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Experiments and simulations of an intruder dragged by a spring through a two-dimensional annulus of granular
material exhibit robust force fluctuations. At low packing fractions (φ < φ0), the intruder clears an open channel.
Above φ0, stick-slip dynamics develop, with an average energy release that is independent of the particle-particle
and particle-base friction coefficients but does depend on the width W of the annulus and the diameter D of
the intruder. A simple model predicts the dependence of φ0 on W and D, allowing for a data collapse for the
average energy release as a function of φ/φ0. These results pose challenges for theories of mechanical failure in
amorphous materials.
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The reaction force associated with the deformation of a
sample subjected to an intruding object is a fundamental
characteristic of the material. The mechanical properties of
granular materials, such as soils, are routinely probed by
penetration tests employing intruders that are large compared
to the grains [1]. Interest in the micromechanics of granu-
lar materials has also prompted studies of the response of
photoelastic granular materials to loads applied at the grain
scale [2–6]. In recent decades there has been interest in the
dynamical response of granular materials to intruding objects
that are dragged through the bulk of the sample [7–13]. In
most cases the intruders are much larger than the grains that
form the relevant part of the material, but there is also growing
interest in the response to a grain-sized intruder, as such a
setup provides insight into the micromechanics of granular
media rather than bulk properties [14].

In this Letter we report results from experiments and sim-
ulations on the stick-slip dynamics of a grain-size intruder
driven through a circular annulus with fixed boundaries filled
with photoelastic disks. We find that the energy dissipation
associated with slip events is insensitive to the details of the
particle-particle interactions and depends in a surprisingly
simple manner on the packing fraction φ, the system size W ,
and the intruder size D. The granular sample is confined at
constant volume and we drive the intruder in the azimuthal
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direction at a fixed radius. We find a critical packing fraction
φ0 (which increases for increasing width W and decreasing
intruder size D) below which the intruder clears an open chan-
nel in the material and moves freely after a few revolutions.
Moreover, we show that data for the average amount of energy
dissipated in a slip event collapse when plotted against the
rescaled parameter φ/φ0 − 1. Using a simple model, we pre-
dict that φ0 = φmax(W − D − 2kd )/W , where d is the typical
grain size, φmax is the maximum bulk packing fraction, and k
is a phenomenological O(1) parameter that characterizes the
width of the lower density boundary layers bordering the open
channel. We note that the dependence on W suggests that in
this system the stick-slip dynamics is a finite-size effect. As W
increases, the range of packing fractions supporting stick-slip
dynamics shrinks, presumably approaching zero in the infinite
system limit.

The system. The granular system considered in this paper
consists of a bidisperse mixture of disks forming a quasi-
two-dimensional (2D) monolayer through which an intruding
particle is pulled (see sketch in Fig. 1). The diameter ratio
between small (ds) and large (dl ) disks is ≈dl/ds ≈ 1.25 and
the number ratio of small to large disks approximately is 1.1:1.
(A 2.75:1 ratio was also tested for a few sets). We note that
the response of a granular sample is strongly dependent on
the boundary conditions imposed (constant pressure versus
constant volume) and the forcing protocol (constant force
versus constant velocity) [14,16–19]. In the present case, the
medium is confined to a fixed-volume annular area of inner
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FIG. 1. (a) Schematic of the experimental setup. The end (i) of the torque spring is driven at a constant angular velocity while the end (ii) is
fixed to the arm that holds the intruder. The 2D granular medium is composed of a layer of bidisperse polyurethane disks. (b) Sample snapshot
of a simulation. The dot indicates the driven end of the torque spring. The other end of the spring is attached to the intruder (dark blue particle).
The static inner and outer boundaries are formed by equilateral triangles. Reproduced with permission from Ref. [15]. (c) Mean energy drop at
the slips 〈�E〉 as a function of φ for different mix ratios, basal friction coefficients, and particle-particle friction coefficients (experiments and
simulations). Error bars correspond to the standard error of the mean. As a reference, the elastic energy of the torque spring when compressed
by the angle subtended by ten small-particle radii at the radial position of the intruder is 0.09 J.

radius Rin, radial width W , and outer radius Rin + W . The
intruding particle, with diameter D, is pushed by a torque
spring at a fixed radius Rin + W/2. The end of the spring
not attached to the intruder is rotated at a low, fixed rate to
slowly apply stress on the granular medium via the localized
intruding grain. At high packing fractions stick-slip dynam-
ics are observed. When in the stick-slip regime, the medium
exhibits sticking periods of quasistatic particle configurations
and increasing stress interspersed with rapid stress-relieving
slip events in which the medium plastically deforms and the
intruder slides in the azimuthal direction until a stable con-
figuration of grains stops it, initiating a new sticking period.
In all cases, the driving rate is sufficiently slow that decreas-
ing it further causes no observable change in the stick-slip
dynamics.

