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ABSTRACT
Modeling the distribution of a data-poor species is challenging due to a reliance on unstructured data that often lacks 
relevant information on sampling and produces coarse-resolution outputs of varying accuracy. Data on sampling effort 
associated with higher-quality, semi-structured data derived from some community science programs can be used to 
produce more precise models of distribution, albeit at a cost of using fewer data. Here, we used semi-structured data 
to model the seasonal ranges of the Plain Tyrannulet (Inezia inornata), a poorly known Austral–Neotropical migrant, 
and compared predictive performance to models built with the full unstructured dataset of the species. By comparing 
these models, we examined the relatively unexplored tradeoff between data quality and data quantity for modeling of 
a data-sparse species. We found that models using semi-structured data outperformed unstructured-data models in 
the predictive accuracy metrics (mean squared error, area under the curve, kappa, sensitivity, and specificity), despite 
using only 30% of the available detection records. Moreover, semi-structured models were more biologically accurate, 
indicating that the tyrannulet favors arboreal habitats in dry and hot lowlands during the breeding season (Chaco re-
gion) and is associated with proximity to rivers in tropical and wet areas during the nonbreeding season (Pantanal, Beni, 
and southwest Amazonia). We demonstrate that more detailed insights into distributional patterns can be gained from 
even small quantities of data when the data are analyzed appropriately. The use of semi-structured data promises to be 
of wide applicability even for data-poor bird species, helping refine information on distribution and habitat use, needed 
for effective assessments of conservation status.
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Modelos de distribución con datos semiestructurados de ciencia comunitaria superan a modelos con 
datos no estructurados para una especie con escasos datos, el Inezia inornata

RESUMEN
El modelado de distribuciones de especies con pocos datos es complejo, ya que suelen utilizarse datos no estructurados 
que carecen de metadatos relevantes de esfuerzo de muestreo, resultando en modelos de baja resolución. Los 
metadatos de esfuerzo de muestreo contenidos en datos semiestructurados de “mayor calidad” de ciencia ciudadana 

LAY SUMMARY

•	 Modeling the distributions of poorly known species is compromised by the sparse and noisy available data, often 
leading to coarse-resolution models. 

•	 Semi-structured community science data, capable of accounting for sources of biases, can provide more accurate 
insights into species’ distributions, but their effectiveness remains unclear with small datasets.

•	 We evaluated the performance of models built with semi-structured data for a data-poor species (Plain Tyrannulet) 
against models built with all the available records of the tyrannulet that maximize sample size but for which variation 
in the sampling process could not be corrected.

•	 The predictive accuracy of models was better when using semi-structured data, even at the expense of a 70% to 72% 
reduction in the number of detection records.

•	 We demonstrated that improved information on distribution and habitat use can result from even small quantities 
of high-quality data, information that is critical for an effective conservation assessment of currently poorly known 
species.
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pueden utilizarse para producir modelos de distribución más precisos, aunque a costas de utilizar una menor cantidad 
de datos. Aquí utilizamos datos semiestructurados para modelar los rangos estacionales del Piojito Picudo (Inezia 
inornata) —un migrante Austral poco conocido del Neotrópico—, y comparamos el rendimiento predictivo frente a 
modelos construidos con el conjunto de datos completo de la especie. Al compararlos, examinamos el compromiso 
poco explorado que existe entre cantidad y calidad de datos para modelar la distribución de una especie con pocos 
datos. Encontramos que los modelos con datos semiestructurados superaron a los modelos de datos no estructurados 
en las métricas de precisión (MSE, AUC, Kappa, Sensibilidad, y Especificidad), a pesar de haber utilizado sólo el 30% de 
los registros de detecciones disponibles. Además, los modelos con datos semiestructurados fueron biológicamente más 
precisos: identificaron que el piojito utiliza hábitats arbóreos en tierras bajas calurosas y secas durante la temporada 
de cría (región del Chaco), pero que está asociado a la proximidad de ríos en regiones tropicales y húmedas durante 
el invierno (Pantanal, Beni y SO de la Amazonia). Demostramos que es posible obtener una visión más detallada de 
patrones distribucionales incluso con poca cantidad de datos cuando son analizados adecuadamente. El uso de datos 
semiestructurados promete ser de amplia aplicación incluso para especies de aves con pocos datos, ayudando a mejorar 
la información disponible sobre la distribución y el uso del hábitat, información necesaria para evaluar eficazmente el 
estado de conservación.

Palabras clave: ciencia ciudadana, datos escasos, datos limitados, Inezia inornata, migración, Neotrópico

INTRODUCTION 

The emergence of digital databases of species occurrences, 
largely powered by community science initiatives (also 
referred to as “citizen science”), opens new doors to in-
crease our understanding of distributional patterns of or-
ganism (Hampton et  al. 2013, Feldman et  al. 2021). This 
is particularly useful for those species that were historic-
ally poorly studied, for which the information about their 
basic ecology is still coarse-grained or even lacking. While 
these new data sources provide an opportunity to describe 
distributions at resolutions that are more relevant to con-
servation (Sumner et al. 2019), it is still challenging to gen-
erate accurate distributional information when data are 
sparse or when most data are noisy and biased given the 
haphazard schemes of data collection (Brotons et al. 2004). 
In such cases, deciding which data to use to accurately de-
scribe the distribution of data-poor species is a difficult 
task. However, the resulting outputs are critical to cor-
rectly uncover key environmental drivers of distributions 
and to inform conservation planning (Elith and Leathwick 
2009).

