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The draft genome of Andean 
Rhodopseudomonas sp. strain AZUL predicts 
genome plasticity and adaptation to chemical 
homeostasis
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Abstract 

The genus Rhodopseudomonas comprises purple non-sulfur bacteria with extremely versatile metabolisms. Charac-
terization of several strains revealed that each is a distinct ecotype highly adapted to its specific micro-habitat. Here 
we present the sequencing, genomic comparison and functional annotation of AZUL, a Rhodopseudomonas strain 
isolated from a high altitude Andean lagoon dominated by extreme conditions and fluctuating levels of chemicals. 
Average nucleotide identity (ANI) analysis of 39 strains of this genus showed that the genome of AZUL is 96.2% identi-
cal to that of strain AAP120, which suggests that they belong to the same species. ANI values also show clear separa-
tion at the species level with the rest of the strains, being more closely related to R. palustris. Pangenomic analyses 
revealed that the genus Rhodopseudomonas has an open pangenome and that its core genome represents roughly 
5 to 12% of the total gene repertoire of the genus. Functional annotation showed that AZUL has genes that partici-
pate in conferring genome plasticity and that, in addition to sharing the basal metabolic complexity of the genus, it 
is also specialized in metal and multidrug resistance and in responding to nutrient limitation. Our results also indicate 
that AZUL might have evolved to use some of the mechanisms involved in resistance as redox reactions for bioener-
getic purposes. Most of those features are shared with strain AAP120, and mainly involve the presence of additional 
orthologs responsible for the mentioned processes. Altogether, our results suggest that AZUL, one of the few bacteria 
from its habitat with a sequenced genome, is highly adapted to the extreme and changing conditions that constitute 
its niche. 
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Introduction
The genus Rhodopseudomonas is composed of gram-
negative, purple non-sulfur photosynthetic bacteria from 
the Alphaproteobacteria class. Members of this genus are 
widespread in nature, evidenced by the fact that numer-
ous strains have been isolated from very diverse environ-
ments [1, 2]. They have extremely versatile metabolisms: 
they can use carbon dioxide or organic compounds 
as carbon sources, and light, inorganic or organic 
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compounds as energy sources. They can grow with or 
without oxygen, fix nitrogen and degrade a great variety 
of organic compounds [3]. Within this genus, Rhodopseu-
domonas palustris is a model organism for the study of 
anoxygenic photosynthesis [4, 5]. The sequencing of the 
first R. palustris strain, CGA009, provided the basis for 
attributing a great deal of the metabolic versatility of this 
genus to specific genes and pathways [3]. As more strains 
were sequenced and analyzed phenotypically [1, 2, 6] 
the remarkable physiological differences between strains 
became apparent. Comparison of complete genome 
sequences showed that, although a core set of physi-
ological processes is shared among strains, each behaves 
as a distinct ecotype that is highly adapted to sediment 
microenvironments within its natural habitat [2].

In this work, we report the sequencing, genomic com-
parison and functional annotation of a novel Rhodop-
seudomonas strain, named AZUL, which we previously 
characterized electrochemically [7]. This strain was 
isolated from Laguna Azul, an endorheic basin that is 
part of a number of water bodies collectively known as 
high-altitude Andean lakes (HAALs), located at the Cen-
tral Andes region in South America [8]. These habitats 
experience exposure to severe environmental param-
eters, including high salinity, osmolarity, UV radiation, 
barometric pressure, pH and temperature and, as such, 
are paramount examples of extreme environments [9]. 
As a consequence, indigenous microbial communities 
have adapted to combinations of adverse chemical con-
centrations and physical stress in each particular niche. 
Several microorganisms isolated from HAALs have been 
taxonomically identified and characterized, which has 
shown that the organisms living in these habitats are an 
important reserve of molecular traits for resistance to 
environmental conditions such as arsenic and osmotic or 
UV stress [9–19]. Although metagenomic analyses have 
begun to tap into the diversity of species within HAALs 
[20, 21], very few genomes from organisms living in these 
habitats have been sequenced [8, 9, 22–25].

This work is the first report on the genome sequence of 
a Rhodopseudomonas from HAALs. Our analyses show 
that strain AZUL features the main characteristics of the 
genus, reported previously [2, 3] and is also furnished 
with remarkable specific traits, particularly related to 
membrane transport, resistance to toxic compounds and 
responses to nutrient limitation. Altogether, our findings 
suggest that this strain is highly specialized in maintain-
ing cell homeostasis in a hostile habitat.