As the intruder penetrates the system, significant hetero-
geneities form in the local packing fraction. Most importantly,
the intruder leaves an open area (wake) behind it as grains are
densely packed into the annular areas outside of the intruder’s
path. As the global packing fraction decreases, the extent
of the wake behind the intruder grows on average until, at
a low enough global packing fraction, it becomes an open
channel that extends all the way around the annulus so that
the intruder no longer interacts with any grains. To understand
the dynamics of the intruder as the channel length approaches
the entire length of the intruder’s path, we vary φ and D (both
in experiments and simulations) and W (in simulations only).
Details of the experiments and simulation methods can be
found in previous papers [15,20]. Here we provide only a brief
description.

In experiments, the intruding particle is suspended from a
cantilever into the quasi-two-dimensional annular channel of
disks. A stepper motor rotates one end of a torque spring (stiff-
ness κ0 = 0.38 Nm/rad) at a fixed rate (ω0 = 0.12 rad/s)
and the cantilever is attached to the other end of the spring.
The bidisperse polyurethane disks have interparticle friction
μ = 0.7 ± 0.1 and basal friction μBF = 0.25 ± 0.05 and are
of sizes ds = 1.280 ± 0.001 cm and dl = 1.601 ± 0.002 cm.
The inner radius of the channel is Rin ≈ 8.4ds, and the width
is W ≈ 14ds. Load cells measure the total force that the

grains exert on the intruder, and the dynamics of the intruder
is monitored via video tracking. Experiments are done with
various packing fractions for each of six intruder sizes D =
[5.2, 3.7, 3.0, 2.0, 1.5, 1.0]ds.

In simulations, we model this system using Box2D, a
contact dynamics discrete element approach developed for
handling perfectly rigid bodies of arbitrary shape [21]. The
parameters in this system, such as friction coefficients and size
ratios, are consistent with those of the experiments; excellent
agreement has been found between experiments and simula-
tions of this system in previous work [15]. In the simulations,
φ, basal friction, intergrain friction, small to large grain ratio,
pulling spring constant, D, and W are varied.

Results. To characterize the stick-slip steady state dynam-
ics, we have measured the drop, �E , of the spring potential
energy at each slip event, determining its mean and standard
error. A sample time series of the force sensor, distributions
of �E showing that its mean value is a meaningful statistical
descriptor, and data for additional measures, such as force
drop and duration of sticking periods, are presented in the
Supplemental Material [22].

Figure 1(c) shows the average energy drop, 〈�E〉, over
the set of detected slip events as a function of φ for a set of
experiments and simulations with D = 1.26ds and different
small to large grain ratios, particle-base friction coefficients,
and interparticle friction coefficients. Below φ0 ≈ 0.64 the
stick-slip dynamics is no longer observed due to the for-
mation, after a few revolutions of the intruder, of an open
channel in the granular medium that allows the intruder to
move without contacting any particles. When φ approaches
the jamming value of ≈0.8, there is an apparent divergence
in the mean energy drop in a slip event. Other works, see in
particular Ref. [23], have focused on this divergence in similar
systems. Here we turn our attention to the onset of stick-slip
behavior, which occurs at φ0.

The transition at φ0 has not been reported in other studies
on intruders mainly because most of these studies are carried
out in a 3D system under gravity [13,18]. Under such con-
ditions, the intruder’s wake is constantly filled in. In cases
where constant volume conditions in 2D were used and a
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wake developed, the focus was on packing fractions close to
the jamming point rather than packing fractions at very low
reaction forces [8,17,23], and often a steady state was never
achieved. According to previous experiments, the extent of
the wake becomes a sensitive parameter to identify different
aspects of the dynamics (i.e., stick-slip versus full jamming)
[23]. In a previous work [19] utilizing a similar Couette ge-
ometry, the granular sample was continuously stirred behind
the intruder to remove its wake. For this stirred system, a
crossover in the mean force as a function of φ (from linear
to power law with exponent 1.53) was observed at a packing
fraction φ0 similar to what we observe in our experiments
[19]. For our nonstirred system this becomes a clearly iden-
tifiable transition.

As mentioned above, stick-slip dynamics develop for φ >

φ0, and 〈�E〉 can be measured, increasing continuously with
φ up to φc ≈ 0.8, where the system completely jams [see
Fig. 1(c)]. Beyond φc, the spring force increases until parti-
cles in experiments buckle out of plane, or, in simulations,
numerical instabilities develop or the maximum run time is
reached.