Species distribution models are a popular tool that 
uses georeferenced records to predict species ranges and 
species–habitat relationships at fine spatial resolutions 
(Guisan and Zimmerman 2000). Ideally, models should be 
built with large and high-quality datasets (Brotons et  al. 
2004). Larger datasets provide a greater number of obser-
vations for model training and usually result in broader 
geographic and environmental coverage of the samples, 
desirable to obtain accurate model outputs. Models also 
benefit from “high-quality” data containing survey effort 
metadata capable of accounting for sources of variation in 
the data collection process (Brotons et al. 2004, Johnston 
et al. 2021). Information about the effort expended during 
each survey event is critical to account for variation in de-
tection rates in relation to sampling effort. As such, models 

incorporating survey effort metadata may better explain 
whether the lack of observations at a site reflects the ab-
sence of a species and estimate how much effort is needed 
to detect the species where present. Unfortunately, this 
“ideal modeling scenario” of having large and high-quality 
datasets is rarely achieved for data-poor species.

One common practice for modeling the distribution of 
a data-poor species is to pool all available records from 
diverse sources to be analyzed under the same analytical 
framework (Biddle et  al. 2021). Because of the disparate 
nature of these records, most of the compiled data inev-
itably have a presence-only format and are unstructured 
(i.e. the locality and date are known, but no sampling ef-
fort metadata exist; La Sorte et al. 2018). Examples of these 
data are largely from museum records, biodiversity inven-
tories, web reports, and presence-only community science 
programs or stored in Global Biodiversity Information 
Facility (GBIF, www.gbif.org), which is a worldwide reposi-
tory of unstructured biodiversity data. Given the difficulties 
in obtaining information on species’ absences with these 
unstructured data, modeling methods typically associate 
presence records with randomly generated background 
points that serve as imperfect surrogates of absence lo-
cations (presence-background methods; see Breiner et al. 
2015). While presence-background methods are effective 
at maximizing the number of samples, the resulting models 
may be limited in their ability to produce robust ecological 
inferences as a consequence of the few informative data 
that are used (Guillera-Arroita et al. 2015).

In recent years, crowdsourcing efforts that rely on 
community science programs are rapidly producing 
more informative, “higher-quality” data at broad scales. 
These semi-structured data (Welvaert and Caley 2016, 
Kelling et  al. 2019) not only are opportunistically col-
lected by volunteers but also have metadata describing 
the observation process. These metadata can be used to 
address many of the problems arising with unstructured 
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data, in addition to inferring the absence locations of 
the species of interest (La Sorte et al. 2018, Kelling et al. 
2019). Some community science initiatives such as eBird 
(Sullivan et al. 2009), eButterfly (Prudic et al. 2017), and 
iSeeMammals (Sun et  al. 2018, preprint) collect semi-
structured data through the design of specific but flexible 
sampling protocols that record information of observa-
tion start time, distance traveled, duration, number of ob-
servers, and whether all species detected were reported 
in a checklist. As these projects have gained popularity, 
semi-structured data are exponentially increasing across 
wider geographic areas (Callaghan et  al. 2019, La Sorte 
and Somveille 2020) and are becoming more available 
in many regions for which only unstructured data were 
available in the past.

The desired effect of using semi-structured data for dis-
tribution modeling is to control sampling biases when cre-
ating the models (Johnston et al. 2021), but its effectiveness 
with data-poor species remains poorly assessed. Robust 
modeled products result from semi-structured data when 
datasets are rigorously analyzed and subjected to stringent 
data filtering to retain only the most informative records 
(Steen et  al., 2019, Johnston et  al. 2021). However, the 
number of samples is inevitably reduced by selecting only 
a subset of all the available data. This becomes problematic 
if the goal is to use semi-structured data to model the dis-
tributions of data-poor species, as any subsetting process 
on an already small dataset can result in a substantial loss 
of information. Of particular concern is that any filtering 
of the available data may reduce the geographic coverage 
of the detection data in addition to decreasing the quantity 
of the data. If that sample reduction also reduces the range 
of environmental conditions (e.g., habitat types or climate 
regimes) for which data are available, then the resulting 
models can be environmentally biased (Reese et al. 2005), 
producing unreliable outputs.

Although some studies have examined this common 
tradeoff between data quantity and quality (Steen et  al. 
2019, Van Eupen et al. 2021), its effects on data-poor spe-
cies using recently available semi-structured data remain 
unexplored. Specifically, we believe that it is important to 
better understand for data-poor species whether the use 
of only a higher-quality set of records will be beneficial for 
modeling at the expense of reducing the number of samples 
or whether the larger sample sizes available from retaining 
all records will provide more information despite sampling 
noise and bias. The resulting information will be critical to 
advance our knowledge on how to better describe distri-
butional ranges and habitat relationships of any species for 
which current information is coarse or nonexistent.

Bird species comprising the Austral–Neotropical migra-
tion system (i.e. migrating within the Neotropics) provide 
good candidates to evaluate the modeling performance 
of recently available semi-structured data. More than 230 

bird species are Austral–Neotropical migrants (Chesser 
1994, Stotz et al. 1996), but their breeding and nonbreeding 
grounds are still poorly understood (Jahn et al. 2020), and 
refined knowledge of their current spatiotemporal distribu-
tions is urgently needed. Recent studies using data derived 
from online databases to explore the migration ecology 
of these species have performed simple analyses within a 
presence-background framework with unstructured data 
(e.g., Areta and Bodrati 2010, Lees and Martin 2014, Lees 
2016, Hayes et al. 2018, DeGroote et al. 2020, Biddle et al. 
2021, Da Silveira et al. 2021). While informative, the spatial 
resolution of the outputs is coarse and partially biased to-
ward more frequently sampled sites.

