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Summary

� The extent of intraspecific variation in trait–environment relationships is an open question

with limited empirical support in crops. In organic agriculture, with high environmental

heterogeneity, this knowledge could guide breeding programs to optimize crop attributes.

We propose a three-dimensional framework involving crop performance, crop traits, and

environmental axes to uncover the multidimensionality of trait–environment relationships

within a crop.
� We modeled instantaneous photosynthesis (Asat) and water-use efficiency (WUE) as func-

tions of four phenotypic traits, three soil variables, five carrot (Daucus carota) varieties, and

their interactions in a national participatory plant breeding program involving a suite of farms

across Canada. We used these interactions to describe the resulting 12 trait–environment rela-

tionships across varieties.
� We found one significant trait–environment relationship for Asat (taproot tissue density–soil
phosphorus), which was consistent across varieties. For WUE, we found that three relation-

ships (petiole diameter–soil nitrogen, petiole diameter–soil phosphorus, and leaf area–soil
phosphorus) varied significantly across varieties. As a result, WUE was maximized by different

combinations of trait values and soil conditions depending on the variety.
� Our three-dimensional framework supports the identification of functional traits behind the

differential responses of crop varieties to environmental variation and thus guides breeding

programs to optimize crop attributes from an eco-evolutionary perspective.

Introduction

Functional phenotypic traits mediate the response of plants to
environmental conditions, providing a mechanistic link between
environmental change and community dynamics (Lavorel &
Garnier, 2002; Violle et al., 2007). Understanding this link is
crucial for predicting future plant responses to global change
(Thuiller et al., 2008; Scheiter et al., 2013). In theory, traits
relate to environmental gradients via fundamental eco-
physiological principles that lead to general trait–environment
relationships (Westoby et al., 2002; Garnier et al., 2016). How-
ever, empirical evidence shows differences in trait–environment
relationships across communities and regions (Westoby et al.,
2002; Garnier et al., 2016; Funk et al., 2017) and also across
species found in a region (Kichenin et al., 2013; Lajoie & Vel-
lend, 2015; Dong et al., 2020; Buchanan et al., 2021; Sarker et
al., 2021). This leads to the question of whether trait–

environment relationships also vary between genotypes of the
same species, for which specific empirical tests are lacking
(Westerband et al., 2021). Well-described intraspecific trait–en-
vironment relationships would improve our capacity to make
accurate predictions about the performance and fate of particular
target species, such as endangered species, weeds, and impor-
tantly, crops. For crops in particular, it will help guide selection
methods and breeding programs to optimize crop attributes from
an eco-evolutionary perspective.

Most research on trait–environment relationships use direct
regressions of trait values against environmental variables, i.e.
trait–environment regressions. This approach assumes, among
other things, that traits are directly (causally) affected by environ-
mental conditions. However, trait–environment relationships
result from selection – whether by natural or human-facilitated
processes – that is, when environmental conditions drive a speci-
fic trait expression over another depending on the fitness of such
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trait values (Shipley, 2010; Laughlin & Messier, 2015; Shipley et
al., 2016; Vellend, 2016). In a three-dimensional space,
environmentally-dependent selection emerges as the slope of
trait–fitness relationships changing along an environmental gradi-
ent, i.e. a trait–environment interaction effect on fitness (Fig. 1).
Following McGill et al. (2006), ‘performance currencies’ substi-
tute fitness, as eco-physiological measures related to the acquisi-
tion and allocation of energy and nutrients, which are thought to
be closely connected to the physical environment. More specifi-
cally, a performance currency (hereafter ‘performance’ for sim-
plicity) affects fitness via vital rates (growth, survival, fecundity),
in a trait–performance–vital rate–fitness causal chain (Geber &
Griffen, 2003).

Studies on crop response to environmental conditions are
ubiquitous in the plant breeding literature and often seek to iden-
tify genotype × environment interactions (Allard & Bradshaw,
1964; e.g. Seljåsen et al., 2012; Ulrich et al., 2015, in carrot) or
apply Hildebrand & Russell’s (1996) adaptability analysis frame-
work to identify crop varieties with either broad or specific envi-
ronmental adaptation (e.g. Lyon et al., 2020, in carrot and other
crops). In contrast, studies on crop trait–environment relation-
ships are rare and have been based on trait–environment regres-
sions (e.g. Gagliardi et al., 2015; Martin et al., 2018). This
reflects the current paradigm of trait-based agroecology, which

conceives of phenotypic traits as directly determined by local
environmental conditions, while assuming that observed patterns
would be the result of selection and adaptation (Garnier et al.,
2016; Damour et al., 2018; Martin & Isaac, 2018). This
approach has been valuable in describing patterns of crop
intraspecific trait variation, but application of the three-
dimensional framework described earlier would extend the trait-
based agroecological approach to uncover performance-based
selective processes. In particular, it is important to evaluate
whether crop trait–environment relationships are the result of
general, species-wide phenotypic plasticity or whether different
crop genotypes display different trait–environment relationships
when predicting performance. This information would be vital
to predict the adaptability of different crop genotypes not only
under transitions to organic agricultural systems but also in the
face of environmental change.

Here we focus on how trait–environment relationships differ
among crop varieties using a participatory network of Canadian
organic farms and Daucus carota subsp. sativus (cultivated carrot;
hereafter carrot) as a model species. Participatory plant breeding
(PPB) is a crop development strategy that facilitates farmer-
involved selection in environments that diverge from those tar-
geted by conventional plant breeding (Atlin et al., 2001). PPB
was first developed to serve farmers cultivating marginal land