Materials and methods
Strain and culture conditions
Rhodopseudomonas sp. strain AZUL was isolated from 
a water sample obtained from the high altitude lagoon 

called Laguna Azul (27°34’ 17.3” S 68°32’ 19.6” W) kindly 
provided by María Eugenia Farías (PROIMI-CONI-
CET). The water sample was filtered for microorganism 
enrichment, filters were incubated in Peptone Yeast (PY) 
medium (1% p/v bactopeptone, 0,05% (w/v) yeast extract, 
2 mM MgCl2, 2 mM CaCl2, 45 μM FeSO4) at 28º C under 
anaerobic illuminated conditions. When brown–red 
coloration was detected (after 2–3  days), cultures were 
streaked onto PY-agar plates to select for colonies capa-
ble of growing in light, anaerobic conditions.

DNA isolation, sequencing and genome assembly
Rhodopseudomonas sp. AZUL cells were grown in PY 
medium and harvested by centrifugation at 5,000 × g. 
Genomic DNA was extracted using the Wizard Genomic 
DNA Purification kit (Promega). Library preparation, 
sequencing and data analysis was done at Instituto 
Nacional de Agrobiotecnología de Rosario (INDEAR) 
using an Illumina HiSeq 1500 system, according to the 
manufacturer’s instructions. Briefly, two micrograms of 
purified DNA were resuspended in 50 µL of TE buffer. 
DNA fragmentation by nebulization, repair and end-
adenylation, adapter ligation, gel purification and enrich-
ment (amplification) were done according to the protocol 
described in TruSeq® DNA Sample Preparation Guide, 
Illumina. One microgram of the DNA library was run in 
a 2100 Bioanalyzer (Agilent Technologies) using the High 
Sensitivity DNA kit, quantified by qPCR (Light Cycler 
480 Roche) using the Kapa Library Quantification kit and 
normalized to 2  nM. One equimolar pool of the librar-
ies from the same sequencing lane was prepared by mix-
ing 10 µl of each. The pool was used for the generation 
of clusters in a single lane of the sequencing cell. Paired-
end (PE) sequencing was done (2 × 100  bp). Genome 
assembly starting from paired-end reads was done using 
the a5pipeline v20140113. Quality of the assembly (com-
pleteness, contamination and annotation self-consist-
ency) was estimated using the genome-quality analysis 
service ’EvalG-EvalCon’ within the Genome Annotation 
service at PATRIC [26]. Preliminary genome annotation 
was done using the RAST tool kit [27]. The Rhodopseu-
domonas sp. AZUL genome sequence is available at the 
RAST server (https://​rast.​nmpdr.​org/), using the Login: 
guest and the Password: guest and also at NCBI Gen-
Bank, with the assembly accession GCA_024330085.1.

Average Nucleotide Identity (ANI) analysis
In addition to AZUL, the genome sequences of 38 Rho-
dopseudomonas strains were retrieved from NCBI 
genomes (https://​www.​ncbi.​nlm.​nih.​gov/​genome/), 
all available by January 2022. Genome sequences 
were compared using OAU, a command line tool for 

https://rast.nmpdr.org/
https://www.ncbi.nlm.nih.gov/genome/


Page 3 of 19Guardia et al. BMC Microbiology          (2022) 22:297 	

calculating OrthoANI values using the USEARCH algo-
rithm (https://​help.​ezbio​cloud.​net/​oau-​manual/) [28].

Pangenomic analyses
Genome quality was analyzed using PATRIC [26], simi-
larly to what was previously done with AZUL. Only 
genomes that had values of completion and consistency 
higher than 90% and contamination lower than 10% 
were included in the pangenomic analyses (Additional 
File 2:  Table S1). Clustering and pangenomic analyses 
were done using the softwares Roary and GET_HOM-
OLOGUES (GH). GH builds upon orthology-calling 
approaches based on heuristic pairwise best-match 
methods, as described [29]. Within the GH package, 
BLAST results were clustered with the bidirectional 
best-hit (BDBH) [30], the COGtriangles [31] and the 
OrthoMCL (OMCL) [32] clustering algorithms. The size 
of the pangenome was not determined using BDBH since 
it uses a single reference genome and, thus, cannot track 
genes not present in the reference. The exponential [33] 
and binomial mixture models [34] were fitted to the data 
obtained with OMCL within the GH package to estimate 
theoretical core and pangenome sizes. The main script 
get_ homologues.pl was called under default settings, 
with a minimal sequence identity of 70%. Homologous 
clusters were computed reporting all clusters (-t) and 
excluding paralogs. Stringency was added to the analy-
sis by scanning Pfam domain composition of the clusters 
using hmmscan from HMMER3 package (-D). Exponen-
tial decay or binomial mixture models were fitted to the 
core-genome cluster data by calling the auxiliary script 
plot_pancore_matrix.pl. For genome composition analy-
sis, the -c flag was used under the exponential model to 
obtain tables of re-sampled core and pangenome sizes 
with the same settings as the previous GH analyses. The 
auxiliary script parse_pangenome_matrix.pl was used to 
analyze the structure of the pangenome, computing the 
strict core, relaxed core, shell, and cloud components.

