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Simple microscopic model for magnetoelectric coupling in type-II antiferromagnetic multiferroics
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We present a simple two-dimensional model in which the lattice degrees of freedom mediate the interactions
between magnetic moments and electric dipoles. This model reproduces basic features, such as a sudden electric
polarization switch-off when a magnetic field is applied and the ubiquitous dimerized distortion patterns and
magnetic ↑↑↓↓ ordering, observed in several multiferroic materials of different composition. The list includes
E-type manganites, RMnO3, nickelates such as YNiO3, and other materials under strain, such as TbMnO3. In
spite of its simplicity, the model presented here captures the essence of the origin of multiferroicity in a large
class of type-II multiferroics.
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I. INTRODUCTION

Multiferroic (MF) materials, those in which electric and
magnetic degrees of freedom are coupled, are a subject of
growing interest, not only for their potential technological
applications but also because of the theoretical interest raised
by the different unusual properties and effects discovered over
the last years [1–5]. Of interest in regard to technological
applications is the possibility of using multiferroicity for low-
energy switching in data storage devices that could lead to
future-generation ultralow-energy electronics. Coupling be-
tween the magnetic and ferroelectric orders could allow for
bit imprinting by an electric rather than magnetic field [6–8].

Among the large family of MF materials known today,
there is a special class, dubbed improper type-II MFs, which
are distinguished by the fact that the magnetic and ferro-
electric orders occur simultaneously through a cooperative
transition (see, e.g., Refs. [9–11]). An important subclass of
these materials is that in which the magnetic order is collinear
at low temperatures and consists of an arrangement of spins
following a period-4 pattern ↑↑↓↓ in one, two, or three direc-
tions of the crystal, which we will refer to as uudd.

A nonexhaustive list of materials in this special class in-
cludes (i) a large group of nickelates, which show first a
metal-insulator transition involving a structural change, fol-
lowed by a paramagnet to type-E antiferromagnetic phase,
with magnetic uudd ordering along the three crystal directions
[12,13]; (ii) manganites, which are believed to exhibit both
ferroelectric and antiferromagnetic transitions and in some
cases, e.g., in HoMnO3, a magnetic uudd ordering (also type
E) simultaneous with a structural change [14–16]; and (iii)
double perovskites such as Yb2CoMnO6 [17], Y2CoMnO6

[18], Lu2MnCoO6 [19,20], Er2CoMnO6 [21], and R2NiMnO6

(R = Pr, Nd, Sm, Gd, Tb, Dy, Ho, Er), where a giant magne-
toelectric effect has been reported [22]. Last but not least, the
iron selenide BaFe2Se3, which becomes a superconductor un-
der pressure [23,24], shows uudd magnetic ordering in 2 × 2

plaquettes along two-leg ladders and is hence best modeled in
one dimension, along the lines of Refs. [25,26].

Motivated by these multiple observations, we present a
minimal model where a simple mechanism stabilizes the ubiq-
uitous lattice dimerization and uudd spin ordering. In our
model, local dipoles arise from spontaneous distortions of
the crystal lattice, which are in turn stabilized by the mag-
netoelastic coupling and affected by the consequent electric
(dipole-dipole) interactions. A related one-dimensional (1D)
model proposal, which reproduces the basic phenomenology
of 1D materials, has been recently analyzed in Refs. [25,26].
Related “exchange-striction” mechanisms to explain MF be-
havior in different classes of materials have been proposed and
studied (see, e.g., Ref. [27]).

