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 In the last decades, the development of computerized adaptive testing (CAT) has allowed more 

precise measurements with a smaller number of items. In this study, we develop an item bank 

(IB) to generate the adaptive algorithm and simulate the functioning of CAT to assess the 

domains of mathematical knowledge in Argentinian university students (N=773). Data were 

analyzed from the Rasch model. A simulation design created with the R software was used to 

determine the necessary items of the IB to estimate examinee ability. Our results indicate that 

the IB in the domains of mathematical knowledge is adequate to be applied in CAT, especially to 

estimate average ability levels. The use of CAT is recommended for rapidly generating indicators 

of the knowledge acquired by students and to design educational strategies that enhance 

student performance. Results, constrains, and implications of this study are discussed. 

Keywords: Rasch model, item bank, domains of mathematical knowledge, adaptive test, 

higher education, simulation 

INTRODUCTION 

Mathematical literacy forms an integral part of the basic content in the plan of studies of diverse 

disciplines, such as physical, medical, and social sciences (Lindquist et al., 2017), and in different educational 

levels, namely, primary, secondary, and university education (Doran, 2017; Scheffield, 2005). At university, 

gaining mathematical competencies and skills usually generates difficulties, manifested in student low 

achievement in mathematics (Rodriguez et al., 2015). Precise assessment measurements are required to 

identify mathematical content either acquired or not by students and to generate strategies to improve the 

teaching-learning process and the educational quality of institutions (Flores & Gómez, 2009).  

As mentioned, poorly developed mathematical performances have been reported in all educational levels. 

In relation to this, Engelbrecht et al. (2007) identified that, in technical secondary schools, students showed 

deficits in learning mathematical procedures, as a result of their unfamiliarity with content area questions in 

the educational course. Similarly, mathematics tests were found to cause greater anxiety compared with 
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other subject areas (e.g., language, science) (Putwain et al., 2010), and in specific university studies such as 

engineering (Karjanto & Yong, 2013). 

A system that has become relevant in the last decades is the one consisting of large-scale assessments 

with the structure of computerized adaptive testing (CAT) (Chang, 2015). These standardized tools combine 

technology and innovation in education (Lee Bouygues, 2019). In contrast to traditional assessment tests, with 

CAT, each examinee is presented with a tailor-made test which determines the level of the student knowledge 

in a specific subject area, reducing test times/length, maximizing measurement precision and efficiency, 

delivering immediate results, and helping to significantly decrease costs (Barrada et al., 2006).  

In addition, CAT is particularly useful in distance education and evaluation (Kaya & Tan, 2014). This 

assessment tool is designed to adapt their level of difficulty in view of the responses provided by test-takers, 

thus matching the examinee’s knowledge and ability. If a student gets their question wrong, the test will follow 

up with an easier question, but if the student gets their question right, the following question will be more 

challenging (Costa & Ferrao, 2015); thus, ensuring equitable outcomes (Aybek & Demirtasli, 2017; Han, 2018). 

Diverse studies indicate that CAT reduces by up to 50% the number of items and administration time, 

providing measurements with a higher level of precision with a lower number of items (Kingsbury & Houser, 

1999; Wainer, 2000).  

In particular, studies have identified that assessment methods affect students’ performance in 

mathematics (Pollock, 2002), and there is evidence that students who respond to CAT, on average, perform 

better than those who take traditional assessments (Čisar et al., 2016). In addition, this type of test is useful 

for answering content questions, e.g., mathematics. It also helps reduce the level of test anxiety in 

mathematics as the system adapts to the student’s ability level (Linacre, 2000). CAT is developed from 

psychometric models (usually one- or two-parameter models) based on the item response theory (IRT). Using 

the Rasch model allows determining which items in a test can be solved by an examinee (Baker & Kim, 2004). 

This enables designing intervention strategies that help examinees without ability or without the required 

knowledge of the content assessed in the items. Furthermore, it allows placing items and persons along the 

same latent continuum (unit of measurement logit) with the purpose of developing and calibrating a set of 

items with varying degrees of difficulty to assess different ability levels (Čisar et al., 2010).  