In Roary [35], coding regions from.gff3 files produced 
by PROKKA [36] were used. The Roary pipeline extracted 
and converted them to protein sequences, filtered to 
remove partial sequences and iteratively pre-clustered 
with CD-HIT [37]. An all-against-all comparison was 
performed with BLASTP on the reduced sequences with 
a defined percentage sequence identity of 70%, with all 
the rest of the parameters set to default. The software 
then clustered the sequences with MCL and merged 
them with the pre-clustered results. For pangenomic 
analysis, the option -s was used in order not to split para-
logs into different groups. Phylogenetic reconstruction 
using the core genome was done using Roary, as part of 
its default pipeline [35].

Functional annotation
The output of Roary annotation was used in conjunction 
with the results of pangenomic analysis to estimate the 
number of paralogs in protein families, using both default 
and -s options (splitting and not splitting paralogs). 
Genes resulting unique or rare in the Roary output were 
subjected to HMMER clustering analyses for confirma-
tion (using nhmmer) and compared with the remaining 
strains to determine whether they were absent in other 
strains or possessed homologs that clustered separately. 
In addition, the total number of genes from different pro-
tein families, classes and subsystems were determined for 
the 31 strains with the combined outputs of Roary and 
PATRIC. In the PATRIC website, we used the Metabo-
lomics, Comparative Pathway tool (https://​www.​patri​
cbrc.​org/​app/​Compa​rativ​ePath​way). Operon visualiza-
tion was done using Geneious Prime® version 2020.0.5 
(https://​www.​genei​ous.​com/). Further operon editing for 
Fig.  5 was done using Inkscape 0.92 (https://​www.​inksc​
ape.​org).

Inductively coupled plasma mass spectrometry (ICP‑MS)
The water sample from Laguna Azul was analyzed by 
Inductively Coupled Plasma Mass Spectrometry (ICP-
MS), using the TotalQuant method, for the semi-quan-
titative estimation of element content. The analysis 
was done in a Perkin Elmer NexION 350X equipment 
(CEFOBI- CONICET, Rosario, Argentina) following 
the manufacturer’s instructions and a single calibration 
standard containing elements distributed across the mass 
range, used to create a response table. The complete mass 
spectrum was determined and interpreted using the Syn-
gistix software. After a total spectrum evaluation for each 
element, the resulting final isotope intensity counts were 
summed for each element and were then compared with 
the stored response table. Each determination was done 
in duplicates and averaged. With this method, accuracies 
are within ± 50%.

Results and discussion
General features of the Rhodopseudomonas sp. AZUL 
genome
In view of the great adaptability of the Rhodopseu-
domonas genus and the characteristics of the natural 
habitat of AZUL, we sequenced the genome of this strain. 
Details on the quality of sequencing and assembly are 
shown in Additional File  1. Briefly, the genomic library 
of AZUL was composed of double-stranded DNA frag-
ments of sizes ranging 300–500 bp. Cluster density was 
600  K/mm2, better than the average value expected for 
the technology used. The data had good quality param-
eters, with a 90.8% of all the reads with a Qscore > Q30 

https://help.ezbiocloud.net/oau-manual/
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(error rate < 0.001, probability of incorrect base call < 1 
in 1,000 bases, base call accuracy > 99.9%). Final total 
reads were 22,300.084, with a 99.14% of the reads passing 
internal quality filtering procedures (PF reads). The final 
assembly yielded 120 contigs for a total genome length of 
6,050,441 bp, an N50 value of 272,881 and an L50 value 
of 6. The length of the shortest contig was 304 bp, while 
the longest was 1,180,838  bp. Quality of the assembly 
predicted that the genome of AZUL had a 100% com-
pleteness and a 2% contamination (Additional File 1).