A remarkable feature in Fig. 1(c) is the collapse of the
data obtained from the different interaction parameters and the
grain number ratios. Note that no scaling has been applied to
either the 〈�E〉 or the φ axes. This universal response resem-
bles the well-known behavior of sheared granular materials
in the limit of low inertial number I [24]. In this limit, the
effective friction μ(I ) and the shear strength are insensitive to
details of the grain-grain interactions [25] and the particle size
distribution [26]. In our intruder scenario, however, the stick-
slip behavior differs significantly from the dynamics observed
in a simple shear experiment.

It is important to mention that �E is independent of basal
friction for μBF > 0.2. For very low basal friction, particles
set in motion behind the intruder after a slip tend to remain in
motion, filling in the wake left by the intruder before coming
to rest. This effect resembles the stirring mechanism imple-
mented in Ref. [19]. This leads to a different dynamics over
all, which we do not investigate further in the present work.

We explore now the effect of geometric factors, including
intruder and system size, on the intruder dynamics, which
have been shown to affect the force fluctuations [23]. In
Fig. 2(a) we show 〈�E〉 obtained from simulations as a
function of W with fixed φ (φ = 0.68). A change in W implies
a change in the radial position R of the intruder; the same
torque spring and angular drive velocity would then lead to
a different tangential stiffness and tangential velocity. To keep
the effective linear stiffness of the spring and the effective
tangential driving speed the same in all cases, we set the
spring constant κ = κ0(R/R0)2 and the angular velocity of the
driver ω = ω0(R0/R), where R0 is the radial position for our
experimental system size that we use as reference. We find
that 〈�E〉 decreases with increasing W , suggesting that stick-
slip is a finite-size effect and may disappear for large system
sizes. Similarly, in Fig. 2(b) we plot 〈�E〉 as a function of
the intruder diameter D at φ = 0.68. Here 〈�E〉 is zero for
very small intruders, becomes finite at a minimum intruder
size, and then increases smoothly with D in agreement with
Refs. [19,23].

(b)(a)

FIG. 2. 〈�E〉 as a function of (a) the channel width W (at φ =
0.75 and D = 1.26ds) and (b) the intruder size D (at φ = 0.68 and
W = 14ds). Here, ds is the diameter of the small particles. In panel
(a) we adjust κ and the drive angular velocity so that the spring is
pulled at the same tangential speed, fixing the linear rate of force
increase when the intruder is stationary. Error bars correspond to the
standard error of the mean.

The data collapse shown in Fig. 1(c) suggests that we plot
〈�E〉 as a function of φ for different values of D and W .
Figure 3(a) shows experimental data for seven choices of D.
We note that the transition to zero force (when the open chan-
nel forms) occurs at a different value φ0 for each D. The data
collapse onto a single curve when plotted against φ/φ0 − 1,
a measure of the relative distance to the transition, as shown
in Fig. 3(b). The value of φ0 for each D was estimated by
lowering the packing fraction φ until no steady-state dynamics
were observed. Surprisingly, there is no need for any rescaling
of the energies; furthermore, the data shown in Fig. 1(c) [see
black symbols in Fig. 3(b)] also lie on the same curve.

The full data collapse we observe can be explained by a
simple argument for the dependence of φ0 on W and D. We
assume that φ0 corresponds to the highest φ (global packing
fraction) at which the intruder is able to clear a channel that
will allow it to move freely without contacting particles after a
few revolutions. Therefore, φ0 can be computed from the area
of the Couette cell ACouette = π (R2

out − R2
in ), the area Afree =

π [(Rin + W/2 + D/2)2 − (Rin + W/2 − D/2)2] of the free
channel necessary for the intruder to move freely, and the
maximal packing fraction φmax at which particles are packed
into the two regions on each side of the intruder’s path around

(b)(a)

FIG. 3. (a) 〈�E〉 as a function of φ for different intruder sizes.
(b) Same as panel (a) as a function of the rescaled parameter
φ/φ0 − 1. The black symbols correspond to the experimental data
from Fig. 1(c).
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FIG. 4. Local packing fraction extracted from experiments with
D = 1.26ds as a function of distance from the center of the Couette
r and for different global packing fractions φ (see color scale),
averaged over all steady-state sticking periods.

the center of the annulus. We have

φ0 = φmax(ACouette − Afree )

ACouette
= φmax

W − D

W
. (1)