The development and calibration of an Item Bank (IB) are the first steps to design CAT. These procedures 

imply that the set of items must be applied to a sample of participants to establish its psychometric properties 

from the Rasch model or from other IRT model. This set of items must have adequate psychometric 

properties; otherwise, the results obtained would not be reliable enough (Tseng, 2016). Sometimes, the items 

from IBs are administered in sets distributed in different forms; in these cases, the difficulty parameters of all 

items must be placed in a common metric (a procedure called equating). The mean-sigma method (Navas, 

1996) is one of the most commonly used equating procedures due to its simplicity and stable estimation 

parameters. This method defines the values of the constants of the slope of line (k) and intercept (d), using 

the mean (M) and standard deviations (SD) of the difficulty parameters of the anchor items (Kolen & Brennan, 

2014). 

The performance of CAT is established from predetermined rules. First, we define test starting rules, e.g., 

delimiting difficulty level at the beginning of the test. Then, we determine how the next items will be selected. 

Finally, we specify estimation method and criterion for ending item administration (Phankokkruad, 2012). One 

of the strategies applied when designing CAT involves the use of simulation studies in the different stages of 

its development (planning, building, quality control of the items, and algorithm development; Han, 2018). This 

procedure allows a faster and more economic approximation to datasets than that provided by the actual 

application of CAT. It also allows researchers to fix the examinee true ability level and collect data with a lower 

level of bias and standard errors (Olea et al., 1999); thus, obtaining quality information about the IB developed. 

Although several studies conducted in Argentina report the use IRT models for the development and 

calibration of IBs assessing different domains of knowledge (e.g., biology, law, history, and literature) in 

university students (Cupani et al., 2016, 2017; Ghio et al., 2019), there is not yet an IB which evaluates the 

domains of mathematical knowledge. Hence, in this work we propose the development of an IB to be applied 

in adaptive tests in domains of mathematical knowledge, with content covering the first years of the programs 

of studies required in higher education. This research aims at:  
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(a) formulating a set of items in the domains of mathematical knowledge;  

(b) applying and calibrating the items in these domains of knowledge;  

(c) developing the algorithm of the adaptive test; and  

(d) assessing the number of items needed/required to estimate ability levels with the IB created, using a 

simulation design. 

MATERIALS AND METHODS 

Participants 

The sample consisted of 773 participants, 38.6% (298) female, 56.8% (439) male, and 4.6% (36) unreported 

sex, with an age range of 18-58 (M=20.14, SD=4.83). Participants were students from the School of Economics 

(FCE-UNC) (26%), School of Exact, Physical and Natural Sciences (FCEFyN-UNC) (47.2%), School of Mathematics, 

Astronomy and Physics (FAMAF-UNC) (1.9%), from National University of Córdoba (UNC), National 

Technological University (UTN) in Córdoba (24.1%), and Aeronautical University Institute (IUA) (0.8%). At the 

time of the test, students were attending subjects from the first (31.4%), second (28.3%), third (17.5%), fourth 

(3.1%), and fifth (0.6%) year of their degree program of studies, respectively; 19% of the students did not 

report the year of attendance. Participants responded to 271 questionnaires (Form A), 251 questionnaires 

(Form B), and 251 questionnaires (Form C) comprising the test.  

Procedure  

Prior consent was given by the different academic departments. Tests were administered collectively 

during regular class time under the supervision of the teacher in charge. Students were informed that 

questionnaires would be completed anonymously and voluntarily; that the test consisted of 30 multiple-

choice questions with one correct option only; and that it would take 50 to 60 minutes/and that it would take 

no longer than 60 minutes. 

Instrument 

Item bank of the general knowledge test–Domains of mathematical knowledge 

Different activities to ensure the adequate building of an instrument must be performed so that the test 

measure precisely and reliably the domains it is supposed to measure (Downing & Haladyna, 2006; Rojas-

Torres & Ordóñez, 2019). To design the item pool and response model, we carried out the following tasks:  

a. Content analysis and specification table: We analyzed mathematics content in the syllabi of 11 

curricula from different university schools and colleges, in the city of Córdoba, Argentina. With the 

collected information, we created a spreadsheet (Excel) specifying program, year of attendance to 

which the program belongs to, general content, and specific content. Then, we performed a frequency 

analysis and consulted experts (professors of this programs) in mathematical contents about the 

pertinence of the selected contents and their difficulty level, which resulted in the contents with the 

highest importance: functions, derivatives, integration, integers, complex numbers, and real numbers, 

among others (Table 1). The experts identified frequent or infrequent content in the curriculum at that 

level, and main or secondary content that should be acquired by the students. Informative items were 

drawn up on the basis of mathematics content and degree of difficulty (Cupani et al., 2016). 
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b.  Writing and development of items: Items were developed by content specialists, namely, 

mathematics professors. They received training in how to design multiple-choice questions 