In a previous paper [28], two of the authors studied a
magnetoelastic two-dimensional Ising model in which three
main phases were in competition: a ferromagnetic (FM) or
antiferromagnetic (AFM) phase on the undistorted square lat-
tice, a so-called plaquette or checkerboard (CB) phase, and the
stripe (ST) phase. The latter corresponds to an E-type uudd
magnetic ordering along the two principal crystal directions.
The deformation is only stable when it involves a sign reversal
on some of the exchange constants [see Figs. 1(b) and 1(c)].
These same two magnetoelastic phases have been also studied
in the quantum spin-Peierls case [29] in a square lattice. It
was shown in Ref. [28] that for phenomenologically reliable
couplings the CB phase is always lower in energy. Here, we
add two ingredients to this purely magnetoelastic model. On
the one hand, lattice deformations drive the setup of electric
dipole moments via distortions of the charge environment. On
the other hand, we take into account the dipole-dipole interac-
tions resulting from these moments. Interestingly, we observe
that these electric dipolar interactions can alter the relative
values of the ground-state energies of these phases, turning
the ST or uudd phase—the one relevant to the experiments
listed above—into the stable one even within this classical
framework. Magnetoelectric coupling and its relation to lattice
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FIG. 1. Interaction terms and phases. Aside from the paramag-
netic phase, three ordered states are relevant to this study. Magnetic
and elastic degrees of freedom are taken on an equal footing in our
model, but the names chosen refer to spin configurations. (a) Ordered
Ising state (ferromagnetic in the example pictured). For relatively
small values of the magnetoelastic coupling α, this is the preferred
spin configuration. Distortions average zero in this state. (b) Checker-
board phase and (c) stripe phase. If the magnetoelastic coupling
constant α is bigger than αc, it is favorable to deform the lattice.
These deformations imply a dipolar electric moment pi = γiδri, rep-
resented here by pairs of colored circles. (d) Dipolar interactions,
with an energy scale given by λ, do not affect the FM or the param-
agnet, but change the energy balance between the ST and CB phases.
(e) As shown here for an example with α = 1.5αc, and with γi = 1, 2
for odd and even sites, respectively, the ST becomes the ground state
of the system above λc = 2.45.

deformations have been discussed in other contexts, such as
in BiFeO3 [30,31], where magnetic orderings are of a cycloid
type. In such cases, the origin of the polarization in relation to
the magnetic ordering has a different origin from the one we
discuss in this paper (see, e.g., Refs. [32,33]).

We show that the magnetoelectric coupling is quite ef-
fective. Crucially, it leads to a sharp switch-off of the
spontaneous polarization as a function of the applied mag-
netic field, in concurrence with a metamagnetic transition.
These simultaneous transitions have been observed in a wide
variety of materials, such as Er2CoMnO6 [21], Lu2CoMnO6

[19,34], and R2V2O7 (R = Ni, Co) [35]. The effect is also
observed in some noncollinear cases, such as TbMnO3, which
shows gigantic magnetoelectric and magnetocapacitance ef-
fects [36]. Interestingly enough, this material can be driven
into an uudd state by epitaxial strain [37]. Our model and its
predictions could be tested in magnetic field experiments that
should allow one to observe the increase in the magnetization
and a simultaneous sizable drop in the electric polarization.
This could be important, e.g., for some nickelates for which
the magnetic structure is still under debate [38]. Indeed, in
Ref. [39], using recently synthesized single crystals, the first
experimental evidence of the possible connection between
the uudd ordering and a bulk polarization has been given.
Magnetization experiments using these samples would be the
next step to further confirm our predictions.

II. THE MODEL

This Ising model is based on the so-called Einstein site
phonon spin model [40], which considers a coupling between
magnetic and elastic degrees of freedom. In it, the sites have
displacements given by a set of independent harmonic oscil-
lators. This assumes that the most important lattice distortion
contribution is coming from optical phonons, which is a
reasonable choice given that in real materials the active mag-
netic lattice is usually a sublattice of a more complex crystal
structure. The model presented here incorporates electrical
properties by assuming that each site displacement implies the
formation of a dipolar electric moment; dipole-dipole inter-
actions are then considered up to first-nearest neighbors. As
we will discuss afterwards, this does not affect our results,
and it considerably speeds up our simulations, which follow
the simultaneous evolution of two sets of coupled degrees of
freedom. The Hamiltonian is given by

H
|J0| =

∑
〈i, j〉

J (ri j )SiS j + Ke

2

∑
i

(δri)
2

+ λ
∑
〈i, j〉

[
pi · p j − 3

(
r0

i j · p j
)(

r0
i j · pi

)] + Hfield, (1)

where Si stands for an Ising-type spin pointing along the [01]
crystal direction (Si = ±1) at position ri measured in units of
the cell constant. ri j = ri − r j are the relative position vectors
of different spins. We call δri ≡ ri − r0

i the site displacement
and δri j ≡ (ri j − r0

i j ) the distance change between sites [see
Figs. 1(b) and 1(c)]. The distance-dependent [41] exchange
constant is given by

J (ri j ) = sgn(J0) [1 − αêi j · δri j]. (2)

Here, α is the magnetoelastic coupling, and êi j is the unit vec-
tor pointing from site i to site j. The electric dipole moment at
site i is given by pi = γiδri. The proportionality constant, γi,
can be site dependent if the system is composed of sublattices
with different ionic charges. The sign function allows for the
possibility of starting either with a ferromagnetic phase (the
general assumption here) or with an antiferromagnetic one.
Being that the lattice is bipartite, the results can be mapped by
performing a sign reversal of the spins in one sublattice.

