
www.ietdl.org
Published in IET Communications
Received on 19th October 2011
Revised on 29th February 2012
doi: 10.1049/iet-com.2011.0767

ISSN 1751-8628

Field programmable gate arrays implementations of
low complexity soft-input soft-output low-density
parity-check decoders
L.J. Arnone1 J. Castiñeira Moreira1 P.G. Farrell2

1Electronics Department, Engineering School, Mar del Plata University, Mar del Plata, Argentina
2School of Computing and Communications, Lancaster University, Lancaster, UK
E-mail: casti@fi.mdp.edu.ar

Abstract: Low-density parity-check (LDPC) codes are very efficient error control codes that are being considered for use in many
next-generation communication systems. In this study low complexity soft-input, soft-output (SISO) field programmable gate
arrays (FPGA) implementations of a novel logarithmic sum-product (LogSP) iterative LDPC decoder and a recently proposed
simplified soft Euclidean distance (SSD) iterative LDPC decoder are presented, and their complexities and performance are
compared. These implementations operate over any choice of parity check matrix (including those randomly generated,
structurally generated and either systematic or non-systematic) and can be parametrically adapted for any code rate. The
proposed implementations are both of very low complexity, because they operate using only sums, subtractions, comparisons
and look-up tables, which makes them particularly suitable for FPGA realisation. The SSD decoder has a lower
implementation complexity than the LogSP LDPC decoder and it also offers the advantage of not requiring knowledge of the
channel signal-to-noise ratio, unlike most other LDPC decoders.
1 Introduction

Low-density parity-check (LDPC) codes are receiving
particular interest in practical applications because of their
impressive bit error rate (BER) performance, which for a large
code length n is very close to the Shannon limit [1]. A well-
known algorithm for iterative decoding of LDPC codes is the
sum-product (SP) belief propagation algorithm originally
proposed by Gallager [2], and rediscovered by MacKay and
Neal [1]. It has recently been shown by two of the authors of
this paper that the SP algorithm can be simplified significantly
by using logarithmic processing, leading to a novel
logarithmic sum-product (LogSP) algorithm [3, 4].

Another new iterative algorithm for decoding LDPC codes
is based on the Euclidean metric, and is called soft-distance
(SD) decoding [5, 6]. This algorithm is also based on a
bipartite (Tanner) graph, but it utilises the squared
Euclidean distance as a metric, and sum-antilog operations
for performing belief propagation. A much simpler version
of the SD decoder, the simplified soft Euclidean distance
(SSD) algorithm, has been created by combining it with the
logarithmic processing structure devised for the LogSP
algorithm [3, 7]. Monte Carlo simulations show that there is
no BER performance degradation for the LogSP and SSD
algorithms when compared to the SP algorithm, as we
indicate below. Both the SD and SSD algorithms have the
advantage of not requiring knowledge of the signal-to-noise
ratio (SNR) at the output of the channel, whereas the
LogSP algorithm does need the SNR.
1670

& The Institution of Engineering and Technology 2012
Field programmable gate arrays (FPGAs) are widely used
in practical implementations of error-control and signal-
processing systems, because of their many advantages. As
efficient general-purpose logic devices they can implement
a great range of coding and processing algorithms, and they
are relatively easy to re-structure and re-programme [8].
However, most iterative decoding algorithms for LDPC
codes are in general very complex, and involve operations
such as products and quotients, which are quite difficult to
implement in programmable logic such as FPGA [8]. In this
paper, effective FPGA decoder implementations are
presented for the low complexity LogSP and SSD
algorithms. These generic algorithms are particularly suited
to FPGA implementations, because they use only sums,
subtractions. comparisons and look-up tables. Unlike other
FPGA implementations [9–14], these decoders can operate
over any kind of parity check matrix H, whether randomly
or structurally generated, systematic or non-systematic [15,
16], and also they can easily be set to any code rate k/n.