(Moreno et al., 2004). Questions were arranged in cards including: identification code, concept, 

assessed cognitive category, correct choice, bibliographical source and name of the person who 

wrote the question. In addition, item writers were asked to provide a subjective assessment of 

the level of difficulty (easy, medium, and difficult) of each item according to the level of knowledge 

and ability required, thus allowing item calibration during the phase of test design, assembly, and 

production. This commonly reduces examinee exposure to difficult items at the beginning of the 

test. In total, 108 items were developed, each with three options and one correct answer. 

Following numerous studies, we devised three-option multiple-choice items, which reduce test 

length without affecting test measurement accuracy and psychometric quality. Moreover, the 

reduce test length allows include new content in the assessment. The writers don´t always 

manage to write more than three plausible, but incorrect, options and also do not guarantee 

controlling the guessing effect (Gierl et al., 2017; Haladyna & Rodriguez, 2013; Rodriguez, 2005). 

All test items were thoroughly reviewed, revised, and edited to conform to test structure and 

format, meet pre-determined test criteria and ensure grammaticality, readability, and 

information validity and reliability. People trained in item writing and editorial control reviewed 

the items written to analyze aspects of content, style, format, writing, and grammar according to 

the guidelines for writing multiple-choice items. 

c. Test design, assembly, and production: 60 items were selected out of the 108 initial items. The 

selection was performed considering the most pertinent level 1 content and the rating provided 

by the expert judges (Table 2). Three versions of the test were made: Form A (30 items), Form B 

(30 items), and Form C (30 items). The classification of items into forms was made according to 

both: increasing degree of difficulty and content area, with answer options randomly presented. 

Anchor items (15 items) and free items (15 items) were established in each form. The three 

versions had the same format: a) a booklet with questions in double-sheet format, and b) a 

response protocol to organize the examinee scores with spaces for the response choice (A, B, or 

C). 

Table 1. Content and number of items included according to the level of importance of the specific content 

area for the domains of mathematical knowledge 

Content Number of items Percentage (%) Content Number of items Percentage (%) 

Function 16 14.81 Function variation 2 1.85 

Matrix 11 10.19 Mathematical logics 2 1.85 

Integral 9 8.33 Complex number 1 0.93 

Vector space 9 8.33 Continuity 1 0.93 

Derivative 8 7.41 Circumference 1 0.93 

Equation 7 6.48 Set 1 0.93 

Series 7 6.48 Counting 1 0.93 

Vector 5 4.63 Graph 1 0.93 

Real number 5 4.63 Field 1 0.93 

Limit 4 3.70 Operation 1 0.93 

Straight line &plane 3 2.78 Mathematical induction  1 0.93 

Determinant 3 2.78 Addition 1 0.93 

Integer 3 2.78 Curve 1 0.93 

Succession & series 2 1.85 Topology 1 0.93 

Note. Total number of items=108; Total percentages (%)=100 
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Data Analysis 

Rasch model: Analysis of the items in the mathematical domains  

The software RUMM2030 (Andrich et al., 2010) was used for data analysis of the Rasch model. We 

inspected and reported the fulfilment of uni-dimensionality assumptions, local independence, person and 

item fit, reliability, and differential item functioning (DIF) for each version of the test. 

Uni-dimensionality: We followed the method proposed by Smith (2002) to determine instrument uni-

dimensionality using principal component analysis (PCA) for residuals. Observing the first residual factor, we 

delimited two item groups, one with positive charges >.30 and another with negative charges >.30. Paired t-

tests were used to determine the presence of significant differences between the estimation of persons in 

both item groups. This assumption requires that the percentage of tests outside the range from -1.96 to 1.96 

does not exceed 5% (Smith, 2002). 

Local Independence: The dependence between items was assessed through the correlation matrix of the 

residues. Those correlations ≥.2 indicate associations between the items (Andrich et al., 2010).  