External magnetic and electric fields are taken into account
by the term

Hfield = −B
∑

i

Si −
∑

i

E · pi, (3)

where B points trivially along the y direction and E points
along the diagonal directions of the lattice.

To simulate the elastic distortions, we consider polar co-
ordinates (ρ, θ ) to describe each δri. The angle θ is treated
as in a clock model of 360 equally spaced angles, and the
displacement ρ is chosen randomly in a distribution from 0
to a temperature-dependent maximum δmax(T ). The use of the
latter has no impact on the results obtained from the simula-
tion; it is introduced as a way to optimize speed by avoiding
the proposal of extremely unlikely moves at low temperatures
[28].

In accordance with the spirit of the model, the magnetic
and elastic degrees of freedom are treated simultaneously in
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the Monte Carlo simulations. We follow the method intro-
duced in Ref. [28]. Each step of the simulation is split into
elastic and magnetic moves. The simulation assumes that the
relaxation times of the magnetic degrees are much shorter than
those of the elastic degrees and hence each elastic move is
done with a relaxed magnetic configuration. The algorithm
proceeds as follows.

We perform P elastic Monte Carlo steps (MCSs) consisting
of the following.

(i) Choose a random site.
(ii) Propose a move by picking at random an angle and a

displacement (from 0 to δmax).
(iii) Calculate the exchange constants for the proposed

spatial configuration.
(iv) Calculate the total energy of the system (magnetic

+ elastic) and accept or reject the move according to the
Metropolis algorithm.

(v) Make Q magnetic moves; each move consists of the
following: (a) Flip one spin at random, (b) calculate the
change in magnetic energy, (c) accept or reject according to
the Metropolis algorithm, and (d) repeat steps (a)–(c) until
each spin has been chosen at least once on average.

(vi) Repeat steps (i)–(v) until each site has been chosen at
least once on average.

The results are independent of the precise choice of the
ratio P/Q. We have used square lattices with L from 4 to
16 and typically with 106 elastic MCSs for equilibration and
another 106 site MCSs for acquiring data. The figures in this
paper are all for L = 16.

III. RESULTS

A. γi = 0: Purely magnetoelastic system

The magnetoelastic phase diagram of the model in the ab-
sence of any polarization effects has been studied in Ref. [28].
As the magnetoelastic coupling α is increased, the critical
temperature of the ordered FM or AFM Ising phase decreases
steadily, reaching T = 0 at a critical coupling αc = √

Ke/2,
above which the system goes through a simultaneous mag-
netic and structural transition. The ground state becomes a
checkerboard of ferromagnetic clusters, aligned antiferromag-
netically [see Fig. 1(b)]. The critical temperature of the CB
phase increases with increasing α. For values of α slightly
above αc there is another phase with long-range uudd order,
the ST state, with energy comparable to the ground state. This
state, pictured in Fig. 1(c), consists of diagonal ferromagnetic
stripes aligned antiferromagnetically. While the CB state is the
ground state, the energetic proximity of the stripe state means
that additional interactions might easily reverse the situation.
As we will see, this is the effect of electric dipolar interactions.

B. γi �= 0: Multiferroicity

When γi �= 0, electric dipole moments are developed that
are proportional to the local site displacements. We begin by
analyzing the simplest (homogeneous) case, i.e., γi = γ for
all i. In the paramagnetic or in the FM or AFM ordered phases
this is irrelevant: Their minimum energy is achieved without
distorting the square lattice. This is no longer true for α > αc,
and as can be seen in Figs. 1(b) and 1(c), both the checker-

FIG. 2. Effect of the magnetic field on charge and magnetic de-
grees of freedom (case of homogeneous charge distribution γi = γ ).
Susceptibility peaks and the first peak in CV coincide with the abrupt
fall in P and the rise in M. The behavior is similar for both λ (i.e.,
for both ground states). In both cases, α = 1.5αc. The rise in M is
smooth and goes through an intermediate step marked by peaks in
the specific heat.