Fig. 1 Example of the three-dimensional approach to trait–environment relationships. Generically, plant performance (Y) is modeled as a function of the
interaction between trait (T) and environmental (E) axes. Our model (orange equation above three-dimensional plot; see details in the Materials and Meth-
ods section) also includes quadratic terms for both T and E, set to zero here for simplicity. Parameters β1 and β5 control the relationship between T and E,
modeled as an environment-dependent effect of T on Y (denoted φ). In this example, plant growth is a function of leaf mass per area (LMA) and soil fertility
– we expect that high soil fertility selects for acquisitive, low-LMA phenotypes. Using a simple parametrization (gray box), the predicted response surface
(left plot) is an asymmetric saddle with a peak at low LMA and high soil fertility. This results in a negative LMA–soil fertility relationship (right plot) that is
shifted downwards with respect to zero (dotted line) due to the overall negative effect of LMA on growth.
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(Ceccarelli, 1994), but more recently, PPB has been adapted to
serve organic, diversified, and lower-input farms in the Global
North (e.g. Mazourek et al., 2009; Shelton & Tracy, 2015).
Conventional agriculture relies on high levels of synthetic inputs
and leads to landscape simplification and homogenization
(Tscharntke et al., 2005). Conversely, the use of organic amend-
ments often leads to higher spatial and temporal variability in soil
nutrients, underscoring high environmental heterogeneity in
these agroecosystems (Isaac et al., 2021). Therefore, breeding
goals in PPB are two-fold: generate specific adaptations to stress-
ful, but predictable growing conditions (such as poor soil condi-
tions), and promote performance stability in the face of temporal
environmental variability (Ceccarelli, 1994; Dawson et al.,
2008).

In general, yield in crop species with vegetative storage, such as
carrot, is not usually limited by sink demand, since storage cells
in existing organs can be continuously formed, adjusting sink
capacity to current photosynthate supply (Engels et al., 2012).
Improving photosynthetic capacity is therefore a major goal in
breeding programs of source-limited crops (Flood et al., 2011).
Carrots prefer light-textured soils with low moisture retention,
thus requiring frequent irrigation to achieve high yields and good
market quality (Rubatzky et al., 1999). Therefore, improving
water-use efficiency (WUE) in irrigation-requiring crops is
important given increasing freshwater demand (De Pascale et al.,
2011). In addition, breeding for plasticity in WUE could lead to
better survival and higher average yields in the face of increased
climate variability and climate extremes (Nicotra et al., 2010).
The three-dimensional functional trait analysis is therefore partic-
ularly relevant for PPB and carrots because it provides a mecha-
nistic understanding of crop performance variation across a range
of environmental conditions.

We evaluated the effect of trait–soil interactions on two mea-
sures of plant performance in carrot: instantaneous photosynthe-
sis (Asat) and instantaneous photosynthetic WUE (the ratio
between Asat and transpiration). We modeled Asat and WUE as a
function of four morphological traits and three soil properties.
Traits were leaf area (LA), leaf mass per area (LMA), petiole
diameter (PD), and taproot tissue density (TTD). While these
traits are not commonly measured in carrot breeding studies, they
are relatively easy to measure and have been identified as drivers
of plant performance in the broader ecological literature. Leaf
mass per area represents a trade-off between leaf longevity and
resource conservation, maximized at high LMA, and potential
growth rate, maximized by low LMA (Westoby et al., 2002;
Poorter et al., 2009). Similarly, root tissue density represents a
belowground trade-off between resource conservation and poten-
tial growth (Weemstra et al., 2016), while TTD is specific for
taproots (Fort et al., 2015). Taproot tissue density may also relate
to carrot texture, important for sensory quality (Paoletti et al.,
2012). Leaf area and petiole diameter are size traits that are allo-
metrically related (Price & Enquist, 2007). Leaf area represents,
at least in part, a trade-off between light interception efficiency
via lower self-shading and heat dissipation via gas exchange
(Givnish, 1987; Westoby et al., 2002). In crops, leaf size has been
identified as an important trait improving competitive ability

against weeds, particularly at early growth phases (Andrew et al.,
2015). Petioles provide mechanical and hydraulic support to the
lamina (Niinemets et al., 2007; Poorter & Rozendaal, 2008),
and PD partially captures this functionality (Anten et al., 2010).
For carrot in particular, petioles are agronomically important
given their role in mechanical harvesting of roots (Rogers &
Stevenson, 2006; Turner et al., 2018). In general, we expect that
plant acquisitive trait expression (lower LMA and TTD, and
higher LA and PD) would be associated with higher Asat and
lower WUE. However, importantly, our three-dimensional
framework underscores that trait–performance relationships are
not fixed but environment-dependent, meaning that trait–perfor-
mance relationships may change along a sufficiently long envi-
ronmental gradient (as in Fig. 1; see also Laughlin et al., 2018).

Soil nitrogen (N), phosphorus (P), and carbon (C) were
selected as soil properties particularly indicative of soil fertility in
organic agriculture, given that organic amendments are a primary
source of nutrients for crops (Drinkwater & Snapp, 2007). Fur-
ther, total soil C (and soil organic matter) has direct and indirect
effects on soil structure, soil moisture, and plant-available nutri-
ents (Chen et al., 2018). Such beneficial soil conditions can
enhance photosynthesis, and, to a lesser degree, transpiration,
thus also increasing WUE (Raven et al., 2004). On this basis, we
generally expect favorable soil conditions for plant growth (high
N, P, and C) to select for acquisitive plant strategies characterized
by low LMA and TTD, and high LA and PD when performance
is measured as Asat (see prediction example in Fig. 1). We also
expect steeper trait–environment relationships when performance
is measured as WUE compared to Asat, since beneficial soil condi-
tions affect photosynthesis more strongly than transpiration.

Materials and Methods

Experimental design

Cultivated carrot, a diploid (2n = 18) outcrossing biennial crop,
was domesticated from wild carrot D. carota subsp. carota, or
Queen Anne’s Lace (Ellison, 2019). Domesticated carrot is classi-
fied phenotypically and genotypically into Eastern and Western
types (Grzebelus et al., 2014). Within the Western cultivar type,
market classes are defined on the basis of root shape and culinary
use (Luby et al., 2016). We focused on Western cultivars of the
Nantes market class based on farmer-participant preference;
Nantes cultivars are characterized by blunt tips, minimal taper-
ing, and good storage ability.

Nine farmers were recruited from the Canadian Organic
Vegetable Improvement (CANOVI) project, an established net-
work of farmers across Canada (see map of participating farms in
Supporting Information Fig. S1). CANOVI project farmers have
been trialing Nantes-type carrot varieties as part of a national
PPB program facilitated by the University of British Columbia
and the Bauta Family Initiative on Canadian Seed Security. The
nine selected farm sites spanned an environmental gradient across
Canada (Table S1). Across the nine farms, average monthly tem-
peratures for the June–August growth period ranged from 16.6
to 20.5°C, while average total precipitation ranged from 97.2 to
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237.9 mm across the farms (Table S1). Seasonal growing degree
days (GDD) ranged from 1425 to 2329.5 GDD above 5°C
(Table S1). Uniform management instructions were provided to
all farms, specifying the use of organic pest and disease control
measures, and allowing flame weeding.