Global fit of data to the Rasch model, items, and persons: Data behave as expected for the model 

when the M is close to 0 and the SD is close to 1. Besides, there is an adequate fit when, observing the behavior 

of items and persons, the standardized residual statistics remains within the values +/-2.5 (Pallant & Tennant, 

2007). The Chi-square (χ2) statistics/test was also used to indicate that the data fitted to the model. We 

obtained an χ2 value for the total items of each form and, in turn, we used the χ2 of each item to determine 

the individual fit of the item to the model. A significant χ2 Bonferroni fit <.05 indicates mismatch of data to the 

Rasch model, compromising invariance (Tennant & Conaghan, 2007). Data fit to the model when the χ2 value 

is low and the p-value >.05 (Cavanagh & Waugh, 2011).  

Reliability index: The Person’s separation index (PSI) is the measure of the internal consistency of the 

instrument, where .70 is an optimal value in group assessment, and .85 in individual assessment (Tennant & 

Conaghan, 2007).  

Differential item functioning (DIF): DIF was analyzed in relation to participant sex. Differential 

functioning occurs when different subgroups (e.g., women and men) with the same ability level display a 

different behavior in their responses (Tennant & Conaghan, 2007). The characteristic curves of items were 

analyzed to identify DIF. An item was defined to present DIF when the test of hypothesis associated to the DIF 

index was significant, at a level of 5%. 

Equating of the items forming the IB of the mathematics test: The mean-sigma method was used to 

place, in a common metric, the difficulty parameters of the set of items of the three versions of the 

mathematics domain test with adequate psychometric properties. Equating is always performed from anchor 

items, equating the scores to the version with the best psychometric properties. 

Development and simulation of the algorithm for the adaptive test: To determine the number of 

items in the mathematics test needed to estimate the examinee ability, we used a design of simulations 

generated with the software R (R Core Team, 2017). This design consisted of estimating 1,000 times, for each 

Table 2. Number of items per form (A, B, and C) and per specific content area of mathematics domains 

Content 
Number of items (%) 

 Content 
Number of items (%) 

Form A (%) Form B (%) Form C (%) Form A (%) Form B (%) Form C (%) 

Function 6 (20.00) 7 (23.33) 4 (13.33) Limit - - 1 (3.33) 

Matrix 4 (13.33) 5 (16.67) 6 (20.00) Determinant 1 (3.33) - - 

Integral 3 (10.00) 5 (16.67) 5 (16.67) Integer - - 1 (3.33) 

Vectorial space 3 (10.00) 1 (3.33) 3 (10.00) Succession & series 1 (3.33) - 1 (3.33) 

Derivative 2 (6.67) 3 (10.00) - Function variation - 1 (3.33) 1 (3.33) 

Equation 2 (6.67) 1 (3.33) 3 (10.00) Complex number 1 (3.33) - - 

Series 2 (6.67) 1 (3.33) 2 (6.67) Counting 1 (3.33) 1 (3.33) 1 (3.33) 

Vector 2 (6.67) 1 (3.33) - Mathematical induction - - 1 (3.33) 

Real number 2 (6.67) 3 (10.00) 1 (3.33) Addition - 1 (3.33) - 

Note. Total number of items per form is 30 and percentage (%) is 100 
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interest ability level, a process of simulation of responses to the algorithm of the adaptive test implemented 

in the mathematics test IB. 

The simulation of responses to the algorithm of the adaptive test for an interest ability level j consisted in 

the following process:  

(a) selection of the initial item;  

(b) random generation of response 1, using a Bernoulli distribution with 1=1±1.702;  

(c) selection of a new item considering response 1;  

(d) random generation of response 2, applying the process of response 1; and  

(e) repeating steps (c) and (d) until fulfilling the end condition of the adaptive algorithm. 

After the 1,000-simulation process estimation for an interest ability level, we obtained:  

(a) a vector with 1,000 final ability estimations through the adaptive test algorithm and  

(b) a vector with 1,000 values indicating the number of items used for the estimations of those abilities.  

The ability levels considered were: -1.5, -1.25, -1, -0.75, -0.5, -0.25, 0, 0.25, 0.5, 0.75, 1, 1.25, and 1.5. The end 

condition of the algorithm was the scope of a standard error of .5; if the condition was not fulfilled with 35 

items, the algorithm estimated ability with the responses gathered. The initial item was the closest to the 

ability level 0. 

RESULTS 

Item Analysis of the Mathematics Domains from the Rasch Model 

Analyses of each model (A, B, and C) were performed from the Rasch model. Table 3 shows a summary of 

the results of the initial study and the final study. The items of the final study formed the IB of the test of the 

mathematics domains (level I). 