The rest of this paper is organised as follows. A short
outline of LDPC decoding is described in Section 2. The
LogSP decoding algorithm and its FPGA decoder structure
and parameters are explained in Sections 3 and 4. The SSD
decoding algorithm and its FPGA decoder are similarly
described in Sections 5 and 6. Complexity aspects are
introduced in Section 7, and decoding simulation results are
presented in Section 8. Section 9 concludes the paper with
a summary of the main characteristics of the algorithms and
their advantages.
IET Commun., 2012, Vol. 6, Iss. 12, pp. 1670–1675
doi: 10.1049/iet-com.2011.0767

www.ietdl.org
2 LDPC decoding algorithms

LDPC codes are linear block codes [4] for which there exists a
parity-check matrix H such that the number of non-zero
elements in the matrix is very much less than the number of
zeros. The aim of a decoding algorithm is to find a good
estimate ĉ of the codeword [1, 4]. In the case of a soft-
input, soft-output (SISO) decoder, the estimate ĉ may or
may not satisfy the following condition

H†c = 0 (1)

However, the estimates in ĉ will be the best a posteriori soft
values for each decoded symbol.

Decoding of these codes is based on a bipartite (Tanner)
graph that represents the relationships between the symbol
nodes 1, 2, . . . j . . . n and the parity-check nodes 1, 2, . . . i . . .
n 2 k, which are specified by the parity-check equations of
the code. The decoding process is characterised by an
iterative interchange of information (belief propagation)
between symbol nodes (which represent bits of the received
vector r) and parity-check nodes (which represent the parity-
check equations of the code) [2, 4]. This iterative process of
interchanging information is stopped if condition (1) is
verified, or if a given number of iterations is reached.

3 LogSP decoding algorithm

The low complexity logarithmic version of the SP algorithm,
LogSP, has been described in [3, 4]. For convenience, a brief
description of this algorithm is developed below.

We assume that the code words are transmitted in
normalised polar format with amplitudes +1. If yj is the
received symbol from the channel at instant j, then the
initial probability Fx

j that the jth symbol is x, (x ¼ {0,1}) is
given by MacKay and Neal [1]

F1
j = e−f 1

j = 1

1 + e−2yi/s
2 (2)

F0
j = e−f 0

j = 1 − F1
j (3)

where f x
j is related to Fx

j by an exponential operation and s2 is
the noise variance. Table 1 summarises the steps of this
algorithm. For a given parity-check matrix H, N(i) is the set
of indices of columns that have non-zero elements in row i,
and M(j) is the set of indices of rows with non-zero
elements in column j. The logarithmic process can be
significantly simplified by introducing correction factors
called f+(a, b) and f2(a, b), which in a practical
implementation, are determined by means of look-up tables
with entry |a 2 b| [3, 17], as described in Appendix 1.

The algorithm starts with the initialisation step, in which
the estimate values qx

ij (x [{0, 1}) are set to the initial
symbol estimate values obtained from the channel output,
so that qx

ij = f x
j . The following step, called horizontal step

1, involves the calculation of the quantities dqij. Parameter
sij determines the value of the addition performed in the
following step, called horizontal step 2, where quantities
drij and sdrij are determined. Even and odd values of sdrij

define in each case the calculation of quantities rx
ij in

horizontal step 3. Knowledge of the rx
ij values allows us to

determine the quantities cx
ij that in turn lead to the updating

of quantities qx
ij. This is known as the vertical step. A

similar procedure allows the evaluation of quantities cx
j that
IET Commun., 2012, Vol. 6, Iss. 12, pp. 1670–1675
doi: 10.1049/iet-com.2011.0767
then leads to an updated estimate of the decoded symbol for
the current iteration. The updated (soft) symbol estimate is
finally output from the decoder once the pre-determined
number of iterations have been completed.