Table  1  summarizes features of the genome of AZUL 
in comparison with those of other 38 Rhodopseudomonas 
strains with available genome sequences, as well as infor-
mation on strain isolation and selected references. The 
genome of AZUL is larger than 6 Mb, and only Rhodop-
seudomonas sp. AAP120 and Rhodopseudomonas sp. 
BAL398 have genomes of similar size. As a consequence, 
the number of coding regions in these strains is also 
larger (Table 1). The GC content is, as for the rest of the 
strains, at the top end of the spectrum when compared to 
the genomes of other bacterial groups [38].

In order to establish the similarity of AZUL with other 
strains, we compared the ANI values of the 39 Rhodop-
seudomonas strains in Table  1. Figure  1 shows that the 
genome sequence of AZUL is most similar to that of 
Rhodopseudomonas sp. strain AAP120 and, by the high 
ANI value (96.2%), it could be presumed that both strains 
belong to the same species. The cluster formed by AZUL 
and AAP1120 lies within a larger group that contains the 
Rhodopseudomonas sp. strains ATH 2.1.18 (ANI 89.9%), 
HaA2 (ANI 87%), NC1818 (ANI 87.9%), B29 (ANI 
84.9%), BisB5 (ANI 86.3%) and two Rhodopseudomonas 
palustris strains, R. palustris strain 4810 (ANI 86%) and 
the type strain R. palustris DSM 123 T (ANI 86%). As pre-
viously determined for AAP120 [60], these strains could 
be recognized as separate species compared to AZUL 
and AAP120 (ANI values lower than 90%).

Figure 1 also shows that the genome sequence of AZUL 
is quite different from those of the R. pentothenatexigens 
type strain JA575T and several R. rutila strains, includ-
ing the type strain R1T. The ANI values between AZUL 
and these strains are approximately 85%, which indicates 
a clear separation at the species level. The ANI values 
between AZUL and several R. faecalis strains, including 
the type strain JCM 11668  T, are even lower and range 
80%.

Rhodopseudomonas pangenomic analysis
With the purpose of determining which genes are com-
mon to the genus and which are specific to AZUL or to 
subgroups that include this strain, we did pangenomic 
analyses using the Rhodopseudomonas genome sequences 
of the strains in Table  1  that passed quality filtering by 

PATRIC (31 strains, Table S1). We compared the results 
of the softwares Roary and GET HOMOLOGUES (GH), 
and adjusted the data to the model developed by Tette-
lin et al. [33] and to the mixed binomial model [34]. The 
core genome (genes shared by all strains) obtained with 
the GH package was calculated using the clustering algo-
rithms BDBH, OMCL and COGt, either independently 
or as a consensus between the three [29]. This produced 
core genomes of 1,055, 1,073, 1,041 and 987 gene clus-
ters, respectively (Table  2). Roary [35] produced a core 
genome of 1,217 gene clusters (Table 2). The core genome 
predicted by Roary was used to build a phylogenetic tree 
of the relationships of the strains used in the pangenomic 
analysis. Figure  2 shows that, in agreement with the 
ANI analysis, AZUL is most closely related to Rhodop-
seudomonas sp. strain AAP120, and these two strains 
lie within larger clusters comprised of the Rhodopseu-
domonas sp. strains 2.1.18, NC 1818, B29 and HaA2 and 
the Rhodopseudomonas palustris strains DSM 123 T and 
BisB5.

Figure 3 shows the adjustment of the core genome pro-
duced by OMCL-GH to the model used by Tettelin et al. 
[33], which follows an equation of exponential decay. 
As expected, the number of genes shared by all strains 
decreased as more genomes were added to the analysis 
and reached a value of 1,397 gene clusters with the addi-
tion of the 31st strain (Fig. 3A and Table 2).

The size of the pangenome (the whole gene collec-
tion of the genus) was also estimated. Table 2 shows that 
Roary, COGt-GH and OMCL-GH predicted pangenomes 
of 26,385, 20,757 and 10,507 gene clusters, respectively. 
Figure 3B shows that adjustment of the OMCL-GH data 
to the model in Tettelin et al. [33] predicts a pangenome 
of 27,595 gene clusters when the 31st strain is added, 
similar to the results obtained with Roary.