Table 3. Summary of the initial and final versions of the fit of the mathematical knowledge test 

 
Residual fit of items Residual fit of persons Item-trait interaction 

PSI 
Uni-dimensionality 

Items n 
M SD M SD X2 (df) p Per C < 5% 

Form A 

Initial 0.21 1.37 0.02 0.95 173.74 (90) 0.00 .60 0.00 30 271 

Final 0.18 0.97 -0.00 0.90 139.11(81) 0.00 .65 0.00 27 269 

Form B 

Initial 0.20 1.24 -0.04 0.96 208.04(90) 0.00 .55 0.00 30 251 

Final 0.17 1.18 -0.03 0.93 199.11(87) 0.00 .57 0.00 29 249 

Form C 

Initial 0.28 1.33 -0.00 0.90 178.68(90) 0.00 .57 3.31 30 251 

Final 0.24 1.17 -0.01 0.89 157.95(87) 0.00 .59 2.11 28 250 

Note. M: Media; SD: Standard deviation; X2: Chi-square; df: Degrees of freedom; Per C<5%=±1.96; n: Participants per form 

Form A 

Items 25 (anchor), 6 (free), and 26 (free) were eliminated from the initial analysis because they did not fit 

the model; the participants with a response pattern contrary to those of the examinees with a similar ability 

level (cases 86 and 152) were also eliminated. After these modifications, the results of the final analysis 

indicate that the uni-dimensionality assumption (Per C <5%) was confirmed. A correlation >0.2 between item 

5 (integrals) and item 2 (matrices; 0.208) was observed in the correlation matrix of the residues; however, we 

decided to keep that item in the IB. The M and SD values for items and persons were close to 0 and 1, showing 

that the empiric data fitted the Rasch model. The global chi-square test was significant [χ2(81)=139.11, 

p=0.01], indicating that it did not fit the Rasch model. In the item-by-item analysis, only item 5 did not fit the 

chi-square test [χ2(3)=25.19, p<.001] with Bonferroni fit <.05. The PSI was .65, revealing mean reliability. No 

DIF was observed in relation to participant sex (Table 3). Figure 1 shows the distribution of item difficulty and 

people’s ability in Form A. 
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Form B 

After the initial analysis, we decided to eliminate item 25 (anchor) and two participants who did not fit the 

model. The uni-dimensionality assumption and local independence were met. In the final analysis, the M and 

SD of items and persons agreed with the expected values. A significant chi-square [χ2(87)=199.11, p<.01] was 

observed. The fit indices for each item showed that all items fitted the residual value ±2.5. However, in the 

chi-square test, items 24, 28, and 29 (Bonferroni <.05) did not fit it. A low reliability index was obtained (.57). 

No DIF was observed in participant sex (Table 3). Figure 2 shows the distribution of item difficulty and 

people’s ability in Form B. 

 

Figure 2. Distribution of item difficulty and people’s ability in Form B 

Form C 

Items 7 and 16 and one from participant responses were eliminated. In the final analysis, the uni-

dimensionality analysis was conducted. In the correlation matrix of the residuals, a correlation >.2 between 

item 20 (functions) and item 12 (variation of functions) of (.27) was observed. However, we decided to keep 

that item. The M and DF for items and persons were close to 0 and 1. The total chi-square test was significant 

[χ2(84)=157.95, p<.01]; because of that, we could not establish invariance through the trait. When considering 

the fit index, item 30 presented a residual value >2.5 (2.54). There was no fit in the chi-square index. The PSI 

 

Figure 1. Distribution of item difficulty and people’s ability in Form A 
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was .59. There was no DIF (Table 3). Figure 3 shows the distribution of item difficulty and people’s ability in 

Form C. From the 60 items used, 55 were kept for the test of mathematics domain IB. 

 

Figure 3. Distribution of item difficulty and people’s ability in Form C 

Equating of the Items Forming the IB of the Mathematics Test  

The IB consisted of 55 items. The items were taken from the three versions considered in the study. The 

difficulties of Form A and Form C were equated to those of Form B, which was the one with the highest number 

of items with good psychometric properties. Fourteen anchor items were used; an anchor item (25) was 

eliminated as it did not present adequate psychometric properties (Table 4). 