4 LogSP decoder architecture

The FPGA implementation of the LogSP decoder can be seen
in Fig. 1. Memory ROM_H stores the positions of ones in the
parity-check matrix H. Its size depends on the number of ones
per row, and the number of rows of the matrix. For instance,
in our implementation we used randomly generated parity-
check matrices H1 and matrix H2 of dimensions (60 × 30)
and (1008 × 504) [18]; so the size of ROM_H is 256
words of 6 bits each, and the size of ROM_H is 4096
words of 10 bits each, respectively.

ROM_num_ones_rows stores the indices of the non-zero
elements of each row. This memory is used together with
ROM_H to determine the positions of ones in each parity
check matrix. Memories ROM_ ftable+ and ROM_ ftable2
contain the look-up tables f+(a, b) and f2(a, b),
respectively. Both tables consist of 256 words of 16 bits each.

RAM_ f0 and RAM_ f1 store values of f 0
j and f 1

j ,
respectively, each time a received word is input to the
decoder. Its size is the code block length n. Memories

Table 1 Summary of the LogSP algorithm

Initialisation

q0
ij = f 0

j q1
ij = f 1

j

Horizontal step 1

dqij = m �ax(−q0
ij , −q1

ij) − f−(q0
ij , q1

ij)

sij ¼ 0 if −q0
ij ≥ −q1

ij else sij ¼ 0

Horizontal step 2

drij ¼ Sdqij 2 dqij, sdrij ¼ SN(i)sij 2 sij

Horizontal step 3

if sdrij even

r0
ij = log(2) − f+(drij , 0)

r1
ij = log(2) + f−(drij , 0)

if sdrij odd

r0
ij = log(2) + f−(drij , 0)

r1
ij = log(2) − f+(drij , 0)

Vertical step

cx
ij = −f x

j − SM(j)r
x
ij + rx

ij

q0
ij = −c0

ij + m �ax(c0
ij , c1

ij) + f+(c0
ij , c1

ij)

q1
ij = −c1

ij + m �ax(c0
ij , c1

ij) + f+(c0
ij , c1

ij)

Estimation of decoded symbol r̂j

cx
j = −f x

j + SM(j)r
x
ij

r̂j = 0 if c0
j ≥ c1

j else r̂j = 1

Fig. 1 LogSP decoder architecture FPGA implementation using
ALTERA [5]
1671

& The Institution of Engineering and Technology 2012

www.ietdl.org
RAM_q0 and RAM_q1 contain the same number of words as
ROM_H, but they are of 16 bits. Memories RAM_q0 and
RAM_q1 are used for many purposes. They store values of
q0

ij and q1
ij in the initialisation step. RAM_q0 stores values

of dqij and RAM_q1 stores the values of sij, in horizontal
step 1. They store values of drij and sdrij in horizontal step
2, and values of r0

ij and r1
ij in horizontal step 3. Finally, they

store values of q0
ij and q1

ij in the vertical step. Thus, there is
a high degree of reuse for these memories.

5 SSD decoding algorithm

In the SSD algorithm, with the same initial assumptions as in
Section 3, probabilities are replaced by squared Euclidian
distance values [5, 7]. Following a procedure detailed in
[6], the use of logarithmic calculations leads to the SSD
decoding algorithm [19]. Table 2 summarises the SSD
algorithm. It can be seen that the calculations involved are
sums, subtractions, comparisons and look-up tables.

We describe below the proposed algorithm and its
simplified version. More detailed descriptions can be found
in [6].

5.1 Soft distance (SD) iterative decoding
algorithm: an introduction

We will briefly describe the SD algorithm by applying it to
the factor (Tanner) graph [1, 2, 19] of a binary LDPC error-
correcting code. As usual, the graph has n symbol nodes
and m parity nodes, with edges, as defined by the parity-
check matrix of the code, connecting the symbol and parity
nodes. SD metric information will be passed from symbol
nodes to parity nodes (the horizontal step in the algorithm),
and then from parity nodes to symbol nodes (the vertical
step), in an iterative manner.