At each farm, in 2019, five Nantes-type carrot varieties were
planted, each one in a single plot measuring a minimum of 2 m
with no < 25 cm between-row spacing. These comprised two
hybrid varieties considered industry-wide standard varieties
(‘Bolero’ and ‘Naval’) from different continental European
breeding programs; two open pollinated varieties bred by a
farmer-breeder in the Pacific Northwest (‘Rumba’ and ‘Nash’s
Nantes’); and one open pollinated variety bred in Switzerland
and introduced to the North American market for its perfor-
mance on Northern Atlantic farms (‘Dolciva’). Both hybrid vari-
eties were bred under conventional field conditions, while all
three open pollinated varieties were bred in organic conditions;
variety introduction dates, breeders, and seed sources are detailed
in Table S2. As in other crops, carrot hybrid varieties are gener-
ated by crossing two inbred parent lines, creating varieties with
high observed heterozygosity (Maksylewicz & Baranski, 2013).
Within each plot, we randomly selected three subplots each mea-
suring 30 cm where soil measurements were made (see later).
Within each subplot we randomly selected three plants on which
trait and performance measurement were made. This resulted in
405 carrot plants sampled in a nested design with the following
structure: nine farms, five plots within each farm (i.e. one for
each variety), three subplots within each plot, and three individ-
ual plants within each subplot. See further details on planting
procedures in Notes S1.

Plant measurements

Plants were measured between 50 and 79 d after sowing, which
coincides with the second phenological stage of carrot ontogeny
(out of a typical 100–120 d harvest), an identified growth cycle
stage to standardize sampling (Gonçalves et al., 2017). This date
window corresponds with the published literature on measure-
ments of gas exchange in carrot field trials (Kyei-Boahen et al.,
2003). Leaf physiological traits were measured using a portable
gas analyzer and associated broadleaf chamber (Li-Cor 6400 XT;
Li-Cor Biosciences, Lincoln, NE, USA). All measurements of
light-saturated photosynthesis (Asat, in μmol CO2 m−2 s−1),
stomatal conductance (gs, in mmol m−2 s−1), and transpiration
rate (TR, in mmol m−2 s−1) were taken on the youngest fully
expanded intact leaf of each selected plant (i.e. one leaf per plant).
Measurements were made between 07:00 h and 11:00 h at each
farm site to avoid midday stomatal closure (Pérez-Harguindeguy
et al., 2013) with the following leaf chamber conditions: leaf
temperature 20°C, irradiance 1200 μmol m−2 s−1, reference
CO2 concentration 400 ppm, vapour pressure deficit < 2 kPa,
and relative humidity 50–80%. Measurements were recorded
after stabilization of flux values after clamping onto new leaves
(approximately 60 s), and three measurements were taken for
each leaf at 20 s intervals. An average of the three values was used
in subsequent analysis to determine Asat, gs, and TR, which were

calculated on a LA basis. Instantaneous photosynthetic WUE was
calculated as the ratio of Asat to TR (Seibt et al., 2008).

We measured leaf morphological traits on the same leaves as
those used for Li-Cor measurements. Immediately following gas
exchange measurements, each leaf was removed and pho-
tographed separately. Diameter of all petioles (PD, in millime-
ters) at the top of the taproot was measured using electronic
calipers. These leaves were placed into paper bags and transported
to the laboratory for analysis. Leaf area (in cm2) was determined
using image analysis in IMAGEJ v.1.45 software (Wayne Rasband,
National Institute of Health, Bethesda, MD, USA). Leaves were
shipped to the laboratory (University of Toronto Scarborough,
Toronto, Canada), dried in the oven at 65°C for 48 h and then
immediately weighed to obtain leaf dry mass (in grams), from
which LMA (in g cm−1) was calculated.

Belowground morphological traits of each plant were mea-
sured on the same day of collection to avoid dehydration and
shrinkage. Taproot length (RL, in centimeters) was measured as
the distance from the crown to the tip of the storage root, defined
here as having a diameter > 1 mm (McCormack et al., 2015;
Turner et al., 2018). Taproot diameter (RD, in millimeters) was
measured at the widest point of the taproot using electronic
calipers. Taproots were placed in paper bags and transported to
the laboratory for analysis. During transport, taproots were
refrigerated to avoid moisture loss. Once in the laboratory, tap-
roots were weighed to determine fresh mass (in grams) and dried
to determine dry mass. We then calculated TTD as dry mass/vol-
ume (in g cm−3), where volume was estimated using length and
diameter assuming a truncated-cone shape, i.e. volume = 1/
3 × π × RL × (RD2 + r2 + RD × r), where r = 0.05 cm,
which is the threshold radius we used to measure RL. Compared
to a cylindrical shape approximation, the truncated-cone approxi-
mation provided estimations of TTD with better statistical prop-
erties, namely lower skewness and kurtosis and no clear presence
of outliers. Therefore, we conducted our analyses using TTD
based on the truncated-cone approximation, although we note
that results were virtually unaffected by this decision.

Soil measurements

After gas exchange measurements were completed at each site,
soil samples were taken using a soil corer (111 cm3) adjacent to
the taproot. Three soil cores were collected per variety per farm.
Soil samples were placed in sealed plastic bags and transported to
a laboratory at the University of Toronto Scarborough for analy-
sis. To measure total soil N (SN, in mg g−1) and C (SC, in
mg g−1) concentrations using a Leco CN628 (Leco Corp., St
Joseph, MI, USA), the oven-dried soil samples were ground using
a Retsch Ball Mill (Retsch, Düsseldorf, Germany) and approxi-
mately 0.20 g of sample was weighed and placed into foil cap-
sules. Samples were then analyzed on the Leco for soil N and soil
C. To measure inorganic phosphorus levels (SP, in mg kg−1), a
subsample of 2 g of sieved and air-dried soil was placed in an
Erlenmeyer flask and extracted with 20 ml of Bray 1. Samples
were filtered using P5 filter paper into glass vials. Filtered samples
were analyzed using a Lachat QuikChem 8500 Series 2 Flow
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Injection Analyzer (Lachat Instruments, Loveland, CO, USA) to
measure inorganic P levels for each soil sample.