In this study, we used semi-structured data obtained 
from eBird to model the seasonal ranges of the Plain 
Tyrannulet (Inezia inornata, Aves: Tyrannidae), a poorly 
known Austral–Neotropical migrant, using Random 
Forest models. We compared the predictive performance 
of models from semi-structured data to other Random 
Forest models built using the full dataset of the species 
occurrences. While the semi-structured datasets con-
sisted only of observations containing sampling metadata, 
the full dataset consisted of data gathered from diverse 
data sources; thus, unstructured data were the most 
common data type. The 2 goals of our study were (1) to 
examine whether it is possible to successfully model the 
distributions of species using only very small numbers of 
high-quality observations collected by volunteers and (2) 
to gain insights into the seasonal movements and habitat 
use of the species, validated by our expert knowledge on 
the species ecology.

MATERIALS AND METHODS

Study Species
The Plain Tyrannulet is a poorly known, medium-
distance migratory flycatcher that inhabits the lowlands 
of southern South America (Ridgely and Tudor 1994; see 
Supplementary Material Appendix S1). It breeds in the hot 
and dry Chaco region of Argentina, Paraguay, and Bolivia 
where it inhabits woodlands and forest edges (Fitzpatrick 
2020). However, breeding data come from just 5 observa-
tions (see Zyskowski et al. 2003, Di Giacomo 2005, Bodrati 
2019, Fitzpatrick 2020, J.  I. Areta personal observation) 
leading to a poor understanding of its breeding range. 
During the austral winter, it migrates north to the Pantanal 
and southwestern Amazonia where it overwinters mostly 
in riparian habitats and early successional vegetation 
(Chesser 1995, Stotz et  al. 1996). The tyrannulet can be 
found in reduced numbers during the winter in northern 
Argentina (Coconier et  al. 2007, Capllonch et  al. 2009, 
Pearman and Areta 2020, 2021), suggesting that the spe-
cies is a partial migrant with partially overlapping breeding 
and nonbreeding ranges.
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Data
Data sources.  We gathered observations of Plain 

Tyrannulet from community science projects and web 
platforms such as eBird (ebird.org), Macaulay Library 
(macaulaylibrary.org), Xeno-Canto (xeno-canto.org), 
EcoRegistros (ecoregistros.org), and iNaturalist (inaturalist.
org) that were available as of December 2019. We obtained 
additional data from published ornithological works listing 
Plain Tyrannulet, from digitized holdings in natural his-
tory museums, by personal examination of specimens, 
and contributed our unpublished data. Records were 
separated into those corresponding to the peak breeding 
season (November–February) and the peak nonbreeding 
season (May–August); thus, we discarded data from pos-
sibly transitional months (March–April and September–
October). We kept records from only 1999 to 2019 to 
properly match our observational data with the available 
habitat-description data (see Environmental Variables 
later in this section). We only used records that had precise 
information on the location (i.e. referring to a specific site 
or point rather than an entire area or region) and date, not 
including records from WikiAves Brazil (wikiaves.com.br) 
that only have locations at the municipality/county level. 
Because misidentifications can bias phenological assess-
ments (Gorleri and Areta 2021) and Plain Tyrannulets can 
be challenging to identify (Pearman and Areta 2021), we 
stringently vetted the datasets to ensure that no misiden-
tified documented or implausible undocumented records 
were included.

Datasets.  We created separate semi-structured 
datasets for the breeding and nonbreeding seasons 
of the Plain Tyrannulet to be compared with 2 other 
datasets that contained the full set of detection re-
cords of the species for each of these 2 seasons (Figure 
1 and Supplemental Material Figure S1). By modeling 
with these datasets, we were able to investigate the rela-
tive accuracy of distribution models based on a smaller 
dataset of semi-structured records in which variation 
in the observation process is measured, compared with 
models built with a larger number of unstructured re-
cords in which variation in the observation process 
is undescribed. The smaller dataset (semi-structured 
dataset) consisted of detection records and inferred non-
detection locations of the tyrannulet obtained from eBird 
(i.e. complete checklists in which Plain Tyrannulet was 
not reported) for which sampling effort metadata were 
available. The other 2 datasets contained all available re-
cords of the tyrannulet, but in one case with the inferred 
non-detection locations obtained from eBird simulating 
a presence–absence dataset (unstructured PA dataset) 
and in a second case combined with randomly generated 
background points (unstructured PB dataset), a common 
practice among researchers to model with unstructured, 
presence-only data.

To create the semi-structured dataset, we first filtered 
to detection records for which there were ancillary data 
that described the observation process (distance traveled, 
duration, and number of observers); this ancillary informa-
tion was available only from eBird data. We filtered these 
semi-structured records to retain only those that met the 
following criteria: observations were made using either the 
“stationary” or “traveling” protocols, the duration of the 
observation period was no more than 5  hr, the distance 
traveled during the observation period was no more than 
5 km, and 10 or fewer observers were in the group of ob-
servers. These post hoc filters create a set of more stand-
ardized surveys from the larger dataset (see Johnston et al. 
2021). The semi-structured detection records included 
both the observations of the tyrannulets and the ancil-
lary metadata that we used in our distribution models to 
account for sources of variation in detection rate.