Assuming the transmission of coded binary information
c = (c1 c2 . . . cj . . . cn) in normalised polar format
with signals of amplitudes +1, and for a received vector

Table 2 Summary of the SSD algorithm

Initialisation

q0
ij = d2

0 (j), q1
ij = d2

1 (j)

Horizontal step

aij = f+(q0
ij , q1

ij)

bij = −f−(q0
ij , q1

ij)

If (−q0
ij) ≥ (−q1

ij) sij = 0 else sij = 1

cij = Sk[N(i)\j bik − Sk[N(i)\j aik

if Ssik is even

r0
n,ij = −f+(0, cij)

r1
n,ij = f−(0, cij)

if Ssik is odd

r0
n,ij = f−(0, cij), r1

n,ij = −f+(0, cij)

Vertical step

q0
ij = d2

0 (j) + Sk[M(j)\i r
0
n,kj , q1

ij = d2
1 (j) + Sk[M(j)\i r

1
n,kj

Decision

d̂2
0 (j) = r0

n,ij + q0
ij , d̂2

1 (j) = r1
n,ij + q1

ij

if d̂2
1 (j) , d̂2

0 (j) then ĉ(j) = 1 else ĉ(j) = 0ĉ(j) = 0
1672

& The Institution of Engineering and Technology 2012
r = (r1 r2 . . . rj . . . rn), we calculate the vectors

d2
0(j) = (rj + 1)2, d2

1(j) = (rj − 1)2, j = 1, 2, . . . , n

(4)

These first soft estimates of the code symbols are used to
initialise the algorithm by setting the following coefficients
q0

ij and q1
ij at each symbol node

q0
ij = d2

0(j), q1
ij = d2

1(j), j = 1, 2, . . . , n,

i = 1, 2, . . . , m (5)

These are then passed to the parity-check nodes (first
horizontal step) connected to each symbol node, where the
following coefficients are computed

r0
ij = − log2

∑
s:sj=0

[2−(Sk[N (i)\jq
x
ik)]

r1
ij = − log2

∑
s:sj=1

[2−(Sk[N (i)\jq
x
ik)], x [{0, 1}

(6)

Here N(i)\j is the set of indexes of the symbol nodes
connected to the parity node hi, excluding the symbol node
sj. The inner summations add together the q values
corresponding to all the possible 0-state or 1-state
configurations of the N(i)\j code symbols connected to
parity check node hi, and the negative antilogs of these
coefficient sums are then added in the outer summation.
Coefficients r0

ij and r1
ij are then passed back (first vertical

step) to symbol node sj. At each symbol node sj the initial
values of q0

ij and q1
ij are added to the r values passed from

each node connected to it, to form a second symbol
estimate at each node

q0
ij = d2

0(j) +
∑

k[M (j)\i

r0
kj, q1

ij = d2
1(j) +

∑
k[M (j)\i

r1
kj (7)

Here M(j)\i is the set of indexes of all the parity nodes
connected to the symbol node sj, excluding parity node hi.
These horizontal and vertical steps are then iterated an
appropriate number of times to give a final estimate for
each received symbol, given by

d̂2
j = arg min

x
d2

x (j) +
∑

k[M (j)

rx
kj

[]
(8)

Since the SD algorithm and the LogSP algorithm [1, 2, 19]
have a similar factor graph processing structure, the new
algorithm may seem to be a variant of the LogSP algorithm
and its simplified versions, but this is not the case. The
fundamental difference lies in the metric used: in the new
algorithm the variables being computed are just soft
(Euclidean) distances, not log-likelihoods.

5.2 Simplified version of the SD algorithm

The SD antilog-sum algorithm described in the previous
section can be simplified, to create the SSD algorithm.