board and the stripe states develop electric moments at every
site, albeit with different configurations. When the dipolar
interaction between these moments, proportional to λ, is taken
into account to first-nearest neighbors, the balance between
the energies of the CB and ST states changes. This is plotted in
Fig. 1(d) for a fixed value of α > αc. While the paramagnetic
phase is trivially unaffected, the energy of both the CB and
the ST phases grows linearly, with different slopes for each
case. As shown in Fig. 1(d), there is a critical λc above which
the ST phase becomes the ground state of the system. The
role of the dipolar interaction is merely to select the ground
state and does not alter the nature of the states themselves,
which is determined by the (much stronger) magnetoelastic
term. We checked that this perturbation selects the ST state
for any interaction range. It follows that further neighbors in
this calculation are not necessary unless one is interested in
defining fine details of the resulting phase diagram [42].

For λ > λc the ground state is a stripe phase. If γi �= 0 is
equal for all i, the order in the ST phase is antiferroelectric,
since the sum of the displacements cancels out. The magnetic
and electric dipole directions are not correlated with each
other: The orientation of one does not determine the other.

There is a simple and physically sensible way in which a
nonzero bulk polarization can arise in this model. A common
type of crystal is composed of two interpenetrated square sub-
lattices of different ions. If the polarizability of these sites is
different, which can be easily taken into account in the model
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FIG. 3. B-λ phase diagram. For low fields the ground state of the
system transitions from a checkerboard (CB), below λc, to a stripe
phase (ST). As the field is increased, both the CB and ST states
transition into a ferromagnet (FM) going through an intermediate
state (IM) where the system is mostly ordered ferromagnetically,
with some remnants of the low-field phases in the form of aligned
clusters that oppose the magnetic field direction. The snapshot here
represents one of the many possible spin and structural configura-
tions taken by the system.

by making γi different in each sublattice, the ground state is
not affected [see Fig. 1(e)], and there is a net polarization of
the whole system (see inset of Fig. 4).

C. The effect of an external magnetic field

For α > αc, both above and below λc, the magnetic ground
states are different forms of antiferromagnetism. An ex-
ternal magnetic field eventually drives the system into a
homogeneous FM state. Figure 2 shows the behavior of the
magnetization, the magnetic susceptibility, and the specific
heat as a function of the externally applied magnetic field
both below λc (top panel, λ = 0) and above λc (bottom panel,
λ = 10). In the first case, the magnetic ground state is a CB,
and its order parameter �CB (see Appendix A) is also shown.
In the second case, where the ground state is a ST, it is the
staggered polarization Ps that is plotted as a function of the
field. As shown in the figure, the behavior of the system is very
similar regardless of the ground state: The antiferromagnetic
state with M = 0 is preserved for low fields and eventually
gives way to the FM state through a metamagnetic transition.
The field at which this transition starts is very similar for
both cases, which is to be expected, given the subtle energy
difference between both magnetic ground states. There is a
structure at the transition, evidenced as a double peak in the
specific heat and as a peak and shoulder in the magnetic
susceptibility.

The B-λ phase diagram can be simply sketched (Fig. 3): At
low fields there is a transition between the CB and ST states as
a function of λ. As the field is increased, the system polarizes
into a FM state going through an intermediate state (IM), the
existence of which is marked by the two peaks in the specific
heat. Snapshots of the different phases, also shown in Fig. 3,

FIG. 4. Effect of the magnetic field on charge and magnetic
degrees of freedom (nonhomogeneous charge distribution γi). In this
case (sketched in the inset), where there are two sublattices with dif-
ferent charges, the system has a nonzero homogeneous polarization
P at low fields. As in the case with γi = γ , the transition towards the
high-field state is also marked by an intermediate phase.

give further information about the intermediate state: Here,
the system is mostly ordered ferromagnetically but retains
some remnants of the low-field phases in the form of aligned
clusters that oppose the magnetic field direction.