Data analysis

Selection of traits and soil variables Given the logistics of our
field campaign, five physiological measurements were not possi-
ble within the optimal measurement timeframe. We therefore
excluded these five plants from our dataset (representing c. 1% of
the total sample size). Before analysis, traits and soil variables
were transformed to improve normality and reduce the weight of
extreme values, then standardized to zero mean and unit variance
(see transformations in Tables S3, S4). After transformation and
standardization, we identified and removed two outliers (ex-
tremely high LA values), leading to a total of 398 sampling units
(plants) for subsequent analyses. We used pairwise correlations to
select relatively independent subsets of traits and soil variables
and so avoid collinearity among predictors. We considered that
correlations above 0.6 may be problematic (see Dormann et al.,
2013). All trait correlations were below 0.6 (Table S3), while soil
N and C showed a correlation higher than 0.6 (Table S4).
Because of the ecological importance of both soil N and C, we fit
two alternative models (see later) featuring either of these vari-
ables and then compared the models in terms of Akaike informa-
tion criterion (AIC).

Approach rationale We sought to evaluate whether trait–envi-
ronment relationships differed between carrot varieties based
on the three-dimensional approach. We used linear mixed
models (LMMs) assuming Gaussian distribution of the
response variable to model sqrt(Asat) and log(WUE) as a func-
tion of the selected traits and soil variables; we used separate
models for sqrt(Asat) and log(WUE). We transformed Asat and
WUE to improve their normality. Before describing full
multi-trait and multi-environment models, we outline our
analysis for one trait (T) and one environmental variable (E),
both standardized, influencing a generic performance variable
Y. For simplicity, we first imagine that Y is measured on indi-
vidual i in subplot j and we will ignore variety differences as
well as plot and farm effects. The fixed-effect part of this sim-
plified model would be

Y ij ¼ β0 þ β1T i þ β2T
2
i þ β3E j þ β4E

2
j þ β5T iE j Eqn 1(a)

where β0 is the y-intercept of the fitted surface (Fig. S2). Since
trait T is centered at zero, β1 measures the overall direction (posi-
tive or negative) and strength of trait Ti value’s effect on plant
performance (Aiken et al., 1991; Schielzeth, 2010), i.e. the mean
slope of the trait–performance relationship (Rolhauser et al.,
2021). Thus, β2 estimates the mean curvature of the trait–perfor-
mance relationship. Negative values of β2 indicate ‘n’ shaped (op-
timum or unimodal) relationships, while positive values indicate
‘u’ shaped (bimodal) relationships. Removing environmental
effects from Eqn 1(a) would give the classic quadratic model
developed by Lande & Arnold (1983) to evaluate natural

selection modes. Similarly, β3 and β4 reflect the mean slope and
curvature of the environment–performance relationship (see Fig.
S2). While doing this, we assess trait–environment relationships
by estimating how the effect of T on Y depends on E. Rearrang-
ing Eqn 1(a) to gather terms for the mean (linear) effect of trait
Ti on Yij yields:

Y ij ¼ β0 þ T i β1 þ β5E j

� �þ β2T
2
i þ β3E j þ β4E

2
j Eqn 1(b)

Then, the environment–dependent mean slope of trait–perfor-
mance relationship is given by

φj ¼ β1 þ β5E j Eqn 2

(Fig. 1; Rolhauser et al., 2021). Thus, β5 measures the overall
direction and strength of the trait–environment relationship (cf.
Laughlin et al., 2018 where quadratic effects are omitted). Fur-
thermore, β1 works as a y-intercept for this relationship determin-
ing the ‘height’ of the line (Fig. 1).

Multi-trait and multi-environment models We extended the
earlier rationale to models including multiple traits and soil vari-
ables measured for several carrot varieties according to our hierar-
chical sampling design. We fitted initial multi-trait and multi-
environment models that were then simplified through backward
selection of the fixed-effect part (i.e. no selection was applied to
the random part). Since soil C and N were highly correlated, we
first fitted two initial models for each response variable, one includ-
ing soil N and one including soil C. Specifically, for both response
variables, the initial, full models included four traits (LA, LMA,
PD, and TTD), two soil variables (P and either N or C), and car-
rot variety (a categorical variable with five levels) as fixed effects.
We also included as fixed effects all three-way trait × soil × variety
interactions (and all the associated nested two-way interactions) as
well as quadratic terms for all traits and soil variables. We included
temperature and precipitation (measured at farm level) as fixed
effect continuous covariates. We included farm, plot, and subplot
as random-effect nested intercepts (subplots nested within plots
and these within farms). As a result, full models were built by 83
fixed effects and three random effects, which were estimated from
the 398 observations. We fitted LMMs using the R-package LME4
(Bates et al., 2015). We then performed backward selection on
these initial models using the step function in the R-package
LMERTEST (Kuznetsova et al., 2017). This procedure eliminates the
least significant term (P-value > 0.05) following the principle of
marginality; that is, lower order interactions that are contained in
significant higher order interactions are kept in the model indepen-
dently of their significance (Kuznetsova et al., 2015). The proce-
dure stops when there are no nonsignificant terms to remove. We
then compared the final models featuring either soil N or C based
on AIC and selected the model with the smallest AIC. Diagnostic
plots of the best models showed that residuals where fairly normal
and that variance was reasonably homogenous across the range of
fitted values (Figs S3, S4).

We calculated marginal and conditional R2 (the proportion of
the total variance explained by fixed effects and by both fixed and
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random effects, respectively) for the best models following the
delta method (Nakagawa et al., 2017). We implemented R2 cal-
culations using the r.squaredGLMM function in the R-package
MUMIN (Barton, 2019). We evaluated the significance of model
terms using type-II analysis-of-variance tables based on the F-
statistic. Type-II analysis-of-variance follows the principle of
marginality, where each term is tested after all others in the same
order or hierarchy, but ignoring the term’s higher-order relatives
(Fox & Weisberg, 2019). We calculated F-statistics following
Kenward–Roger method for the estimation of denominator
degrees of freedom using the ANOVA function in the R-package
LMERTEST (Kuznetsova et al., 2017).