We have measured φmax in the experiments from average
local φ profiles shown in Fig. 4, and the value is φmax ≈ 0.79
at the boundaries. The local packing fraction as a function
of radial position in the channel is computed using a sliding
annular window of width ∼1.4ds. For a given annular window,
the area occupied by particles is divided by the window’s
area for each sticking period configuration, and these results
are then averaged. As expected, these local packing fraction
profiles are not simple square wells; a clear boundary layer ap-
pears at each side of the intruder. To account for the boundary
layer (which we assume to be roughly constant in width), we
introduce a correction to Eq. (1) following a strategy similar
to previous works [27,28]. The corrected equation is

φ0 = φmax
W − D − 2kd

W
, (2)

where k is a phenomenological parameter that measures the
width of each of the two boundary layers in units of grain
diameters. Figure 5 shows the values of φ0 estimated from
Fig. 3 as a function of W ∗ = (W − D − 2kd )/W . Having ob-
tained the value k from experiments carried out using different
intruder sizes D, we use Eq. (2) to compute φ0 for all other
cases of W and D considered in this work. As is demonstrated
below, statistical properties of the intruder’s dynamics indeed
collapse when plotted against φ/φ0 − 1 with φ0 computed in
this manner.

Figure 6 shows 〈�E〉 for simulations carried out with dif-
ferent D and W at fixed packing fractions. Figure 6(b) shows
the data when plotted against φ/φ0 − 1. The collapse suggests
that one single parameter (φ0) suffices to describe the stick-
slip response of the granular system constrained at constant
volume when an intruder attached to a spring is dragged at
low speed. Again, these data also collapse with the data from
the experiments and simulations shown in Figs. 1(c) and 3 (see
black symbols).

Jammed

Stick-slip

Open
Channel

Stick-slip

FIG. 5. φ0 as a function of (W − D − 2kd )/W , with k = 0.62,
obtained by linear regression. The black dotted line corresponds
to Eq. (2) with φmax = 0.79, and the horizontal gray dashed line
corresponds to φmax.

Figure 5 suggests a nontrivial prediction regarding the limit
of infinitely large systems. If W � D, then W ∗ → 1. In this
limit, the value of φ0 tends to 0.79. This means that no force
will be exerted on the intruder for φ < 0.79. As we mentioned
above, when φ � 0.8 we observe a complete jamming of the
system. Therefore, the actual range of packing fractions for
which a stick-slip steady state can be established becomes
very narrow for large systems, possibly vanishing in the large
W limit. Of course, the W ∗ → 1 limit has to be taken with
caution. The time taken to complete a revolution and eventu-
ally reach the steady state diverges with the system size in this
annular geometry.

Conclusions. We have described a dynamical transition
observed when an intruder is dragged through a granular
system confined by a container with fixed volume. In our
experiments and simulations, the granular material reaches
a steady state after the intruder passes through a few rev-
olutions. Due to the friction with the substrate, particles
pushed aside tend to rest outside of the intruder’s path in

(b)(a)

FIG. 6. (a) 〈�E〉 as a function of φ for a range of configurations
of the system that we tested with various D and W . (b) 〈�E〉 as a
function of φ/φ0 − 1 for the data in panel (a). The actual value of φ0

in each case has been estimated by using Eq. (2). The black symbols
correspond to the experimental data from Fig. 1(c).
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subsequent passes. At low packing fractions, the intruder
is thus able to open a channel so that in the steady state
no resistance is supplied by the medium. Above a criti-
cal packing fraction φ0, a sharp transition occurs and the
channel cannot be fully opened, which leads to a finite
mean reaction force that increases with the global packing
fraction φ.

We have found that φ0 and 〈�E〉(φ) are universal in the
sense that over a broad parameter range they are independent
of the details of the particle-particle interaction, the particle-
substrate interaction, and the particle size distribution. While
they are very sensitive to the system size and the intruder
size, 〈�E〉(φ) can be collapsed onto a single master curve if
plotted against φ/φ0 − 1. We have proposed a simple model
for the dependence of φ0 on W and D that is in excellent
agreement with the data. While we have studied this model
with one particular driving spring constant, the collapse of
statistics related to stick-slip is picted to be robust, even
though the time and energy scales of stick-slip will change
when the driving spring changes. Future works may explore
whether the collapse we explain is robust in other contexts,

for example, when the spring is infinitely stiff and the intruder
is driven at a constant velocity. Further work is also needed
in the direction of analysis of force networks, in particular
in light of friction independence of our results for the energy
drop (for sufficiently large friction). Some preliminary work
in this direction can be found in Refs. [29,30]. We lastly note
that our results may have implications for 3D systems, as
demonstrated in recent experiments [31] where the drag force
on a submerged intruder reaches a steady state after the in-
truder retraces its path in a 3D granular material. Our findings
may also find particular utility in the context of testing various
novel theoretical approaches for dense granular media such as
nonlocal rheology models [32,33].
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