The effect of introducing a nonhomogeneous γi by making
γi different in two sublattices (as sketched in the inset of
Fig. 4) leaves unchanged the overall behavior of the system as
a function of magnetic field (Fig. 4). The crucial difference, in
terms of experimental observables, is that in this case the sys-
tem switches from a homogeneous P �= 0 and M = 0 at low
fields, to a negligible polarization P ≈ 0 and a saturated M �=
0 at high fields. The peaks in χM = dM/dB and χe = dP/dB
coincide almost exactly. In this way the model reproduces
the polarization switch-off observed in many experimental
systems [19,21,34–36].

D. Scattering signatures

The ST and CB phases described before have signatures
in scattering experiments, both in neutron scattering (the spin
channel), coming from the different long-range ordered mag-
netic structures, and in x-ray scattering (the charge channel) as
a consequence of their characteristic distortion patterns. These
experimentally accessible characteristics can be calculated
from the Monte Carlo simulations (see Appendix B).

Figure 5 shows the structure factors in the spin channel
(left panels) and diffuse charge channel (right panels) for the
ST phase (upper panels) and the CB phase (lower panels). As
expected, for both channels, the stripe phase shows C2 sym-
metry, while the checkerboard phase retains the C4 symmetry
of the lattice (albeit with a different unit cell).

IV. SUMMARY AND CONCLUSIONS

In this paper we present what is probably the simplest
possible model that reproduces the basic features observed
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FIG. 5. Signatures in scattering experiments. Structure factors
in the spin channel (left panels) and diffuse charge channel, asso-
ciated with the displaced charges (right panels). The stripe phase
(upper panels) shows C2 symmetry in both channels, while the
checkerboard phase (lower panels) retains the C4 symmetry of the
lattice.

in several multiferroic materials, such as E-type manganites,
RMnO3, nickelates such as YNiO3, double perovskites, and
other materials under strain, such as TbMnO3. The model,
based on the Einstein site phonon spin model, is a nearest-
neighbor Ising model on a square lattice that adds coupling
between magnetic and elastic degrees of freedom. The latter
has two effects: First, it alters the local exchange interaction,
and second, it gives rise to electric dipole moments, which
in turn interact with a nearest-neighbor dipolar term. The
presence of these two interactions changes the ground state of
the system from the usual FM or AFM ordered state (depend-
ing on the sign of J) to a striped state where FM and AFM
couplings coexist, with magnetic uudd ordering, and where a
nonzero polarization can develop. An applied magnetic field
eventually switches off the electric polarization, driving the
system into an ordered FM state through a metamagnetic
transition.

The model presented here captures the essence of the origin
of multiferroicity in a large class of type II multiferroics
and given its simplicity is a promising toy model to further
investigate these phenomena. Understanding the role of lattice
distortions in the magnetoelastic coupling would also provide
a useful guide to experiments under tensile strain and film
depositions on mismatched substrates.
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APPENDIX A: DEFINITION OF THE CB
ORDER PARAMETER

We use the order parameter for the checkerboard phase as
defined in Ref. [28]. For this we use a unit cell such as the
one shown in Fig. 6. The index j is defined that runs over all
squares in the lattice counting as odd and even the squares
marked with 1 and 2, respectively, in the picture, and an index
a is defined that runs over the spins in the squares. There
are four possible degeneracies of the ground state (plus time
reversal), corresponding to where the colored squares are set
in the unit cell. We then define an order parameter 
CB that is
the sum over the four possibilities,


CB = 1/N
4∑

m=0

(−1)m|
m|, (A1)

where


m =
N/4∑
j=1

4∑
a=1

(−1) jeiφm
a σ j

a . (A2)

Here, σ
j

a are Ising-spin variables that can take the val-
ues ±1, N is the total number of spins, and φm

a are the
phase factors for the spin that take into account the four
possible degeneracies: φ1 = π (0, 0, 0, 0), φ2 = π (1, 0, 1, 0),
φ3 = π (1, 1, 0, 0), and φ4 = π (1, 0, 0, 1).