We also evaluated whether varieties differed in terms of the
traits included in the Asat and WUE models (LMA, LA, PD,
TTD). This comparison will be useful to interpret the effects of
varieties on Asat and WUE; in particular, whether differences in
physiological responses across varieties can be attributed to differ-
ences in trait variation. To this end, we used LMMs to model
traits (one model for each trait) as a function of variety, as a
fixed-effect factor, and farm, plot, and subplot as random effects
nested as in Asat and WUE models.

Results

Photosynthetic rate

When explaining sqrt(Asat), backward selection from both soil C
and soil N full models converged to a single best-model solution.
This reduced model (Tables 1, S5) used 15 parameters (12 fixed
and three random effects) to explain sqrt(Asat) across 398 observa-
tions. The effect of farm (i.e. the estimated variance across farms)
was larger than the effect of plot, and this was larger than the
effect of subplot (Table S5). The marginal R2 of this model was
0.130 with a conditional R2 of 0.694.

There was only one significant two-way interaction between a
trait and a soil variable (TTD × soil P) and one significant two-
way interaction with variety (soil P × Variety) (Table 1). The
soil P × Variety interaction means that the slope of the

relationship between Asat and soil P changes across varieties.
Specifically, there was a gradient of variation from positive soil
P–Asat relationships (most prominently for H1) to negative rela-
tionships (most prominently for OP3); the slope for H1 was sig-
nificantly different from those for OP2 and OP3 (Fig. S5). The
TTD × soil P interaction was negative, with standardized slope
of −0.105 (Table S5). The resulting response surface was an
asymmetrical saddle where Asat is maximized by low-TTD plants
at high soil P (Fig. 2, left). The negative TTD × soil P interac-
tion means that high-TTD plants were favored in terms of maxi-
mized Asat in soils with low P concentrations, whereas low-TTD
plants were favored at high P concentrations (Fig. 2, right).

Water-use efficiency

The best model derived from the full model including soil N out-
performed the one derived from the full model including soil C
(AIC values were 231.6 and 238.0, respectively). Therefore, we
will hereafter focus on the results of the former. This reduced
model (Tables 2, S6) used 45 parameters (42 fixed and three ran-
dom effects) to explain log(WUE) across 398 observations. The
effect of farm was larger than the effect of plot, and this was larger
than the effect of subplot (Table S6). The marginal R2 of this
model was 0.134 with a conditional R2 of 0.918. There were
three significant three-way interactions, all of them involving size
traits LA and PD (LA × soil P × Variety, PD × soil P × Vari-
ety, PD × soil N × Variety), and two significant two-way inter-
actions which are nested within these three-way interactions
(PD × Variety and soil P × Variety) (Table 2). In particular, the
soil P × Variety interaction means that the slope of the relation-
ship between WUE and soil P changed across varieties. Specifi-
cally, the slope for H1 was significantly different from those for
H2, OP2 and OP3 (Fig. S7). Importantly, the three-way interac-
tions mean that trait–environment relationships were not consis-
tent across varieties.

The PD × soil N × Variety was the strongest three-way inter-
action in terms of significance (Table 2). The slope of PD–soil N
relationships (measured by the corresponding β5 parameter) dif-
fered across varieties and ranged between −0.144 (variety H1) to
0.211 (variety OP2) (Fig. 3; see also Table S6). Hybrid varieties
(H1 and H2) showed negative PD–soil N relationships, whereas
open-pollinated varieties showed both positive (OP1 and OP2)
and negative (OP3) relationships (Fig. 3). That is, wider petioles
conferred higher WUE at low N for hybrid varieties (mostly
notably for variety H1) but low WUE for two of three OP vari-
eties (mostly notably for OP2). At high N, conversely, wider peti-
oles conferred higher WUE for OP varieties OP1 and OP2 and
lower WUE for both hybrid varieties.

Similarly, the PD × soil P × Variety interaction means that
the slope of PD–soil P relationships differed across varieties (Fig.
4). We found the largest differences between H1 and OP2, show-
ing positive and negative PD–soil P relationships, respectively
(Fig. 4f). That is, wider petioles conferred higher WUE at low P
for variety OP2, but low WUE for H1. At high P, wider petioles
conferred lower WUE for OP2, while higher WUE for H1. The
slope of H2 and OP1 were also significantly different from that

Table 1 Type-II analysis-of-variance table (following the principle of
marginality) for the best linear mixed model (LMM) explaining instanta-
neous light-saturated photosynthesis (Asat, sqrt transformed) of Daucus
carota subsp. sativus (carrot) in nine farms across Canada.

Model term
Sum
Sq

Mean
Sq

Num
df

Den
df F Value P Value

Taproot tissue
density (TTD)

0.6142 0.6142 1 349.8 3.145 0.0770

Soil phosphorus (P) 0.1490 0.1490 1 65.6 0.763 0.3856
Variety 1.3198 0.3300 4 28.1 1.689 0.1804
TTD × soil P 1.4889 1.4889 1 370.5 7.623 0.0061
Soil P × Variety 3.3167 0.8292 4 38.8 4.245 0.0060

The F-statistics for model factors and variables are calculated based on
Kenward–Roger degrees of freedom. Significant terms (P < 0.05) are
shown in bold.
TTD and Soil P were log transformed prior to analysis.
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of variety H1, although these PD–soil P relationships were rela-
tively shallow (Fig. 4f).

Fewer patterns were evident when looking at the LA × soil
P × Variety interactions (Fig. 5), but varieties still differed greatly
in their trait responses. Varieties OP2 and H1 showed the
strongest positive LA–soil P relationships, whereas OP1 showed a
clearly negative relationship; varieties H2 and OP3 showed shal-
lower responses (Fig. 5). It is noteworthy that variety H1 and vari-
ety OP1 showed significantly different LA–soil P relationships

(Fig. 5f). As a result of these interactions, larger leaves conferred
higher WUE at low P for variety OP1, but low WUE for varieties
H1 and OP2. Conversely, larger leaves conferred higher WUE at
high P for varieties H1 and OP2, while low WUE for OP1.