Table 4. Item difficulty equated to Form B of the mathematics domain test 

Form B Form A Form C 

Item b Content Item b original b equated Content Item b original b equated Content 

1 -1.904 Functions 1 -1.644 -1.904 Functions 1 -2.39 -1.904 Functions 

2 -1.397 Matrices 2 -1.279 -1.397 Matrices 2 -1.656 -1.397 Matrices 

3 0.689 Functions 3 0.839 0.689 Functions 3 0.707 0.689 Functions 

4 0.139 Matrices 4 0.21 0.139 Matrices 4 -0.267 0.139 Matrices 

5 -0.817 Integrals 5 -0.954 -0.817 Integrals 5 -1.264 -0.817 Integrals 

6 -0.417 Functions 
   

Functions 6 0.62 0.857 Vectorial 

spaces 

7 -1.577 Integrals 7 0.742 0.940 Vectorial 

spaces 

   
Equations 

8 0.856 Series 8 -0.071 -0.007 Derivatives 8 1.719 1.865 Real numbers 

9 0.857 Vectors 9 0.361 0.496 Series 9 -0.312 0.002 Matrices 

10 -0.58 Real 

numbers 

10 -1.407 -1.564 Real numbers 10 -0.152 0.148 Series 

11 -0.138 Functions 11 -0.093 -0.138 Functions 11 -0.739 -0.138 Functions 

12 0.515 Functions 12 0.269 0.515 Functions 12 0.295 0.515 Functions 

13 -0.889 Matrices 13 -0.835 -0.889 Matrices 13 -1.305 -0.889 Matrices 

14 1.162 Integrals 14 0.69 1.162 Integrals 14 0.847 1.162 Integrals 

15 1.031 Counting 15 0.829 1.031 Counting 15 0.761 1.031 Counting 

16 -0.347 Integrals 16 -0.577 -0.597 Determinants 
   

Series 

17 -2.233 Derivatives 17 0.039 0.121 Successions & 

series 

17 -0.12 0.178 Limits 

18 -1.265 Addition 18 -0.751 -0.800 Vectors 18 1.39 1.563 Mathematical 

induction 

19 0.39 Real 

numbers 

19 0.773 0.976 Complex 

numbers 

19 -0.781 -0.429 Successions & 

series 

20 0.34 Function 

variations 

20 0.587 0.759 Series 20 0.935 1.146 Function 

variations 

21 1.148 Real 

numbers 

21 0.828 1.148 Real numbers 21 0.786 1.148 Real numbers 

Note. b: Difficulty; Anchor items in italics 
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Development and Simulation of the Algorithm for the Adaptive Test 

Table 5 shows the results found in this analysis. The ability levels between -.75 and .50 displayed the 

highest levels of precision. Mean ability estimation traits were ≤.15, and SD was <.65. Moreover, most of the 

simulations could estimate examinee ability with less than 35 items. The value θ=.50 was the one showing the 

lowest percentage of cases that could not reach the established standard error with less than 35 items, with 

a percentage of barely 1.8%. The mean of items used to estimate examinee ability within the range of ability 

between -.75 a .50 was from 18 to 19 items, with SD from 1.5 to 3 items, approximately. This result indicates 

that with 22 items, it is possible to obtain estimations of examinee ability, with true abilities between -.75 and 

.50 and a standard error ≤.50 units. 

Table 5. Descriptive statistics of the results of an adaptive test with the parameters of the mathematics 

domain test in a simulation of 1,000 examinees according to ability level 

TA MEA DEA MT MnI DnI NS-35I 

-1.50 -1.15 1.16 -0.35 25.86 7.44 342 

-1.25 -0.87 1.12 -0.38 24.41 7.07 251 

-1.00 -0.56 0.98 -0.44 21.02 4.09 14 

-0.75 -0.60 0.58 -0.15 19.09 2.88 16 

-0.50 -0.39 0.45 -0.11 18.11 1.47 2 

-0.25 -0.21 0.44 -0.04 18.00 1.47 1 

0.00 -0.07 0.62 0.07 18.49 2.89 5 

0.25 0.18 0.46 0.07 17.95 1.46 2 

0.50 0.35 0.64 0.15 18.63 3.13 19 

0.75 0.55 0.87 0.20 20.61 4.72 58 

1.00 0.71 0.75 0.29 20.43 4.80 65 

1.25 0.95 0.93 0.30 22.74 6.39 169 

1.50 1.21 0.76 0.29 23.26 6.02 151 

Note. TA: True ability; MEA: Mean of estimated ability; DEA: Deviation of estimated ability; MT: Mean of trait; MnI: Mean of used 

items; DnI: Deviation of the mean of items; NS-35I: Number of simulations that finished with 35 items 