APPENDIX B: CALCULATION OF THE NEUTRON
STRUCTURE FACTOR

The simulated neutron structure factors have been calcu-
lated following the expression

Ispin(k) = 1

N

∑
i j

〈SiS j〉 (μ⊥
i · μ⊥

j ) eik·ri j ,

where i and j sweep the square lattice, N is the number
of spins, and 〈· · · 〉 represents the thermal average (in this
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case, that of the product of spins at sites i, j). The spin
quantization directions are given by {μ̂i} (parallel to the 〈01〉
directions). Then, μ⊥

i is the component of μ̂i of the spin
Si = Siμ̂i at site i perpendicular to the scattering wave vector
k:

μ⊥
i = μ̂i −

(
μ̂i · k

|k|
)

k
|k| . (B1)

For the diffuse structure factor associated with the dis-
placed ions, assuming an atomic form factor of unity, we

calculated

Iel.-dip.(k) = 2

N

∑
αβ

〈[eik·δrα − qav(k)]

× [e−ik·δrβ − qav(k)]〉eik·rαβ ,

where qav(k) = 〈eik·δrα 〉 is an average, k-dependent “charge”
in the perfect square lattice.

In both cases we have thermally averaged over sets com-
posed of 500–1000 independent configurations for a system
size L = 16.
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[14] I. A. Sergienko, C. Şen, and E. Dagotto, Phys. Rev. Lett. 97,

227204 (2006).
[15] S. Dong, R. Yu, S. Yunoki, J.-M. Liu, and E. Dagotto, Eur. Phys.

J. B 71, 339 (2009).
[16] M. Lilienblum, T. Lottermoser, S. Manz, S. M. Selbach, A.

Cano, and M. Fiebig, Nat. Phys. 11, 1070 (2015).
[17] J. Blasco, J. L. García-Muñoz, J. García, J. Stankiewicz, G.

Subías, C. Ritter, and J. Rodríguez-Velamazán, Appl. Phys.
Lett. 107, 012902 (2015).

[18] J. K. Murthy, K. D. Chandrasekhar, H. Wu, H. Yang, J.-Y.
Lin, and A. Venimadhav, EPL (Europhys. Lett.) 108, 27013
(2014).

[19] S. Chikara, J. Singleton, J. Bowlan, D. A. Yarotski, N. Lee, H. Y.
Choi, Y. J. Choi, and V. S. Zapf, Phys. Rev. B 93, 180405(R)
(2016).

[20] J. T. Zhang, X. M. Lu, X. Q. Yang, J. L. Wang, and J. S. Zhu,
Phys. Rev. B 93, 075140 (2016).

[21] M. K. Kim, J. Y. Moon, S. H. Oh, D. G. Oh, Y. J. Choi, and N.
Lee, Sci. Rep. 9, 5456 (2019).

[22] H. Y. Zhou, H. J. Zhao, W. Q. Zhang, and X. M. Chen, Appl.
Phys. Lett. 106, 152901 (2015).

[23] S. Dong, J.-M. Liu, and E. Dagotto, Phys. Rev. Lett. 113,
187204 (2014).

[24] X. Liu, C. Ma, C. Hou, Q. Chen, R. Sinclair, H. Zhou, Y. Yin,
and X. Li, EPL (Europhys. Lett.) 126, 27005 (2019).

[25] D. C. Cabra, A. O. Dobry, C. J. Gazza, and G. L. Rossini, Phys.
Rev. B 100, 161111(R) (2019).

[26] D. C. Cabra, A. O. Dobry, C. J. Gazza, and G. L. Rossini, Phys.
Rev. B 103, 144421 (2021).

[27] G. S. Jeon, J.-H. Park, J. W. Kim, K. H. Kim, and J. H. Han,
Phys. Rev. B 79, 104437 (2009).

[28] L. Pili and S. A. Grigera, Phys. Rev. B 99, 144421 (2019).
[29] J. Sirker, A. Klumper, and K. Hamacher, Phys. Rev. B 65,

134409 (2002).
[30] D. Albrecht, S. Lisenkov, W. Ren, D. Rahmedov, I. A. Kornev,

and L. Bellaiche, Phys. Rev. B 81, 140401(R) (2010).
[31] D. Rahmedov, D. Wang, J. Íñiguez, and L. Bellaiche, Phys. Rev.

Lett. 109, 037207 (2012).
[32] H. Katsura, N. Nagaosa, and A. V. Balatsky, Phys. Rev. Lett.

95, 057205 (2005).
[33] I. A. Sergienko and E. Dagotto, Phys. Rev. B 73, 094434 (2006).
[34] S. Yáñez-Vilar, E. D. Mun, V. S. Zapf, B. G. Ueland, J. S.