The models described above have been criticized on 
the basis of the restrictions imposed by the classifica-
tion of genes into only two categories (core genome and 
novel or specific genes). To overcome these restrictions, 
mixed models have been developed, such as one devel-
oped by Snipen et  al. [34]. Table  2 shows that the core 
genome of the genus becomes much larger when the 
number of genes present in at least 30 strains are consid-
ered (n-1, soft core). In addition, it is noteworthy that a 
great proportion of genes comprised within the Rhodop-
seudomonas pangenome are either strain-specific or rare, 
the so called cloud genome.

The results presented above show that the precise 
characteristics of each algorithm markedly affects the 
estimation of the pangenome size. Despite these differ-
ences, our results evidence that the core genome com-
prises only a small proportion of the gene repertoire of 
Rhodopseudomonas, roughly between 5 and 12%. This 
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Table 1  General features of the Rhodopseudomonas genomes analyzed in this study

Proposed namea Genome assembly 
ID

Size GC CDS Plasmid Strain isolated 
from/Isolation 
information

Referenceb

Rhodopseu-
domonas faecalis 
JCM 11668T

 GCA_003217325.1 4.07 64.20 3,681 ― Anaerobic digester 
treating chicken 
manure, China

[39]

Rhodopseu-
domonas faecalis 
JSC-3b

 GCA_000504425.1 4.07 64.20 NAc ― Freshwater canal 
adjacent to a veg-
etable field, China

[40]

Rhodopseu-
domonas faecalis 
PSBS

 GCA_002895035.1 3.95 64.10 NAc ― Swine sewage 
wastewater, China

[41]

Rhodopseu-
domonas palustris 
4810

 GCA_014145305.1 5.35 63.40 4,961 ― Contamination in 
cultures of Thio-
spirillum jenense 
DSM 216T 

[42]

Rhodopseu-
domonas palustris 
DSM 123T

 GCA_900110435.1 5.27 64.60 4,747 ― Surface water or 
mud

[43]

Rhodopseu-
domonas rhenoba-
censis DSM 12706

 GCA_014203125.1 5.18 65.60 4,612 ― Sediment of 
eutrophic pond, 
Rheinbach, Ger-
many

[44]

Rhodopseu-
domonas pentoth-
enatexigens JA575T

 GCA_900218015.1 5.38 66.00 4,822 ― Paddy soils, India [45]

Rhodopseu-
domonas rutila 
CGA009

 GCA_000195775.1 5.47 64.99 4,913 1 -- [3]

Rhodopseu-
domonas rutila 
DSM 126

 GCA_002937155.1 5.39 65.00 4,895 ― Freshwater pond, 
Germany: near 
Zeulenroda

[46]

Rhodopseu-
domonas rutila ELI 
1980

 GCA_002026345.1 5.65 65.09 5,090 1 Freshwater pond, 
Suffolk County, NY, 
USA.

[47]

Rhodopseu-
domonas rutila PS3

 GCA_003031265.1 5.27 65.30 4,780 ― Paddy field, Taipei 
City, Taiwan

[48]

Rhodopseu-
domonas rutila R1T

 GCA_003547145.1 5.31 64.90 4,803 ― Rice fields, Japan [49]

Rhodopseu-
domonas rutila 
TIE-1

 GCA_000020445.1 5.74 64.90 5,227 ― iron-rich mat, 
Woods Hole, Mas-
sachusetts, USA

[50]

Rhodopseu-
domonas rutila 
YSC3

 GCA_003031245.1 5.37 65.20 4,871 ― Paddy field, Yilan 
County, Taiwan

[48]

Rhodopseu-
domonas sp. 
CGMCC 1.2180

 GCA_013415845.1 5.32 65.00 4,792 ― China

Rhodopseu-
domonas sp. 42OL

 GCA_001020905.1 5.13 65.70 4,724 ― Sugar refinery 
waste treatment 
pond, Castiglion 
Fiorentino, Italy

[51]

Rhodopseu-
domonas sp. 
AAP120

 GCA_001295845.1 6.16 65.70 5,516 ― Lagoon, Inner 
Mongolia, China.
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Table 1  (continued)

Proposed namea Genome assembly 
ID

Size GC CDS Plasmid Strain isolated 
from/Isolation 
information

Referenceb

Rhodopseu-
domonas sp. ATH 
2.1.18

 GCA_003591005.1 5.63 65.40 5,084 ― Isolated and puri-
fied by C.B. van 
Niel in 1944 and 
later transferred 
to T.E. Meyer at 
the University of 
Arizona

Rhodopseu-
domonas sp. ATH 
2.1.37

 GCA_003591275.1 5.49 65.00 4,932 ― Isolated and puri-
fied by C.B. van 
Niel in 1944 and 
later transferred 
to T.E. Meyer at 
the University of 
Arizona.