In ability levels higher than the previous central range (from -.75 to .50), the mean values of the trait ability 

estimate were between .20 and .30; on the other hand, in the lowest ability levels, trait values were between 

.35 and .44. Besides, in the range of higher abilities, there was more precision than in the lowest range. In the 

first, the SD of the estimated abilities ranged from .75 to .93, whereas in the second, they were between .98 

and 1.16. In the cases of -1.00, .75, and 1.00, most simulations used less than 35 items to estimate the ability 

level (93.5% of the simulations showed the lowest case: θ=1.00). Here, the mean number of items used ranged 

from 20 to 21, with an SD between 4 and 5, indicating that with approximately 26 items, it is possible to achieve 

a true estimation of the examinee ability. Yet, it presents high trait values and variability of ability estimates, 

especially in θ=-1.00. 

On the other hand, in the cases of abilities ≥1.25, we obtained approximately 15% of simulations that did 

not reach the expected standard error with 35 items. In these cases, the mean number of used items was 

approximately 23, with an SD of approximately 6 items. When ability levels ranged from –1.50 to -1.25, the 

percentages of use of the 35 items were very high: 25.1% and 34.2%, respectively. Here, the mean numbers 

of used items were 24.41 and 25.86, with SDs of 7.07 and 7.44, respectively. However, the number of 

Table 4 (continued). Item difficulty equated to Form B of the mathematics domain test 

Form B Form A Form C 

Item b Content Item b original b equated Content Item b original b equated Content 

22 -0.279 Equations 22 -0.184 -0.279 Equations 22 -0.504 -0.279 Equations 

23 1.056 Integrals 23 0.961 1.056 Integrals 23 1.061 1.056 Integrals 

24 0.704 Matrices 24 0.332 0.704 Matrices 24 0.386 0.704 Matrices 

26 0.296 Vectorial 

spaces 

   
Vectorial 

spaces 

26 -0.232 0.075 Vectorial 

spaces 

27 0.485 Derivatives 27 -0.251 -0.217 Vectors 27 -0.554 -0.220 Integrals 

28 1.474 Matrices 28 1.428 1.739 Equations 28 -0.021 0.269 Integrals 

29 1.711 Functions 29 -0.344 -0.325 Derivatives 29 0.238 0.506 Matrices 

30 -1.012 Functions 30 -0.499 -0.506 Functions 30 0.338 0.598 Vectorial 

spaces 

Note. b: Difficulty; Anchor items in italics 
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simulations requiring the use of 35 items shows that this model of adaptive test is not recommended to 

estimate exact ability values in examinees with true abilities <-1.25. 

Finally, Figure 4 shows the mean of items used in the estimation of examinee ability according to true 

ability. The lowest number of items used can be found in the central values, with an increase toward the tails 

and a steepening in the left tail. 

 

Figure 4. Mean of items used in the estimation of examinee ability according to the level of true ability. 

Dashed lines indicate the standard deviation of the items used 

DISCUSSION 

In this study, we proposed the preliminary development of an IB in the domains of mathematical 

knowledge, with appropriate content for university education, to be applied in CAT. The IB was analyzed and 

calibrated from the Rasch model to determine the fit of data to the model and the item parameters assessing 

mathematical content (Čisar et al., 2010). In general, the items showed adequate psychometric properties. 

Those items that did not fit the initial analysis (four free items and one anchor item) were eliminated; hence, 

the IB consisted of 55 items in mathematical knowledge (level I). In the simulation of the CAT algorithm, this 

IB was more precise in the medium ability levels. This implies that, to estimate ability levels below or above ± 

1.00 logit, 22 to 25 items will be needed and to estimate the ability level of students with logit between -0.75 

to + 0.75, the CAT algorithm will require 18 to 20 items. The analysis of the uni-dimensionality assumption 

provides insight into the validity of the test construct. Results show that the uni-dimensionality assumption 

was confirmed in the three versions of the mathematics test (Form A, Form B, and Form C), namely, the items 

measured a single latent construct. Such assumption is essential for developing the IB because, for scores to 

be comparable, equating (through anchor items) must measure a single construct (Dorans & Kingston, 1985).  