Gardner, J. D. Thompson, J. Singleton, M. Sánchez-Andújar,
J. Mira, N. Biskup, M. A. Senaris-Rodriguez, and C. D. Batista,
Phys. Rev. B 84, 134427 (2011).

[35] R. Chen, J. F. Wang, Z. W. Ouyang, Z. Z. He, S. M. Wang, L.
Lin, J. M. Liu, C. L. Lu, Y. Liu, C. Dong, C. B. Liu, Z. C. Xia,
A. Matsuo, Y. Kohama, and K. Kindo, Phys. Rev. B 98, 184404
(2018).

[36] T. Kimura, T. Goto, H. Shintani, K. Ishizaka, T. Arima, and Y.
Tokura, Nature (London) 426, 55 (2003).

[37] K. Shimamoto, S. Mukherjee, S. Manz, J. S. White, M. Trassin,
M. Kenzelmann, L. Chapon, T. Lippert, M. Fiebig, C. W.
Schneider, and C. Niedermayer, Sci. Rep. 7, 44753 (2017).

[38] I. Ardizzone, J. Teyssier, I. Crassee, A. B. Kuzmenko, D. G.
Mazzone, D. J. Gawryluk, M. Medarde, and D. Van Der Marel,
Phys. Rev. Res. 3, 033007 (2021).

[39] Y. M. Klein, M. Kozłowski, A. Linden, P. Lacorre, M. Medarde,
and D. J. Gawryluk, Cryst. Growth Des. 21, 4230 (2021).

[40] F. Wang and A. Vishwanath, Phys. Rev. Lett. 100, 077201
(2008).

[41] This dependence can also be thought of as a parametrization
of an angle-dependent interaction, when it is mediated by a
nonmagnetic ion (as in HoMnO3).

[42] Fixing the displacements in their low-temperature–high-α val-
ues δri = δr(±1,±1), the dipolar electric energy as a function
of the range saturates rapidly for both distorted phases. The
dipolar energy varies by less than 2% of its asymptotic value
when the interaction range goes above the tenth-nearest neigh-
bor.

094428-6

https://doi.org/10.1038/nature05023
https://doi.org/10.1103/PhysRevB.79.134120
https://doi.org/10.1038/nature06507
https://doi.org/10.1080/00018732.2015.1114338
https://doi.org/10.1038/natrevmats.2016.46
https://doi.org/10.1080/10408436.2014.992584
https://doi.org/10.1002/wcms.1409
https://doi.org/10.1088/0953-8984/20/43/434217
https://doi.org/10.1103/Physics.2.20
https://doi.org/10.1038/nmat1804
https://doi.org/10.1088/0953-8984/9/8/003
https://doi.org/10.1088/1361-6633/aaa37a
https://doi.org/10.1103/PhysRevLett.97.227204
https://doi.org/10.1140/epjb/e2009-00225-1
https://doi.org/10.1038/nphys3468
https://doi.org/10.1063/1.4926403
https://doi.org/10.1209/0295-5075/108/27013
https://doi.org/10.1103/PhysRevB.93.180405
https://doi.org/10.1103/PhysRevB.93.075140
https://doi.org/10.1038/s41598-019-41990-9
https://doi.org/10.1063/1.4917560
https://doi.org/10.1103/PhysRevLett.113.187204
https://doi.org/10.1209/0295-5075/126/27005
https://doi.org/10.1103/PhysRevB.100.161111
https://doi.org/10.1103/PhysRevB.103.144421
https://doi.org/10.1103/PhysRevB.79.104437
https://doi.org/10.1103/PhysRevB.99.144421
https://doi.org/10.1103/PhysRevB.65.134409
https://doi.org/10.1103/PhysRevB.81.140401
https://doi.org/10.1103/PhysRevLett.109.037207
https://doi.org/10.1103/PhysRevLett.95.057205
https://doi.org/10.1103/PhysRevB.73.094434
https://doi.org/10.1103/PhysRevB.84.134427
https://doi.org/10.1103/PhysRevB.98.184404
https://doi.org/10.1038/nature02018
https://doi.org/10.1038/srep44753
https://doi.org/10.1103/PhysRevResearch.3.033007
https://doi.org/10.1021/acs.cgd.1c00474
https://doi.org/10.1103/PhysRevLett.100.077201