Determining the number of state configurations required to
calculate the expressions in (3) is a complex task. This
problem can be controlled by adapting a technique
originally proposed by MacKay and Neal [1]. This involves
IET Commun., 2012, Vol. 6, Iss. 12, pp. 1670–1675
doi: 10.1049/iet-com.2011.0767

www.ietdl.org
working with sums and differences of distance antilogs, as the
following expressions for the horizontal step indicate. We
define

Qx
ij = b−qx

ij , Rx
ij = b−rx

ij , x [{0, 1} (9)

and

Aij = Q0
ij + Q1

ij = baij , Bij = Q0
ij − Q1

ij = (−1)sij bbij (10)

R0
ij + R1

ij =
∏

k[N (i)\j

Aik , R0
ij − R1

ij =
∏

k[N (i)\j

Bik (11)

and so

R0
ij =

1

2

∏
k[N (i)\j

Aik +
∏

k[N (i)\j

Bik

()

R1
ij =

1

2

∏
k[N (i)\j

Aik −
∏

k[N (i)\j

Bik

() (12)

Equations (7) involve logarithmic operations over sums or
subtracts, which can be solved as detailed in Appendix
1. Similar expressions apply to the vertical step.

Although working with the sums and differences of the
distance antilogs helps to reduce overflow and underflow
problems, we have found that overflow problems still
remain when using a relatively large number of decoding
iterations. In order to avoid this, Rx

ij values are normalised
in the following way at the end of each iteration

Rx
N ,ij = Rx

ij

2

R0
ij + R1

ij

()
= Rx

ij

2

Dij

()
(13)

rx
n,ij = − logb (Rx

N ,ij) (14)

By implementing all the above simplifying procedures, as
detailed in [6], the proposed algorithm ends at the form of
the so-called SSD algorithm, whose final form can be seen
in Table 1.

Finally, and as also described in [6], some consideration
has to be given to the selection of parameter b, the base of
the logarithmic calculation for evaluating functions f+(a, b)
and f2(a, b). This parameter depends on the rate Rc of the
code, and it has to be properly selected for obtaining the
best BER performance. Results shown in this paper are for
codes of different rates in order to give examples of the
different cases.

6 SSD decoder architecture

The FPGA implementation of the SSD decoder is seen in
Fig. 2. As before, memory ROM_H stores the positions or
indices of the ones of the parity check matrix H. The
number of words and of bits per word is the same as in
Section 4, as the same matrices H1 (60 × 30) and H2

(1008 × 504) are used. ROM_num_ones_rows stores the
indices of the non-zero elements of each row. This memory
is used together with ROM_H to determine the positions of
ones in each parity-check matrix. Memories ROM_ ftable+
and ROM_ ftable2 contain the look-up tables f+(a, b) and
f2(a, b), respectively, both having 256 words of 16 bits each.
IET Commun., 2012, Vol. 6, Iss. 12, pp. 1670–1675
doi: 10.1049/iet-com.2011.0767
RAM_d20 and RAM_d21 store values of d2
0 and d2

1 ,
respectively, each time a received word is input to the
decoder. Its size is the code block length n. Memories
RAM_q0 and RAM_q1 contain the same number of words
as ROM_H, but they are of 16 bits. As before, memories
RAM_q0 and RAM_q1 are used for many purposes. They
store values of d2

0 and d2
1 in the initialisation step. RAM_q0

stores values of aij and RAM_q1 stores values of bij, in the
horizontal step, as well as the values of Sk[N(i)\jbik,
Sk[N(i)\jaik, r0

ij and r1
ij. Finally, values of q0

ij and q1
ij are

stored in the vertical step. Thus, there is a high degree of
reuse for these memories. Memory RAM_sign stores sij in
the horizontal step and sdrij ¼ SN(i)sij 2 sij in the horizontal
step.