The local independence assumption was confirmed in Form B, but there was a residual correlation >.2 

between two items in Form A and two items in Form B, showing a possible local dependence in these pairs of 

items (Reeve et al., 2007). Andrich and Marais (2019) indicate which causes of such dependence must be 

analyzed in context; in other words, the features of the items and the purpose of the test must be considered, 

that is why, in our case, we could hypothesize that the correlation between the pairs of items could be 

established because they have a similar statement format. It could also exist because, although they assess 

the same type of content, the items respond to different difficulty levels (Chen & Thissen, 1997; Yen, 1993), or 

because some sort of halo effect might be taking place (Andrich & Marais, 2019). Anyway, we decided to keep 

these items to avoid under representativeness in the difficulty levels assessed. 

When considering reliability, the values shown in the present study were low. Similar findings were 

reported in a study on the development of a diagnostic test in mathematics in Costa Rica. In that research, 
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reliability indices improved in subsequent applications of the test when the IB was enhanced with items 

covering a higher difficulty range (Zamora Araya, 2015). Our results could show that the test includes either 

too easy or too difficult items, or that there is a lack of items covering certain ability spectra, namely, few items 

provide information of certain ability levels. 

The simulations performed in the present work show that the IB allows an ability estimation with an 

acceptable precision (standard error <.5) for examinees whose true ability is in the central values of the scale 

(from -1 to 1), using less than 26 items in most cases. This number of items is lower than that applied in the 

forms used to develop the IB in mathematical content (30); in some cases, it required a number of items as 

low as 14. 

For persons with levels outside the central range of abilities, estimations are not that precise. However, 

we can conclude, with a few items, that the examinee ability is >1.25 or <-1.25. These conclusions can be 

commonly drawn with paper-and-pencil tests. Nevertheless, to take advantage of the benefits associated to 

the use of CAT, the IB must include some items with difficulty levels >1.25 and some others with difficulty 

levels <-1.25. This procedure will allow estimating with high precision examinee abilities with true abilities 

outside the central range. 

Finally, to obtain estimations more accurate than those with a standard error .5, the IB must contain a high 

number of items representing each ability interval, derived from a very fine partition of the relevant ability 

continuum (from -4 to 4). This decision will depend on the uses given to the IB; in diagnostic cases, an 

acceptable precision may be sufficient, but in uses linked to high consequences (selection of students for 

educational programs), high precisions are required (Messick, 1989).  

Drawbacks and Constraints 

The results of the present study exhibit some constraints. On the one hand, the sample consisted of 

students of varied academic programs of study; however, most studied at the FCEFyN-UNC. Accordingly, in 

future studies, the number of students from that school should be enlarged to allow estimating high and low 

ability levels in the domains of mathematical knowledge. On the other hand, the items contained in the IB 

were not extremely precise to certain ability levels. It is necessary to enhance the IB with items covering such 

ability spectra, mainly items with high and low difficulty levels. Such strategy would allow enhancing the range 

of students’ ability measured by this test and, consequently, improving the IB reliability indices. Likewise, 

further research should be carried out on the local dependence found in two pairs of items and define their 

continuity in the present IB. 

The development of CAT for the domains of mathematical knowledge would allow reducing considerably 

the administration time of a test, facilitating its application for large samples of students, mainly in large-scale 

studies (Baldasaro et al., 2013). In addition, statistics indicate that students postpone the completion of their 

university studies and only a low percentage graduates. This is particularly common in degree programs that 

require mathematical knowledge (e.g., engineering, mathematics, applied mathematics, physics, computer 

science) (Universidad Nacional de Córdoba. Secretaría de Asuntos Académicos. Programa de Estadística 

Universitaria, 2020). Therefore, this is a useful tool for identifying student difficulties when undertaking 

university studies. This allows thinking strategies to reinforce mathematical knowledge in secondary 

education (Programa Estado de la Nación, 2011). Moreover, it would allow achieving immediate results of 

student knowledge and identifying easily problem content areas to design suitable educational strategies (Vie 

et al., 2017). Also, it would serve as an admission process for educational programs that require mathematical 

skills. In this form, students with skills in line with the curriculum for which they enrolled would be selected 

(Rojas et al., 2018). 

CONCLUSIONS 

The IB consisting of 55 items in the domains of mathematical knowledge for university students provides 

adequate psychometric properties to be used in CAT. The simulation process taking place in this study allowed 

identifying the flaws found in a real application of CAT. The development of this type of instrument will provide 

educational systems with new ways of incorporating technology in assessment processes. 
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