Second, we obtained non-detection locations of the 
tyrannulet from eBird to analyze data in a presence–ab-
sence framework. Each eBird complete checklist—a list 
of species for which the observers have indicated that 
all detected species are recorded—was treated as a non-
detection if Plain Tyrannulet was not recorded. The 2 ad-
vantages of our approach are that these non-detection 
records are at locations we know that observers have 
visited and so nonrandom site selection by observers is 
taken into account and that the non-detection records 
also contain information about the observation process 
that is identical to the ancillary information (i.e. distance 
traveled, duration, and number of observers) in the semi-
structured detection records. To cover the entire envir-
onmental gradient of the distribution of the species, we 
used non-detection records within the potential distri-
bution range of Plain Tyrannulet for each of the breeding 
and nonbreeding seasons. To do this, we created a cir-
cular buffer of 100 km around each detection point, and 
then we generated a minimum convex polygon over the 
resulting buffer that we used as a bounding box for the ex-
traction of non-detections. We decided to use this radius 
instead of a narrower one (e.g., 50 km) given that the full 
geographic range of the Plain Tyrannulet is yet to be fully 
understood, and it is not unlikely that the species occurs 
100 km away from many of the current edge-records that 
exist. We further filtered to non-detection records that 
met the same sampling criteria as semi-structured detec-
tion records. Finally, we joined both the semi-structured 
detection and non-detection datasets. The resulting 
semi-structured dataset consisted of 94 detections, and 
9,803 non-detections for the breeding season (Figure 1), 
and 208 detections, and 21,708 non-detections for the 
nonbreeding season (Supplementary Material Figure S1), 
all of them associated with sampling effort metadata.

To create the unstructured PA datasets, we joined the 
full set of detection records of the tyrannulet obtained from 
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diverse sources, including eBird records, to the inferred 
non-detection locations obtained from eBird. Because of 
the diverse nature of detection records used in this dataset, 
metadata describing the observation process were available 
only from semi-structured records. However, we removed 
these metadata to match in format the more abundant un-
structured data. We decided to create this presence–ab-
sence dataset because recent studies have demonstrated 
that models using presence-only data may benefit if actual 
non-detections are used instead of randomly generated 
background points as surrogates of the species absences 
(Henckel et  al. 2020, Johnston et  al. 2021). The resulting 

unstructured PA dataset consisted of 396 detections, and 
9,803 non-detections for the breeding season (Figure 1), 
and 786 detections, and 21,708 non-detections for the 
nonbreeding season (Supplementary Material Figure S1), 
all of them without sampling effort metadata.

Finally, to create the unstructured PB datasets, we joined 
the full set of detection records of the tyrannulet to 10,000 
randomly generated background points. This procedure 
creates a presence-background dataset, which is a com-
monly used data format for species distribution modeling 
when data are stored as presence-only (Barbet-Massin 
et al. 2012). We generated the background points inside the 

FIGURE 1.  Flow diagram for the processing of Plain Tyrannulet (Inezia inornata) data into breeding season models’ training and test 
sets. The semi-structured dataset consisted of detections and inferred non-detections, both with sampling metadata. Unstructured 
datasets consisted of the full set of detections associated with inferred non-detections (PA suffix) or with background points (PB suffix), 
none with sampling metadata. Inside each box, we indicate the number of detections (lilac-filled boxes) and non-detections or back-
ground points (gray-filled boxes). The red frame indicates that data are semi-structured (i.e. including data sampling metadata), and 
the black frame indicates unstructured data. See flow diagram for nonbreeding models in Supplementary Material Figure S1. 
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same minimum convex polygons that we used to extract 
the non-detection locations for each season (see above 
in this section). We performed this procedure using the 
Data Management tool in ArcMap v10.4 (ESRI, Redlands, 
California). The resulting unstructured PB dataset con-
sisted of 396 detections and 10,000 background points for 
the breeding season (Figure 1), and 786 detections and 
10,000 background points for the nonbreeding season 
(Supplementary Material Figure S1), none with sampling 
effort metadata.

Environmental variables.  We modeled the distribu-
tions of Plain Tyrannulets as a function of habitat, topog-
raphy, and climate. The habitat data were from MODIS 
land cover product MCD12Q1 v006 (Friedl and Sulla-
Menashe 2015), and we computed the percentage of each 
land cover class that was present within a 2.5  × 2.5 km 
square region (i.e. 5 MODIS pixels) centered on each lo-
cation for the year in which the sighting was submitted. 
Because the habitat layers of this landcover product date 
from the year 2001 to 2018, we used 2001 landcover data 
for records dating from the years 1999 and 2000, and 
likewise, we used 2018 landcover data for records dating 
from the year 2019. We removed the land cover of class 
1 (Evergreen Needleleaf Forests) and class 3 (Deciduous 
Needleleaf Forests) because these habitat types are absent 
across the study area. Our climate data were monthly rain-
fall and monthly temperature from WorldClim v2.1 (Fick 
and Hijmans 2017). We related each record to the average 
rainfall and average temperature values for the month in 
which the record was submitted. Additionally, we added 2 
time-invariant covariates: elevation, from the digital eleva-
tion model CGIAR-CSI SRTM 90m 4.1 (30 arcsec, ~1 km) 
(Jarvis et al. 2008), and Euclidean distance to rivers, using 
the Rivers and Lake Centerlines layer from Natural Earth 
products 4.1.0 (Natural Earth 2020). We standardized to 
2.5 min, the resolution of variables other than habitat using 
the R package raster (Hijmans and van Etten 2016). The 
full list of predictor variables is provided in Supplementary 
Material Table S1.