[52]

Rhodopseu-
domonas sp. B29

 GCA_000333455.1 5.52 65.00 4,940 ― Rice fields, Japan

Rhodopseu-
domonas sp. 
BAL398

 GCA_000935205.1 6.12 64.20 5,844 ― Sea surface water, 
Baltic Sea

[53]

Rhodopseu-
domonas sp. 
BR0C11

 GCA_010820945.1 5.29 65.10 4,989 ― Bromeliad Phy-
totelma, Carite 
Forest, Puerto Rico

Rhodopseu-
domonas sp. 
BR0G17

 GCA_010907025.1 5.52 65.10 5,017 ― Bromeliad Phy-
totelma, Guajataca 
Forest, Puerto Rico

Rhodopseu-
domonas sp. 
BR0M22

 GCA_010907035.1 5.29 65.20 4,761 ― Bromeliad Phy-
totelma, Maricao 
Forest, Puerto Rico

Rhodopseu-
domonas sp. 
Cfx3-05

 GCA_013377015.1 4.83 64.40 4,511 ― Metagenomic 
assembly from the 
Ca. Chlorohelix 
allophototropha 
enrichment, 
Canada: near 
Kenora

Rhodopseu-
domonas sp. GJ-22

 GCA_007005445.1 5.04 65.80 4,550 ― Wastewater from 
a pesticide factory, 
Changsha (Hunan, 
China)

[54]

Rhodopseu-
domonas sp. HaA2

 GCA_000013365.1 5.33 66.00 4,731 ― Uncontaminated 
freshwater marsh 
sediment location 
A, Haren, The 
Netherlands

Rhodopseu-
domonas sp. NC 
1818

 GCA_016215605.1 5.79 66.20 5,274 ― Metagenomic 
assembly obtained 
from the ground-
water metagen-
ome BioSample: 
SAMN15459608

[55]

Rhodopseu-
domonas sp. 
RCB100

 GCA_016584445.1 5.46 64.99 4,907 1 Creek soil, Casca-
dilla Creek, Ithaca, 
NY, USA

[56]

Rhodopseu-
domonas sp. RI 341

 GCA_016124795.1 5.14 63.00 4,784 ― Hot springs and 
caldera lake in 
Raoul Island, New 
Zealand.

Rhodopseu-
domonas sp. 
SK50-23

 GCA_018279705.1 5.86 61.90 5,281 ― Nonpolluted gar-
den soil, Japan

[57]
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was further evidenced by adjustment to the equations 
proposed by Tettelin et  al. [33], since the addition of 
strains to the analysis increased the size of the total 
gene repertoire with a linear trend and reduced the 
size of the core genome. These results are expected, 
given the great metabolic adaptability of this genus. In 
this scenario, our results reinforce the idea that Rho-
dopseudomonas strains evolve from the core metabolic 
flexibility of the genus into the generation of distinct 
ecotypes highly adapted to specific microenviron-
ments [2].

Functional annotation of Rhodopseudomonas sp. AZUL
Functional annotation and clustering allowed deter-
mining which features of the AZUL genome are part 
of the basal capabilities of the Rhodopseudomonas 
genus (core, soft-core and shell genomes) and which 
are either strictly specific or shared with a few strains 
(cloud genome). For genome comparison, we selected 

the output of Roary, since it resulted adequate at dis-
criminating paralogs in selected protein families, as 
determined in HMMER clustering analyses (data not 
shown). The identity cut-off for clustering was 70%. The 
proteins clustered separately through this method are 
not necessarily absent in other strains, but simply less 
than 70% identical to orthologous sequences from other 
strains. This percentage has been reported elsewhere 
as a suitable value for the determination of orthologs 
in interspecific analyses at the genus level [61]. All pro-
teins that resulted specific or rare in the AZUL genome 
had nhmmer inter-cluster E-values that were at least 
four-fold higher than the corresponding intra-clus-
ter E-values (data not shown). Table S1 shows Roary 
pangenomic clustering and annotation, including Rho-
dopseudomonas sp. AZUL predicted gene inventory. In 
addition, the total number of genes from different pro-
tein families, classes and subsystems were determined 
for the 31 strains using PATRIC (Fig. 4).