7 Complexity aspects

In order to analyse the complexity of the two decoding
algorithms, we first define t ¼ M(j)av as the average
number of ones per column, and v ¼ N(i)av as the average
number of ones per row, where m ¼ n 2 k. Usually it is
true that [4]

v = nt/m (15)

For an LDPC code of rate 1/2, m ¼ n/2, then

v = 2t (16)

Table 3 shows a comparison of the complexity of the two
simplified decoding algorithms LogSP and SSD, together
with the corresponding complexities of the original
decoding algorithms SP and SD, for codes of rate 1/2 [the
(60,30) LDPC and the (1008,504) LDPC codes], for which
t ¼ 3 and v ¼ 6. As can be seen, the SSD algorithm
involves slightly fewer calculations that the LogSP
algorithm. Even though the SSD and LogSP algorithms
require more sums and subtracts than the classic SP
algorithm, they do not make use of products or quotients,
and thus are algorithms of significantly less complexity.

Fig. 2 SSD decoder architecture FPGA implementation using
ALTERA [5]

Table 3 Complexity analysis of LDPC decoders (t ¼ 3 and v ¼ 6)

Algorithm SD SSD SP (MacKay–Neal) LogSP

products – – 36n –

quotients – – 6n –

sums 402n 72n 15n 78n

comparisons 90n 21n – 24n

look-up tables 18n 12n – 21n
1673

& The Institution of Engineering and Technology 2012

www.ietdl.org
8 Simulation results

FPGA implementations of the corresponding LogSP and SSD
decoding algorithms were designed for the (60,30) LDPC
code, and the (1008,504) LDPC code, as well as the
(96,32) and (273,191) LDPC codes, using the VHDL
programming language [20]. QUARTUS II from ALTERA
[21] has been used as a synthesis tool. Decoding algorithms
were implemented in the Altera DE2 Development Board
[22]. The DE2 board contains a Cyclone II 2C35 FPGA.
Cyclone II 2C35 FPGA includes 33 216 logic elements,
105 4K RAM blocks, 483 840 total RAM bits, 4 PLLs, 475
user I/O pins and a FineLine BGA 672-pin package [8].
Maximum clock frequency has been determined using the
classic timing analyser tool of the program QUARTUS II
[21].

Tables 4–7 show the characteristics of the implementation
of each FPGA decoder. The SSD decoder FPGA
implementations are faster than the LogSP decoder FPGA
implementations for all the codes, and they use smaller
numbers of logic components and registers.

With proper design of the look-up tables for the log
functions f+(a, b) and f2(a, b) (typically tables of 256

Table 4 Characteristics of the logSP and SSD decoder

implementations for the (60,30) LDPC code

(60,30) LDPC code

hardware used logSP SSD

device EP2C35F672C6 EP2C35F672C6

family cyclone II cyclone II

logic elements 1036 882

registers 394 387

memory bits 15 968 20 320

clock frequency 101.67 MHz 112.38 MHz

Table 5 Characteristics of the logSP and SSD decoder

implementations for the (1008,504) LDPC code

(1008,504) LDPC code

hardware used logSP SSD

device EP2C35F672C6 EP2C35F672C6

family cyclone II cyclone II

logic elements 1109 951

registers 435 428

memory bits 210 944 219 136

clock frequency 94.43 MHz 118.11 MHz

Table 6 Characteristics of the logSP and SSD decoder

implementations for the (96,32) LDPC code

(96,32) LDPC code

hardware used logSP SSD

device EP2C35F672C6 EP2C35F672C6

family cyclone II cyclone II

logic elements 1074 720

registers 410 388

memory bits 28 352 32 448

clock frequency 102 MHz 135.67 MHz
1674

& The Institution of Engineering and Technology 2012
entries), there is no significant BER performance
degradation with respect to the use of the ideal function.
Fig. 3 shows the BER performance of the (60,30) LDPC
code and the (1008,504) LDPC code, for the SSD and
LogSP algorithms. Fig. 4 shows the BER performance of
the (96,32) LDPC code and the (273,191) LDPC code, for
the SSD and LogSP algorithms. In addition, there are no
significant differences between the performance of the
original and simplified algorithms [6, 19].