Spatial undersampling.  Opportunistically collected 
data tend to be non-randomly distributed in space and 
time, and therefore spatial bias needs to be accounted for 
before analysis (Guillera-Arroita et al. 2015). To ameliorate 
the effect of spatial bias, we conducted spatial filtering of 
the detection and non-detection records (see Robinson 
et  al. 2018). We created a hexagonal grid across the 
breeding and nonbreeding areas with 5 km between the 
centers of adjacent hexagons, using the R package dggridR 
(Barnes and Sahr 2017). We chose to use hexagons rather 
than squares because hexagons provide less spatial distor-
tion (Sahr 2011). Then, we randomly selected one detection 
and one non-detection from each hexagon from each week 
within years, if a record of that type was present. By doing 

this, we ensured the spatiotemporal independence of each 
record to reduce the chance that we selected overlapping 
records of the same class for each model.

In addition, by separately selecting detections and non-
detections, we achieved a closer balance between detec-
tion and non-detection records (Figure 1), a procedure 
that has been demonstrated to improve inferences with 
highly imbalanced data (Robinson et al. 2018). As the spa-
tial undersampling randomly chooses one detection and 
one non-detection within a grid cell, many records may be 
excluded from the training dataset; therefore, we repeated 
this undersampling process before splitting data into test 
and training datasets for each of multiple iterations of 
model fitting for each dataset. Note that we did not per-
form spatial undersampling on the background points 
since they were already randomly distributed in the geo-
graphic space.

Oversampling.  We ensured that any observed im-
provement in model accuracy was not simply a function 
of increasing the sample size or variation in the propor-
tion of detections across the datasets. Model accuracy 
can increase with larger sample sizes (e.g., Stockwell and 
Peterson 2002), and the proportions of detection and non-
detection records are important because models will pref-
erentially predict the more common group with higher 
accuracy (McPherson et  al. 2004). Differences in sample 
sizes and the proportions of the 2 classes can affect some 
of the metrics that we used to assess model accuracy 
(Longadge et  al. 2013). Our semi-structured dataset had 
fewer detections than the unstructured datasets because it 
contained only a subset of all available records (Figure 1). 
Therefore, to remove the effect of variation in the number 
of detections and non-detections across the datasets that 
we compared, we equalized sample sizes to that of the un-
structured dataset by oversampling detections from the 
semi-structured dataset. We used the synthetic minority 
oversampling technique (SMOTE, Chawla et al. 2002) to 
perform the oversampling procedure. Instead of creating 
exact copies of the existent data, SMOTE creates examples 
of the data that occupy the parameter space between a ran-
domly chosen record and its nearest neighbor. This process 
resulted in datasets that had the same number of records 
and an equal proportion of detections and non-detections 
(Figure 1 and Supplemental Material Figure S1).

Data Analysis
Geographic coverage of detections. Because the geo-

graphic coverage of data may affect the accuracy of a distri-
bution model (Brotons et al. 2004), we evaluated whether 
detection records from the semi-structured dataset and 
the detection records from the unstructured datasets 
were similarly distributed in the geographic space for 
both breeding and nonbreeding seasons. We assessed this 
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by (1) counting the number of observations for each data 
type and (2) visualizing the core area of coverage, meas-
ured as the minimum convex polygon encompassing 95% 
of all the observations for each data type. This polygon was 
generated by removing 5% of records that were farther 
(Euclidean distance) from the median center of all records. 
We then calculated the area of each polygon to compare 
the overall geographic coverage of each data type.

Species distribution models.  We selected and spa-
tially subsampled 20% of the semi-structured detections 
(excluding oversampled observations) and 20% of the in-
ferred non-detections as testing data for the evaluation 
of each model using cross-validation. This test set was 
selected because, first, all detection records are also con-
tained in both unstructured datasets and, second, because 
actual non-detections are more appropriate than back-
ground pseudoabsences for testing models since they re-
flect true sites where the species was not detected. For the 
training datasets, we removed any observation that was in 
the test set. Also, we randomly selected background points 
to equal the number of non-detections used for training. 
We repeated this process of separating data into training 
and testing subsets 100 times, creating 600 unique datasets, 
against which our models were tested (300 for each season).

We used the R package ranger (Wright and Ziegler 
2017) to build a Balanced Random Forest model for the 
breeding and nonbreeding seasons separately using the 
semi-structured datasets and both unstructured datasets. 
Balanced Random Forest is a modification of the Random 
Forest algorithm designed for imbalanced data (Chen et al. 
2004). In this approach, each decision tree that makes up 
the random forest contains an equal number of randomly 
selected records of the majority class (here non-detections 
or background points) and the minority class (here detec-
tions). We grew 1,000 classification trees for each model 
type and set to 4 the number of variables, from which the 
model could select at each split for each tree (James et al. 
2013).

Because the original prevalence of the species was 
modified when datasets were (1) subsampled and (2) 
oversampled, we needed to calibrate the results to avoid 
inflating the prevalence in the observed probability of de-
tection. To create the necessary calibration curve, we pre-
dicted the detection probability on the 80% training set 
using the Balanced Random Forest model. We then built 
a binomial Generalized Additive Model (GAM) with the R 
package scam (Pya and Wood 2015). We used the real ob-
servations as the response variable and the detection prob-
abilities as the predictor variable. We specified 4 degrees 
of freedom for each GAM and constrained the shape to be 
monotonically increasing.