Table 1  (continued)

Proposed namea Genome assembly 
ID

Size GC CDS Plasmid Strain isolated 
from/Isolation 
information

Referenceb

Rhodopseu-
domonas sp. WA056

 GCA_010906995.1 5.06 65.80 4,562 ― Water reservoir, 
Puerto Rico

Rhodopseu-
domonas sp. XCP

 GCA_003226555.1 5.59 65.20 5,096 ― Contaminant of 
a green bacterial 
culture, La Jolla, 
CA, USA

[58]

Rhodopseu-
domonas thermo-
tolerans JA576

 GCA_003387125.1 5.38 66.00 4,825 ― Paddy soils, India [45]

Rhodopseu-
domonas palustris 
BisB5

 GCA_000013685.1 4.89 64.40 4,397 ― Uncontaminated 
freshwater marsh 
sediment location 
B, Haren, The Neth-
erlands

[1]

Rhodopseu-
domonas sp. BisB18

PRJNA15750c 5.51 65.00 4,867 ― Uncontaminated 
freshwater marsh 
sediment location 
B, Haren, The Neth-
erlands

[1]

Rhodopseu-
domonas sp. BisA53

PRJNA15751c 5.51 64.40 4,852 ― Uncontaminated 
freshwater marsh 
sediment location 
A, Haren, The 
Netherlands

[1]

Rhodopseu-
domonas sp. DX-1

 GCA_000177255.1 5.4 65.40 4,849 ― Microbial fuel cell [59]

Rhodopseu-
domonas sp. AZUL

 GCA_024330085.1 6.05 65.60 5,596 ― High altitude shal-
low lake, Andes 
Region, Catamarca, 
Argentina

[7], this work

a Taxonomy as proposed by Imhoff et al. [60].
b Main reference cited when available
c Not available
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Main predicted metabolic pathways of Rhodopseudomonas 
sp. AZUL (core, soft‑core and shell genomes)
AZUL has the genes necessary for carrying out anoxy-
genic photosynthesis present in the other Rhodop-
seudomonas strains (Table S1). They include the 

light-harvesting complexes, electron carrier proteins, 
proteins involved in photo-phosphorylation and those 
linked to pigment biosynthesis.

Among the sequences associated with carbohydrate 
metabolism, we could identify genes related to glycolysis, 

Fig. 1  Average Nucleotide Identity (ANI) values of strains within the Rhodopseudomonas genus. Thirty-nine strains were analyzed using the OAU 
software. The percentages of identity are highlighted as a color scale shown to the right of the image. A similarity tree is shown on top of the 
identity matrix. The name of each strain follows the taxonomy proposed in Imhoff et al. [60]

Table 2  Pangenome characteristics of the genus Rhodopseudomonas based on different clustering algorithms

a The size of the core genome obtained from the consensus of the algorithms used by GH is shown between parentheses
b According to the model described in Tettelin et al.[33]
c According to the model of Snipen et al. [34]. In this model, the soft core includes the core, whereas it does not in Roary
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gluconeogenesis, TCA and pentose-phosphate cycles. 
AZUL carbohydrate metabolism also features genes that 
participate in oligosaccharide and organic acid metabo-
lism, fermentation and carbon dioxide fixation. One dis-
tinguishing characteristic of the Rhodopseudomas genus 
is the ability to degrade aromatic compounds, which, in 
AZUL, is represented by 30 main predicted genes (Table 
S1).

The subsystem of nitrogen metabolism includes pro-
teins involved in nitrogen fixation (nitrogenases), ammo-
nium assimilation and ammonification, nitrification 
and denitrification, cyanide hydrolysis and nitrosylative 
stress. Similarly to a few other strains, the genome of 
AZUL has genes for the three types of nitrogenases (iron, 
molybdenum and vanadium) (Table S1). Since they vary 
in their affinities for atmospheric N2 and in their cata-
lytic efficacies [62], this would allow AZUL to fix nitro-
gen in the limited oligotrophic basin that constitutes its 
habitat [19]. Rhodopseudomonas strains have also shown 
the ability to form both monospecific biofilms [7] and 

mixed-species microbial mats [63], which could further 
limit the accessibility to nitrogen and other nutrients 
[64].