Overall, the most salient differences between varieties were
between H1 and OP2 in two trait–environment relationships, PD–
soil N (the most important factor affecting WUE) and PD–soil P
(Figs 3f, 4f). Hybrid H1 showed an overall positive WUE response
to soil P (Fig. S7) and predicted WUE maxima at both high soil P
and low soil N mediated by high PD (Figs 3a, 4a, respectively). In
contrast, open-pollinated OP2 showed an overall negative WUE
response to soil P (Fig. S7) and predicted WUE maxima at both
low soil P and high soil N mediated by high PD (Figs 3d, 4d,
respectively). Altogether, these results indicate that the maximiza-
tion of WUE by these varieties was favored by contrasting soil con-
ditions, high P and low N for H1 and low P and high N for OP2.

Discussion

Multiple dimensionalities of performance, trait, and
environment interactions

Plant traits, soil variables, variety genotypes, and their interac-
tions explained around 13% of the variation in light-saturated
photosynthesis (Asat) and WUE. Random effects explained con-
siderably more variation, 56% for Asat and 78% for WUE,
respectively for Asat and WUE. These results illustrate that indi-
vidually measured traits can provide at least a partial explanation
of these complex physiological responses, even within a single
species. These trait–environment responses can be interpreted as
the result of phenotypic plasticity within genotypes. Western
open pollinated carrot varieties showed considerable within-
variety genetic variation despite their relative phenotypic stability
(Stelmach et al., 2021), so further research is warranted on the
relative contributions of phenotypic plasticity and genetic effects
on within-species trait–environment relationships.

Fig. 2 Instantaneous light-saturated photosynthesis (Asat, sqrt transformed) of Daucus carota subsp. sativus (carrot) in nine farms across Canada as a func-
tion of the interaction between taproot tissue density (TTD, log transformed) and soil phosphorus (P) (log transformed) according to the model in Table 1.
Both log(TTD) and log(soil P) were standardized to zero mean and unit variance. Left panel shows the response surface. Right panel shows the resulting
trait–environment relationship, i.e. how trait effects on sqrt(Asat) change with log(soil P). According to Eqn 2, the main effect of TTD and the TTD × soil P
interaction in Supporting Information Table S5 give the y-intercept and the slope of this trait–environment relationship, respectively. The original range of
soil P concentrations is shown within the panel. See Fig. S6 for surface plots with overlaid observations.

Table 2 Type-II analysis-of-variance table (following the principle of
marginality) for the best linear mixed model (LMM) explaining instanta-
neous water-use efficiency (WUE, log transformed) of Daucus carota
subsp. sativus (carrot) in nine farms across Canada.

Model term
Sum
Sq

Mean
Sq

Num
df

Den
df F value P value

Leaf area (LA) 0.005 0.005 1 256.0 0.086 0.7696
Petiole diameter (PD) 0.002 0.002 1 347.2 0.026 0.8709
Soil phosphorus (P) 0.074 0.074 1 104.9 1.258 0.2646
Soil nitrogen (N) 0.019 0.019 1 96.5 0.318 0.5739
Variety 0.128 0.032 4 17.6 0.547 0.7038
Soil P2 0.283 0.283 1 108.4 4.848 0.0298
Soil N2 0.420 0.420 1 116.8 7.184 0.0084
LA × Soil P 0.029 0.029 1 280.5 0.490 0.4845
PD × Soil P 0.107 0.107 1 349.1 1.826 0.1775
PD × Soil N 0.002 0.002 1 325.4 0.036 0.8493
LA × Variety 0.111 0.028 4 140.3 0.473 0.7559
PD × Variety 0.676 0.169 4 196.0 2.891 0.0235
Soil P × Variety 0.793 0.198 4 48.0 3.389 0.0160
Soil N × Variety 0.343 0.086 4 50.0 1.464 0.2271
LA × Soil P × Variety 0.826 0.207 4 176.2 3.531 0.0085
PD × Soil P × Variety 0.648 0.162 4 256.3 2.771 0.0278
PD × Soil N × Variety 0.966 0.241 4 152.0 4.128 0.0033

The F-statistics are calculated based on Kenward–Roger degrees of free-
dom. Significant terms (P < 0.05) are shown in bold.
LA and PD were square root transformed, while soil P and soil N were log
transformed prior to analysis.
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Many studies have shown negative relationships between
LMA and Asat both across species (e.g. Wright et al., 2004;
Poorter & Bongers, 2006) and within crops (e.g. Martin et al.,
2018). Surprisingly, however, LMA did not appear as an impor-
tant trait for Asat in our study. Instead, TTD appeared to be the
sole relevant morphologic trait explaining carrot Asat. In our
dataset, pairwise trait correlations were mild (Table 1), suggest-
ing that nonsignificant leaf effects on Asat were not an artifact of
collinearity. Rather, these results suggest that carrot Asat was
more linked with belowground carbon storage than with leaf
anatomy. This result is consistent with the domestication his-
tory of carrot, in which increased root size was key to the diver-
gence of the cultivated subspecies from its wild relatives
(Ellison, 2019). In contrast, effects of LMA on WUE appear to

be less clear in the literature with studies showing strong nega-
tive correlations (e.g. Craufurd et al., 1999, peanut) to studies
showing negative but nonsignificant effects, both in crops
(Anyia & Herzog, 2004, cowpea) and across forests species
(Poorter & Bongers, 2006). Our results concur with the latter
as we found no effect of LMA on WUE, which instead
depended on the other leaf traits analyzed here, LA and PD.