Model evaluation.  We evaluated the accuracy of the 
models using multiple predictive performance metrics, 

each of which describes a different aspect of a model fit. 
We used the test dataset to evaluate the mean squared 
error (MSE) between model predictions and true presence 
or absence in the test set. We also evaluated the ability of 
each model to rank positive observations higher than nega-
tive ones using the area under the curve (AUC; Fielding 
and Bell 1997). We evaluated each model’s ability to sim-
ultaneously predict the presence or absence using Cohen’s 
kappa (Cohen 1960). We also evaluated the sensitivity 
(true positive rate) and specificity (true negative rate). To 
visually assess the accuracy of the models, we produced 
distribution maps for each season, and we also calculated 
a ranking of variable importance and partial-dependence 
values that describe the relationship of each predictor vari-
able with the response. We used the default functions with 
ranger to produce both variable importance and partial-
dependence values (for further detail, see the R code). We 
assessed the consistency of maps and species–habitat re-
lationships based on current knowledge of the species dis-
tribution and ecology and to our own field experience with 
Plain Tyrannulets.

RESULTS

We compiled a total of 1,182 records of Plain Tyrannulet 
for the breeding and nonbreeding seasons. Only ~30% 
of all records had a semi-structured format available for 
models’ training (i.e. providing information describing 
the observation process; Figure 1 and Supplementary 
Material Figure S1). While semi-structured data provided 
62 and 124 detection records to train the semi-structured 
breeding and nonbreeding season models, the unstruc-
tured datasets contained 208 and 432 detection records, 
respectively (Figure 1 and Supplementary Material Figure 
S1). Unstructured data were not only more abundant, 
but they also had a wider geographic extent, as assessed 
by 95% minimum convex polygons, during both the 
breeding season (semi-structured: 680,051 km2; unstruc-
tured: 1,179,191 km2) and the nonbreeding season (semi-
structured: 2,006,290 km2; unstructured 2,414,070 km2; 
Figure 2).

The map predictions of our models showed an ob-
vious shift between breeding and nonbreeding seasons, 
indicating northward, but incomplete, post-breeding 
migration in the Plain Tyrannulet (Figure 3 and 
Supplementary Material Figure S2). Semi-structured and 
unstructured PA models estimated a high probability of 
encountering the species across the Chaco region during 
the breeding season, which essentially defined the main 
boundary of the species’ breeding range. This pattern was 
not clearly recovered with unstructured PB models, which 
showed a patchy breeding distribution and overpredicted 
in areas where the species is either absent (e.g., Chile) or 
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likely absent (e.g., eastern Uruguay and the adjacent region 
of Brazil). By contrast, all models generally coincided in 
the map predictions for the nonbreeding season. The re-
gions with the highest encounter probability during the 
nonbreeding season were the savannas and wetlands in 
the Pantanal and the Beni and along rivers and semi-open 
areas in southwestern Amazonia (mostly in the Brazilian 
states of Acre and Rondônia).

Although semi-structured and unstructured PA models 
predicted similar distributions of Plain Tyrannulets, our 
quantitative assessment indicates that models built using 
semi-structured data showed a better predictive perform-
ance overall. This was a consistent result based on per-
formance metrics from the 100 replicates of each model 
type, although some single iterations of data selection 
produced models that performed similarly well based on 
the measures of predictive performance (Figure 4). In the 
breeding season, semi-structured models outperformed 
unstructured models in all performance metrics (Figure 
4). In the nonbreeding season, semi-structured models 
showed better accuracy in MSE, AUC, kappa, and spe-
cificity, with similar performance in terms of sensitivity 

relative to unstructured PA models (Figure 4). In addition, 
we found that unstructured PA models generally outper-
formed unstructured PB models, except for specificity in 
the nonbreeding season replicates (Figure 4).

We also found models based on semi-structured data to 
be more accurate in qualitative terms than the models based 
on unstructured data (see Discussion). All models broadly 
coincided in ranking the importance of predictors, with 
high predictive importance for temperature, elevation, and 
savannas for both seasons (Figure 5). The encounter prob-
abilities were highest at a lower elevation, at higher tem-
perature, and in savannas (Figures 6 and 7). This supports 
the notion that the species inhabits mostly semi-open habi-
tats in hot lowlands. However, because the tyrannulet is an 
arboreal bird, semi-structured models were more accurate 
than unstructured-data models when associating tyran-
nulets more closely with habitats containing trees, such 
as woody savannas and deciduous forest in the breeding 
season, and evergreen forest in the nonbreeding season. In 
contrast, deciduous forests were not important in unstruc-
tured PA models even though the bird is found largely in 
this habitat type during the breeding season (Figure 5).

