatic mammals infected with 
Trypanosoma cruzi 

AIC Akaike’s information criterion
a  B1 is the probability that a vector becomes infected
b  B2 is the probability that a host with a parasite load of one parasite per milliliter (1 Pe/ml) infects a vector
c  In the logistic model, xmid is the inflection point on the curve and scal is a growth scale
d NA: Does not apply. The parameter was not included in the model

Model No. of hosts Model parameters (standard error)

df B1a B2b Xmidc scalc AIC

Domestic hosts

 1 171 167 0.76 (0.04) 0.17 (0.03) NA NA − 94.69

 2 171 168 NAd 0.10 (0.01) NA NA − 70.17

 Logistic 171 167 NA NA 11.30 (1.14) 7.19 (1.88) − 66.69

Sylvatic hosts

 1 23 20 0.91 (0.04) 0.36 (0.10) NA NA − 16.53

 2 23 21 NA 0.48 (0.12) NA NA − 14.34

 Logistic 23 21 NA NA 10.00 (7.07) 22.00 (10.86) 9.63
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range of parasite loads may in part be attributed to the 
larger blood intake of sylvatic mammals.

We fitted a non-linear model to the relationship 
between infectiousness and bloodstream parasite load, 
as this relationship was previously determined for other 
vector-borne diseases [4, 55, 68]. Model 1 exhibited the 
best fit for both host groups, achieving the lowest AIC 
value. Interestingly, Model 1 includes components related 
to vector competence through parameter B1 that are 
absent in the sole quantification of parasite load by qPCR 
as a proxy of reservoir host competence. The B2 param-
eter was twofold higher in sylvatic hosts than in domestic 
hosts, which agrees with differences in the infectiousness 
curves of domestic and sylvatic hosts (Fig.  3). We esti-
mated the B2 value that would result from empirical data 

combining the mean blood meal volume of T. infestans 
fourth-instar nymphs (0.18  ml, Cerisola et  al. [69]) and 
the minimum number of parasites required to infect a 
vector (one parasite) (Moll-Merks et  al. [70]), resulting 
in a parameter value of 0.18. This value is similar to the 
one estimated by our non-linear model for the domes-
tic hosts’ dataset (0.17). The parameter B1, associated 
with the probability that a vector becomes infected, had 
similar values in sylvatic and domestic host models and 
is close to the maximum value. Both the establishment 
and development of T. cruzi within triatomines may be 
affected by the gut microbiota [71–73] and by digestive 
enzymes, agglutinins, hemolysins and antimicrobials 
[74]. The modeling approach employed in the present 
study would allow the study of reservoir host competence 

Fig. 5 Observed and predicted host infectiousness, with 95% confidence intervals (shaded areas around solid blue line), according to bloodstream 
parasite loads in T. cruzi-infected domestic and sylvatic mammals, at Pampa del Indio 2008–2017 and Misiones 2011. Hosts with zero parasite load 
were pooled with those exhibiting 0.01 Pe/ml. a Model 1, b Model 2, c logistic model for domestic animals, d Model 1 for sylvatic hosts. Symbols:  + 
represents humans; open square, cats; filled circle, dogs; filled triangle, Dasypus novemcinctus (9-banded armadillo); open circle, Didelphis albiventris 
(white-eared opossum)
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in a larger number of host species, thereby avoiding 
examination through xenodiagnosis which is more time-
consuming. Several mathematical models have been 
developed to model T. cruzi transmission dynamics; how-
ever, most of these have omitted variations in infectious-
ness among hosts [75–78] or only incorporated a mean 
infectiousness per host species [79]. Therefore, incorpo-
rating infectiousness variability from the distribution of 
parasitemia within the host population and vector-host 
contact probabilities (through blood-feeding patterns) 
allowed us to assess the relative contribution of different 
host groups to the transmission of T. cruzi.

Our results are based on the same protocols for xeno-
diagnosis, DTU identification and quantification of para-
site loads, which allows a valid comparison of outcomes 
among host species. Although we used two protocols for 
xenodiagnosis (artificial in humans and natural for other 
hosts), the results of artificial xenodiagnosis were similar 
to those obtained when the vector directly fed on humans 
in other studies [12]. Our inferences are restricted to the 
Gran Chaco region as few individuals were from Mis-
iones. Due to the small number of samples, to model 
infectiousness we grouped hosts by transmission cycle 
instead of studying each species separately. Even though 
the observed curve of infectiousness in relation to para-
site load (Fig.  3) supports the grouping criteria, the 
inclusion of more samples for some host species may 
allow modeling the responses separately for each spe-
cies. Human samples were biased towards early chronic 
patients since individuals aged < 21  years were eligible 
for etiological treatment and prioritized for serodiagno-
sis [12]. Infants aged < 9 months were excluded from the 
serosurvey; when infected with T. cruzi infants in this age 
group have high parasite loads [80].

Conclusions
In conclusion, the wide variability and over-dispersed 
distribution of T. cruzi bloodstream load across syl-
vatic and domestic host species determined in our study 
appears to be shared with other multi-host parasites that 
show a broad genetic diversity [81–83]. Our results have 
implications for further understanding the epidemiol-
ogy of Chagas disease and the application of control 
measures since the heterogeneous distribution of para-
site load may affect transmission dynamics by increas-
ing R0 and the efforts required to reduce the infection 
in humans. Addressing the issue of whether there is a 
higher contact rate between triatomines and the small 
fraction of domestic hosts exhibiting the highest parasite 
loads would provide support to the development of novel 
and cost-effective Chagas disease transmission control 
strategies.
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