Variety–independent trait–environment relationships

We found trait responses that were consistent across varieties,
and these involved interactive effects of TTD on Asat. TTD
was related to Asat through a negative interaction with soil P,
whereas the main effect of TTD on Asat was nonsignificant. In

(a) (b)

(c) (d)

(e) (f)

Fig. 3 Instantaneous water-use efficiency
(WUE, log transformed) of Daucus carota
subsp. sativus (carrot) in nine farms across
Canada as a function of the three-way
interaction between petiole diameter (PD,
sqrt transformed), soil nitrogen (N) (log
transformed), and variety according to the
model in Table 2. Both sqrt(PD) and log(soil
N) were standardized to zero mean and unit
variance. Panels (a) to (e) show response
surfaces for each variety. Panel (f) shows the
resulting trait–environment relationships, i.e.
how sqrt(PD) effects on log(WUE) change
with log(soil N) and across varieties.
According to Eqn 2, the PD × Variety
interactions and the PD × soil N × Variety
interactions in Supporting Information
Table S6 respectively give the y-intercepts
and the slopes for these trait–environment
relationships. Numbers in parentheses are
slope estimates and asterisks indicate
significant differences with respect to variety
H1. The original range of soil N
concentrations is shown within the panel.
See Fig. S8 for surface plots with overlaid
observations.
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general, anatomical structures which protect root functioning
(e.g. stele and cell-wall proportions) result in high tissue den-
sity and constrain plant growth (Wahl & Ryser, 2000). As a
result, denser carrots are usually tougher and more durable. In
our experiment, flimsier (less dense) taproots (lower TTD)
were favored in terms of maximized Asat in high-P soils,
whereas tougher taproots were favored in low-P soils. These
results agree with trait economic theory (Reich, 2014) and pre-
vious empirical work (Kramer-Walter et al., 2016; Butterfield
et al., 2017) in that constrained soil conditions promote
denser, likely more durable root tissues. More generally, the
change in the slope of TTD–Asat from positive to negative as
soil P increases suggests a soil-dependent physiological coordi-
nation between belowground organs and performance

measured aboveground. Interestingly, the absence of a TTD ×
soil P × Variety interaction in our analysis suggests that such
physiological coordination is relatively fixed at the level of
species.

Our correlative approach does not allow us to determine the
causal link between TTD, soil P, and Asat. Presumably, causal
relationships between TTD and performance could be bidirec-
tional. On the one hand, TTD variation may be a result of differ-
ences in photosynthesis, since allocation to roots, and the
determination of TTD, necessarily occurs after photosynthates
are generated in leaves. On the other hand, altered root structures
can modify fibrous root architecture, which may be critical for
photosynthesis via water acquisition and stomatal conductance
(Isaac et al., 2021).

(a) (b)

(c) (d)

(e) (f)

Fig. 4 Instantaneous water-use efficiency
(WUE, log transformed) of Daucus carota
subsp. sativus (carrot) in nine farms across
Canada as a function of the three-way
interaction between petiole diameter (PD,
sqrt transformed), soil phosphorus (P) (log
transformed), and variety according to the
model in Table 2. Both sqrt(PD) and log(soil
P) were standardized to zero mean and unit
variance. Panels (a–e) show response
surfaces for each variety. Panel (f) shows the
resulting trait–environment relationships, i.e.
how sqrt(PD) effects on log(WUE) change
with log(soil P) and across varieties.
According to Eqn 2, the PD × Variety
interactions and the PD × soil P × Variety
interactions in Supporting Information
Table S6 respectively give the y-intercepts
and the slopes for these trait–environment
relationships. Numbers in parentheses are
slope estimates and asterisks indicate
significant differences with respect to variety
H1. The original range of soil P
concentrations is shown within the panel.
See Fig. S9 for surface plots with overlaid
observations.
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The role of crop varieties in trait–environment relationships

The main effect of the factor ‘variety’ was nonsignificant in both
Asat and WUE models, indicating that genetic effects only mani-
fested through interactions with other variables. That is, carrot
varieties did not directly affect Asat or WUE but, instead, modu-
lated the effects of traits, soil variables, and their interactions. We
did not find significant differences (alpha = 0.05) between vari-
eties along any of the traits included in the Asat and WUE models
(LMA, LA, PD, TTD) (Table S7). This means that varieties dis-
play fairly similar ranges of trait variation, and that the differ-
ences across varieties discussed later may not be attributed to
differences in trait variation but to differences in trait effects on

performance. Overall, while trait–environment effects on Asat

were consistent across varieties, our analysis of WUE points out
that trait–environment relationships can vary noticeably within a
single species. The remainder of this section therefore focuses on
WUE responses.

Differences between varieties were most notable between H1
and OP2, which appeared to thrive in contrasting soil conditions.
For H1, wider petioles maximized WUE at low N and high P,
whereas wider petioles maximized WUE at high N and low P for
OP2. These results show that different macronutrient combina-
tions, rather than high vs low overall soil fertility, were associated
with wider petioles for different varieties. In addition, varieties
H1 and OP2 – with deeply curved response surfaces – show

(a) (b)

(c) (d)

(e) (f)

Fig. 5 Instantaneous water-use efficiency
(WUE, log transformed) of Daucus carota
subsp. sativus (carrot) in nine farms across
Canada as a function of the three-way
interaction between leaf area (LA, sqrt
transformed), soil phosphorus (P) (log
transformed), and Variety according to the
model in Table 2. Both sqrt(LA) and log(soil
P) were standardized to zero mean and unit
variance. Panels (a) to (e) show response
surfaces for each variety. Panel (f) shows the
resulting trait–environment relationships, i.e.
how sqrt(LA) effects on log(WUE) change
with log(soil P) and across varieties.
According to Eqn 2, the LA × Variety
interactions and the LA × soil P × Variety
interactions in Supporting Information
Table S6 respectively give the y-intercepts
and the slopes for these trait–environment
relationships. Numbers in parentheses are
slope estimates and asterisks indicate
significant differences with respect to variety
H1. The original range of soil P
concentrations is shown within the panel.
See Fig. S10 for surface plots with overlaid
observations.
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phenotypic variation that facilitates variability in WUE over a soil
nutrient gradient, while varieties with shallow responses (most
notably, H2 and OP3) show more stability in both phenotype
and WUE across environments. While it would be premature to
recommend specific varieties for certain soil conditions based on
a single study, these results demonstrate the capacity of the three-
dimensional framework to identify crop varieties that optimize
performance under specific environmental conditions or show
stability across a range of conditions, both important priorities
for organic and PPB.