FIGURE 2.  Geographic coverage of Plain Tyrannulet (Inezia inornata) detection data during the breeding and nonbreeding seasons. 
Red triangles indicate data that were collected using a semi-structured protocol, and black dots indicate those collected using an un-
structured protocol. Dashed lines denote the minimum convex polygons (mcp) encompassing 95% of the observations of each class. 
Areas of polygons are indicated in millions (M) of square kilometers.
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The partial-dependence plots obtained from semi-
structured models were consistent with our own field 
experience and current evidence describing the environ-
mental and habitat preferences of Plain Tyannulets. The 
exhibited response curves provided clear support that 
the tyrannulet is found in relatively dry areas during the 
breeding season, and near rivers in areas of higher pre-
cipitation during the nonbreeding season, avoiding areas 
with continuous terra firme forest. This was reflected by 
a shifting response to distance to rivers and to precipita-
tion from breeding to nonbreeding season and a drop in 
the predicted probability of encountering Plain Tyrannulet 
at high proportions of evergreen forest in the landscape 
in the nonbreeding season (Figures 6 and 7). These pat-
terns were not clearly recovered in the partial-dependence 
plots produced from the models using unstructured data. 
Moreover, unstructured-data models exhibited wrong or 

distorted habitat associations. For example, unstructured 
PB models erroneously related the tyrannulet to urban or 
grassland habitats (Figure 6), and unstructured PA models 
identified a spurious association with evergreen forest in 
the nonbreeding season model (Figure 7).

DISCUSSION

We evaluated the utility of species distribution models 
for describing the seasonal range and environmental as-
sociations of the Plain Tyrannulet, a species for which 
the amount of available data and the information content 
provided by each record is presumably far from ideal for 
complex modeling. We demonstrated that the accuracy 
metrics and predictions of models improved when models 
were built with semi-structured data rather than with 
unstructured data, even when this entailed using a very 

FIGURE 3.  Estimated encounter probability of Plain Tyrannulet (Inezia inornata) for breeding (January 1)  and nonbreeding (July 
1) across the full geographic extent of the species distribution. The models from semi-structured data used detections and inferred 
non-detections, both with sampling metadata. Unstructured-data models used the full set of detections associated with inferred non-
detections (PA suffix) or with background points (PB suffix), none with sampling metadata. For models using semi-structured data, 
encounter probabilities were calculated assuming a one-observer sampling lasting 2 hr, starting at 0600 hours and traveling a distance 
of 1 km. Maps are at a 2.5-min resolution. See full-resolution image in Supplementary Material Figure S2. 
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small dataset of observations: only 62 of 208 detections 
for training the breeding season models and 124 of 432 for 
training the nonbreeding season models. The use of semi-
structured data, therefore, promises to be of wide applic-
ability to produce more reliable insights into distributional 
and ecological patterns even for data-poor bird species.

Including information on the observation process when 
modeling the distribution of a species leads to more ac-
curate and robust results (Bird et al. 2014, Isaac et al. 2014, 
Milanesi et  al. 2020, Johnston et  al. 2021). We attribute 
the higher performance of semi-structured models rela-
tive to unstructured models of the Plain Tyrannulet to the 
existence of sampling metadata that we used as covariates 
for modeling. The improvement in models built with 

semi-structured data was clearly visible in (1) the higher 
predictive accuracy metrics and (2) the more accurate spe-
cies–habitat relationships identified by the models. This 
later coinciding with current knowledge suggests that Plain 
Tyrannulets prefer semi-open and dry habitats during the 
breeding season (Bodrati 2004, 2019, Di Giacomo 2005, 
Areta and Gorleri personal observation) and wet savannas 
and riverine vegetation during the nonbreeding season 
(Chesser 1995, Stotz et al. 1996, Areta and Gorleri personal 
observation). While the overall geographic patterns de-
scribed by all models were similar, semi-structured models 
showed a better contrast between areas of potential pres-
ence or absence of the species, resembling threshold ef-
fects. This can be explained by the sharper environmental 

FIGURE 4.  Accuracy metrics of the models created with the different datasets describing Plain Tyrannulet (Inezia inornata) breeding 
and nonbreeding distributions. The semi-structured dataset consisted of detections and inferred non-detections, both with sampling 
metadata. Unstructured datasets consisted of the full set of detections associated with inferred non-detections (PA suffix) or with back-
ground points (PB suffix), none with sampling metadata. Because each model type was run 100 times, each using a different randomly 
drawn dataset, summary distributions of the metric values are presented as boxplots.
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gradients identified by semi-structured models, which ap-
pear to be a general feature of models in which variation of 
detection rates is taken into account (Johnston et al. 2021).

Our findings are consistent with Steen et al. (2019) and 
Johnston et al. (2021), who also found improved accuracy 
of distribution models built with semi-structured data by 

only retaining high-quality records capable of accounting 
for data biases, even at the expense of reducing the number 
of observations for data analysis. While they assessed the 
effectiveness of this process with relatively common North 
American species with ample data, we demonstrated that 
this approach is also effective with a data-poor species, for 

FIGURE 5.  Important environmental and habitat predictors identified by models created with the different datasets of Plain Tyrannulet 
(Inezia inornata) for the breeding and nonbreeding seasons. The semi-structured dataset consisted of detections and inferred non-
detections, both with sampling metadata. Unstructured datasets consisted of the full set of detections associated with inferred non-
detections (PA suffix) or with background points (PB suffix), none with sampling metadata.
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FIGURE 6.  The partial dependence of encounter probability on the most relevant environmental and habitat predictors (Figure 
5) identified by models created with the different datasets of Plain Tyrannulet (Inezia inornata) for the breeding season. The semi-
structured dataset consisted of detections and inferred non-detections, both with sampling metadata. Unstructured datasets con-
sisted of the full set of detections associated with inferred non-detections (PA suffix) or with background points (PB suffix), none with 
sampling metadata.
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FIGURE 7.  The partial dependence of encounter probability on the most relevant environmental and habitat predictors (Figure 5) 
identified by models created with the different datasets of Plain Tyrannulet (Inezia inornata) for the nonbreeding season. The semi-
structured dataset consisted of detections and inferred non-detections, both with sampling metadata. Unstructured datasets con-
sisted of the full set of detections associated with inferred non-detections (PA suffix) or with background points (PB suffix), none with 
sampling metadata.
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which data filtering resulted in a substantial reduction in 
the absolute number of samples and geographic coverage 
of records (Figures 1 and 2). In the Plain Tyrannulet case, 
degrading semi-structured to unstructured data resulted 
in poorer performance of models. Thus, we echo Johnston 
et al. (2021) in recommending that data should not be de-
graded merely to obtain a set of data with a greater number 
of records of a species.