Table 7 Characteristics of the logSP and SSD decoder

implementations for the (273,191) LDPC code

(273,191) LDPC code

hardware used logSP SSD

device EP2C35F672C6 EP2C35F672C6

family cyclone II cyclone II

logic elements 1074 915

registers 415 406

memory bits 41 984 45 568

clock frequency 95.36 MHz 106.17 MHz

Fig. 3 BER performances of the (60,30) LDPC decoder and of the
(1008,504) LDPC decoder for the implemented decoding algorithms

Fig. 4 BER performances of the (96,32) LDPC decoder and of the
(273,191) LDPC decoder for the implemented decoding algorithms
IET Commun., 2012, Vol. 6, Iss. 12, pp. 1670–1675
doi: 10.1049/iet-com.2011.0767

www.ietdl.org
9 Conclusions

In this paper, we have presented designs for FPGA
implementations of SISO decoders for the (60,30) LDPC
code, the (1008,504) LDPC code, the (96,32) LDPC code
and the (273,191) LDPC code, using novel LogSP and SSD
iterative algorithms. These are generic algorithms which can
be used with codes of any rate and parity-check matrices of
arbitrary structure. The algorithms are particularly suited to
FPGA implementation, because they do not involve the use
of multiplications or divisions, only requiring sums,
subtractions, comparisons and look-up tables. The look-up
tables replace ideal logarithm calculations, but there is no
significant loss of performance if the table is carefully
designed; we have found 256 entries to be perfectly
adequate. The LogSP and SSD algorithms have virtually
the same BER performance as the original SP and SD
algorithms from which they are derived [19].

The SSD algorithm has two advantages over the LogSP
algorithm: it has a slightly lower complexity, but more
significantly the decoding process does not require
knowledge of the SNR of the channel. This latter advantage
is important because it removes the need to measure the
SNR, or to provide a means of compensating for the lack of
knowledge of the SNR. Both these alternatives add
significantly to the complexity and practicality of effective
decoding. However, we emphasise that both the SSD and
LogSP algorithms are significantly less complex than the
original SD and SP algorithms, indicating that it is possible
and practical to design low complexity SISO decoders for
powerful LDPC codes with no loss of performance.

10 References

1 MacKay, D.J.C., Neal, R.M.: ‘Near Shannon limit performance of low
density parity check codes’, Electron. Lett., 1997, 33, pp. 457–458

2 Gallager, R.G.: ‘Low density parity check codes’, IRE Trans. Inf.
Theory, 1962, IT-8, pp. 21–28

3 Arnone, L., Gayoso, C., González, C., Castiñeira, J.: ‘Sum-subtract fixed
point LDPC decoder’, Latin Am. Appl. Res., 2007, 37, pp. 17–20

4 Castiñeira Moreira, J., Farrell, P.G.: ‘Essential of error-control coding’
(John Wiley and Sons, 2006), Ch. 8

5 Farrell, P.G.: ‘Decoding error-control codes with soft distance as the
metric’. Proc. Workshop on Mathematical Techniques in Coding
Theory, Edinburgh, UK, 2008

6 Farrell, P.G., Arnone, L., Castiñeira Moreira, J.: ‘Euclidean distance
soft-input soft-output decoding algorithm for LDPC codes’, IET
Commun. Inst. Eng. Technol, 2011, 5, (16), pp. 2364–2370

7 Farrell, P.G., Castiñeira Moreira, J.: ‘Soft-input soft-output Euclidean
distance metric iterative decoder for LDPC codes’. Proc. Argentine
Symp. on Computing Technology (AST 2008), Santa Fe, Argentina,
2008

8 http://www.altera.com, ‘Cyclone II Device Family Technical
Information’