Causes of cross-variety differences in our study were not clear,
however. A priori, one major source of variation could be the
type of variety, hybrid vs open-pollinated. In general, hybrids
are thought to be more resilient to environmental stresses via
heterosis or hybrid vigor (Goff, 2011). One might then predict
that hybrid varieties would show shallower responses to envi-
ronmental gradients compared to open-pollinated varieties.
However, our estimates of trait–environment relationship
strength (β5) showed that both H1 and OP2 displayed relatively
strong responses, while other hybrid and OP varieties also dis-
played shallow responses. It appears that differences in heterosis
associated with variety types did not seem to drive variation in
the strength of trait–environment relationships in our experi-
ment. Another important source of variation across our varieties
could be divergent breeding environments, ranging from a sin-
gle Pacific Northwest organic farm to multiple conventionally
managed sites in Continental Europe (Table S2). Unfortu-
nately, we lack precise environmental and agronomic informa-
tion on the breeding and seed production conditions for these
cultivars, and pedigree information is not available for all culti-
vars. Future studies could investigate how breeding environ-
ments affect varieties’ performance responses to trait–
environment interactions. For PPB programs, it would be of
particular importance to compare performance of varieties bred
in organic systems and those bred in conventional systems with
synthetic inputs (Atlin et al., 2001; Murphy et al., 2007; Isaac
et al., 2021).

Implications for breeding programs

Historically, plant breeding programs (mostly focused on high-
input systems) have characterized the interactive effects of crop
genotypes (G) and environmental conditions (E) on phenotypic
traits of agronomic interest (Atlin et al., 2001; Crespo-Herrera &
Ortiz, 2015). That is, phenotypic traits (e.g. yield; foliage charac-
teristics) are considered as response variables affected by the G ×
E interaction. This approach contrasts with ours, which was
inspired by research in other areas interested in the responses of
organisms to environmental variation, namely natural selection
applied to trait-based community ecology (Shipley, 2010; Laugh-
lin & Messier, 2015; Shipley et al., 2016). In our approach, phe-
notypic characteristics that reflect individual performance (e.g.
yield, Asat or WUE) are conceived as a function of other pheno-
typic characteristics ideally related to the eco-physiological inter-
action of individuals with the environment (e.g. leaf size). We
provide a novel way to investigate the performance of varieties

selected in particular environments (e.g. conventional, organic,
regional) on organic farms and identify trait–environment com-
binations that might illuminate mechanisms for any differential
performance. Functional traits important for performance in
organic environments could be further associated with genomic
data, facilitating genomic prediction to select parental material
for breeding projects (Corak, 2021). The three-dimensional
functional trait approach to plant breeding presented in this work
– grounded by farmer input through PPB frameworks and poten-
tially informed by genomic data – presents new opportunities for
eco-evolutionary crop development.

Integrating a PPB framework with this functional trait
approach offers opportunities to increase its practical utility for
farmers seeking varietal improvements, particularly in response
to environmental conditions affected by climate variability
(Isaac & Martin, 2019). To investigate the impact of perfor-
mance variables at the farm scale, future on-farm research could
test associations with performance variables directly targeted by
farmers, such as flavor (possibly related to TTD), harvestability
(possibly related to PD), or stand establishment (possibly
related to LA). In particular, flavor has emerged as a primary
breeding priority for the organic and consumer-direct market-
place (Colley, 2021), so it would be critical to understand asso-
ciations between functional traits and flavor compounds,
perceived flavor attributes, or hedonic liking. For example, firm
carrot texture has been identified as a negative sensory attribute
(Seljåsen et al., 2012), but it is unknown whether perceived
firmness is associated with TTD. If such an association exists,
our results would suggest that selecting for Asat (likely via yield
selection) in low-P soils could result in dense taproots with poor
consumer acceptance. If differences in TTD are not perceptible
as differences in firmness, breeding programs would have more
freedom to select for performance variables without sacrificing
sensory quality.

Implications for basic ecology

Functional traits relate to environmental gradients via funda-
mental eco-physiological principles that should lead to general
trait–environment relationships (Westoby et al., 2002; Garnier
et al., 2016). However, our results showed clear differences in
trait–environment relationships across genotypes (varieties)
within a single species. To our knowledge, this is the first formal
test of intraspecific variation in trait–environment relationships
based on the three-dimensional performance–trait–environ-
ment approach. This evidence adds to that already found across
species and communities (Westoby et al., 2002; Kichenin et al.,
2013; Lajoie & Vellend, 2015; Garnier et al., 2016; Funk et al.,
2017; Dong et al., 2020; Buchanan et al., 2021; Sarker et al.,
2021). Future research could therefore focus on elucidating the
origin of this heterogeneity. For instance, exploring how a given
trait affects another trait’s interaction with the environment,
which constitutes an alternative perspective to the study of
trait–trait–environment interactions focused on how the envi-
ronment modulates trait interactions (Laughlin & Messier,
2015).
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Conclusions

As we expected, we found a negative relationship between soil P
availability and TTD (an economic trait inversely related to plant
acquisitiveness) when performance was measured as Asat. How-
ever, we found a much more complex picture when performance
was measured as instantaneous WUE, with varieties following
our general prediction in some instances (e.g. a positive PD–soil
P for H1) but having an opposite response in others (e.g. a nega-
tive PD–soil N for H1). Some standardized slopes of these
WUE-based trait–soil relationships were more than twice as steep
as the Asat-based, variety-independent TTD–soil P slope,
although some varieties, typically H2 and OP3, showed much
shallower responses. These results underscore the complex multi-
dimensionality of trait–environment relationships and highlight
the need for further research on the relative contributions of phe-
notypic plasticity, genetic effects, and breeding environments on
within-crop trait–environment relationships.

Increased productivity and resilience to climate extremes in the
organic and low-input vegetable farming sector can be achieved
through improvements in regional organic vegetable variety breed-
ing efforts. However, there remains a critical need for breeding
paradigms that explicitly focus on a better understanding of rela-
tionships between crop functional trait expression under various
environmental constraints in order to maximize crop performance
and nutrient acquisition strategies. Here we show novel analytical
tools that explicitly recognize the three-dimensional structure
involving crop performance, crop trait, and environmental axes.
We derived these tools inspired by ideas generated in trait-based
community ecology. We uncover the multidimensionality of trait–
environment relationships within a crop, with key implications for
a more nuanced understanding of the role of breeding on crop per-
formance in heterogeneous environments.
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