We also found that unstructured models of Plain 
Tyrannulet improved when using inferred non-detection 
records instead of background pseudoabsences, mirroring 
the findings of Henckel et al. (2020). Background data are 
typically used in combination with presence-only data 
for modeling (e.g., with MaxEnt); however, the resulting 
outputs are limited given the lack of true absence data 
(Brotons et al. 2004, Fithian et al. 2015). Our work provides 
further support that it is preferable to approximate non-
detections instead of using random background data if 
constrained to work with presence-only records (Yackulic 
et al. 2013, Guillera-Arroita et al. 2015). In cases when data 
are of presence-only format, alternative methods exist for 
inferring non-detection locations (see van Strien et  al., 
2013, Milanesi et al. 2020).

Although our semi-structured models performed well 
with a partially migratory, poorly known, and relatively 
difficult to identify species, the Plain Tyrannulet, we ac-
knowledge that the relative performance of models based 
on different types of data may vary among data-poor taxa. 
Before relying on semi-structured data to model the dis-
tribution of a data-poor species, it is critical to examine 
the spatial extent of the available data. Whereas our semi-
structured dataset of Plain Tyrannulet had limited geo-
graphic coverage, the core breeding and nonbreeding 
ranges were properly represented by the data, and thus, 
the predictions of our models were still accurate (Figures 
2 and 3). However, this condition may not be achieved 
in other data-poor species having large spatial data gaps. 
We strongly recommend mapping all available unstruc-
tured data of the species of interest before modeling, as 
this often illuminates seasonal and geographical patterns 
in data-poor taxa (Areta and Juhant 2019). Such informa-
tion obtained from the more abundant unstructured data 
may serve as an external model validation or even to decide 
whether the use of only a subset of the available higher-
quality data is appropriate for modeling or not.

The availability of semi-structured data, even in rela-
tively small quantities, can improve our knowledge about 
the distribution of Neotropical bird species. As with Plain 
Tyrannulets, distributional knowledge of many other 
Neotropical migrant birds is coarse-grained (Faaborg 
et  al. 2010, Jahn et  al. 2020), which limits our ability to 
assess their conservation status. Our models from semi-
structured data not only provided the first precise breeding 
and nonbreeding distribution maps for Plain Tyrannulets 

(Figure 3 and Supplementary Material Figure S2 and 
Appendix S1); but, given their relatively high spatial reso-
lution, they were also able to highlight potential areas of 
the decline of the tyrannulet. For example, in the breeding 
season a “hole” of low encounter probability was mapped in 
the central Paraguayan Chaco (Figure 3 and Supplementary 
Material Figure S2). While the species is presumably abun-
dant in western Paraguay (Lesterhuis et  al. 2018), it may 
be locally declining in sites where unmanaged deforest-
ation is transforming suitable woodlands into unsuitable 
habitats such as pastures and crops (Pacheco et al. 2021). 
Several other species may be suffering similar threats, and 
high-quality community science data are an excellent re-
source for generating useful products to quickly iden-
tify these threats to address more targeted conservation 
strategies.

The cumulative effort of citizen scientists is redefining 
the way biodiversity is monitored (Callaghan et al. 2019), 
but there is still a strong bias in the application of data to-
ward northern hemisphere taxa (Feldman et al. 2021). For 
example, eBird is constantly updating and refining species’ 
full-annual ranges with the use of semi-structured data, 
and modeled products improve as more observations are 
submitted to the project (see eBird Status and Trends; Fink 
et  al. 2020). However, these products are often designed 
for large datasets and limitations arise in regions with large 
spatial data gaps. If the ultimate goal is to serve biodiver-
sity conservation at a global scale, then one of the biggest 
challenges in the field of ecology is to develop or adapt ad-
vanced modeling tools to be applicable in poorly sampled 
regions because many of these regions harbor the greatest 
diversities of organisms worldwide (e.g., the Neotropics and 
Paleotropics). With this work, we would like to encourage 
researchers to use the recently available high-quality com-
munity science data, together with traditional knowledge, 
to further improve predictions of bird distributions in re-
gions with deficient sampling. The resulting information 
will be critical for an effective conservation assessment of 
the species that inhabit these regions.

CONCLUSION

We have shown a study case in which models using a 
reduced number of carefully vetted semi-structured 
community-science records outperformed models using 
greater amounts of unstructured data for a little-known 
migratory Neotropical flycatcher. This suggests that our 
approach can be profitably used to model the distribu-
tions of other data-poor migratory or resident bird spe-
cies. We stress, however, the importance of examining the 
spatial distribution of the available data from all sources 
before modeling, to assess whether modeling with semi-
structured data alone is considered justified.
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SUPPLEMENTARY MATERIAL

Supplementary material is available at Ornithological 
Applications online. 
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