9 Zhang, T., Parhi, K.: ‘54 Mbps (3,6)-regular FPGA LDPC Decoder’.
Signal Process. Syst., 2002. (SIPS’02). IEEE Workshop, 2002, vol. 1,
pp. 127–132

10 Bhagawat, P., Uppal, M., Choi, G.: ‘FPGA based implementation of
decoder for array low-density paritycheck codes’. Proc. IEEE Int.
IET Commun., 2012, Vol. 6, Iss. 12, pp. 1670–1675
doi: 10.1049/iet-com.2011.0767
Conf. Acoustics, Speech, and Signal Processing, 2005. (ICASSP’05),
2005, vol. 5, pp. 29–32

11 Beuschel, C., Pfleiderer, H.: ‘FPGA implementation of a flexible
decoder for long ldpc codes’. Int. Conf. on Field Programmable Logic
and Applications, 2008, FPL 2008. vol. 1, pp. 185–190

12 Cui, Z., Wang, Z.: ‘A 170 Mbps (8176, 7156) quasi-cyclic LDPC
decoder implementation with FPGA’. Proc. 2006 IEEE Int. Symp. on
Circuits and Systems, 2006, ISCAS 2006. vol. 1, pp. 5095–5098

13 Chen, X., Kang, J., Lin, S., Fellow, L., Akella, V.: ‘Memory system
optimization for FPGAbased implementation of quasi-cyclic LDPC
codes decoders’, IEEE Trans. Circuits Syst. I: Regular Papers, 2011,
58, (1), pp. 98–111

14 Zarubica, R., Wilson, S., Hall, E.: ‘Multi-Gbps FPGA based low density
parity check (LDPC) decoder design’. IEEE Global
Telecommunications Conf., 2007. GLOBECOM’07, vol. 1,
pp. 548–552

15 Sha, J., Gao, M., Zhang, Z., Li, L., Wang, Z.: ‘A memory efficient
FPGA implementation of quasi-cyclic LDPC decoder’. Proc. Fifth
WSEAS Int. Conf. on Instrumentation, Measurement, Circuits and
Systems, 2006, vol. 1, pp. 218–223

16 Ku, M.K., Li, H.S., Chien, Y.H.: ‘Code design and decoder
implementation of low-density parity-check code’. Emerging
Information Technology Conf., 2005

17 Bhatt, T., Narayanan, K., Kehtarnavaz, N.: ‘Fixed point DSP
implementation of low-density parity check codes’. Proc. IEEE
DSP2000, 2000

18 http://www.inference.phy.cam.ac.uk/mackay/CodesGallager.html
19 Farrell, P.G., Arnone, L., Castiñeira Moreira, J.: ‘FPGA implementation

of a Euclidean distance metric SISO decoder’. Proc. 10th Int. Symp.
Communications Theory and Applications (ISCTA’09), Ambleside,
UK, 2009

20 Terés, L., Torroja, Y., Olcoz, S., Villar, E.: ‘VHDL. Lenguaje Estándar
de Diseño electrónico’ (McGraw-Hill/Interamericana de España,
Madrid, 1997)

21 Quartus II Software. Available at: http://www.altera.com
22 DE2 Development and Education Board. Available at: http://www.

altera.com

11 Appendix

If C ¼ ec, Aea and B ¼ eb, then C ¼ A + B can be determined
as

c = max(a, b) + ln(1 + e−|a−b|) (17)

For C ¼ A + B or C ¼ (21)z ec ¼ (21)z|C| with
|C| ¼ |A 2 B| and z ¼ 0 if A . B else z ¼ 1, then

c = max(a, b) + f+(a, b)

c = max(a, b) − f−(a, b)
(18)

where

f+(a, b) = ln(1 − e−|a−b|) (19)

f−(a, b) = |ln(1 − e−|a−b|)| (20)

Logarithmic calculations in (17) and (18) can be solved by
using look-up tables f+(a, b) and f2(a, b) with entry |a 2 b|.
1675

& The Institution of Engineering and Technology 2012