Similarly to other purple bacteria, the genome of AZUL 
has the genes to perform the four types of carbon and 
energy metabolism: photoautotrophy, photoheterotro-
phy, chemoautotrophy and chemoheterotrophy. AZUL 
has the genes for both form I and II of Ribulose-1,5-bi-
sphosphate carboxylase/oxygenase (RuBiscCO), CbbM 
and CbbS, and a Rubisco-like protein (Rlp2), which ena-
ble this strain to carry out autotrophic growth. During 
this type of metabolism, hydrogen and thiosulfate could 
be used as electron donors in the reverse electron flow [3, 
65]. Related to this, Rhodopseudomas strains have hoxL 
and hoxK genes, which code for hydrogenases. In addi-
tion, genes that code for several proteins involved in sul-
fate/thiosulfate uptake are shared between AZUL and the 
rest of the Rhodopseudomas strains, such as the import 
ATP-binding protein CysA, the thiosulfate sulfurtrans-
ferase GlpE and the thiosulfate-binding protein CysP, 
although some of these homologs seem to have diverged 

Fig. 2  Unrooted tree of Rhodopseudomonas strains based on the core genome. Core genes obtained with Roary were concatenated, aligned and 
used to infer phylogenetic relationships with the neighbour joining method using FastTree, all part of the Roary pipeline. The tree scale in number 
of nucleotide substitutions per site is shown
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considerably between strains. A few of the strains, 
including AZUL, have the additional thiosulfate sulfur-
transferase RhdA (Table S1).

Genes of carbon monooxide and formate dehydroge-
nases are also part of the collection of the genus. These 
proteins could contribute to generating reducing power 
through their oxidation. Other common dehydrogenases 
are related to ethanol and methanol metabolism, which, 

though not present in all strains, are part of the Rhodop-
seudomas repertoire (Table S1).

Within the subsystem of Respiration, 211 main 
sequences were identified in the genome sequence of 
AZUL, many within the core genome, including a great 
variety of oxidoreductases, cytochromes and proteins 
related to the biogenesis of these compounds. Oxidore-
ductase genes are either related to aerobic or anaerobic 

Fig. 3  Pangenomic analysis of 31 Rhodopseudomonas strains using the exponential model. The number of gene clusters were plotted as a 
function of the number n of strains added sequentially. Black circles are the values obtained with the different orders in the addition of strains. The 
continuous red curves represent the least-squares fit of the data to an exponential function [33]. A Core genome plot. The core genome size with 
the addition of the 31st strain is 1,397. B Pangenome size trend. The equations are shown at the top of each plot

Fig. 4  Gene count of main process classes in Rhodopseudomonas according to PATRIC. Comparisons between the 31 strains used for pangenomic 
analyses was done using PATRIC Comparative Pathways tool. AZUL is highlighted in gray. A similarity tree built using ANI values is shown
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respiration. An example refers to the presence of a dmsA 
gene, which encodes a dimethyl sulfoxide/trimethyl-
amine N-oxide reductase, an enzyme that catalyzes the 
reduction of dimethyl sulfoxide (DMSO) and trimethyl-
amine N-oxide (TMAO) to dimethyl sulfide (DMS) and 
trimethylamine, respectively [66, 67] and can also use 
other sulfoxides and N-oxide compounds as terminal 
electron acceptors [68]. Another example is the dsbB 
gene, encoding a thiol-disulphur oxidoreductase involved 
in the reduction of the metalloid tellurium that is pre-
sent in all the Rhodopseudomonas strains (Table S1). In 
Rhodobacter capsulatus, tellurium reduction due to the 
action of DsbB was proposed to act as an electric wire 
between the metalloid and the quinone pool [69], which 
suggests that this enzyme can be used for both detoxifi-
cation and electron transport purposes.

The Rhodopseudomonas genus evidences an ability to 
synthesize multiple siderophore receptors. As an exam-
ple, eleven sequences corresponding to the outer mem-
brane receptor of the siderophore ferrichrome [70, 71] 
(five fcuA and six fhuA genes), as well as three sequences 
corresponding to the ferripyoverdine receptor FpvA [72] 
were identified in AZUL (Table S1).

The Rhodopseudomonas genus has a core ability to 
handle zinc limitation, although the gene sequences have 
diverged enough among strains to be located in differ-
ent clusters (Table S1) Sequences of zntB, znuC and yciC 
were detected in all the strains including AZUL. The 
proteins encoded by these genes participate, in different 
ways, in Zn2+ uptake in conditions of metal limitation 
[73–75].

Special predicted features of the Rhodopseudomonas sp. 
AZUL genome
Figure  4 shows that strains AZUL and AAP120 have 
remarkable similarities in the gene count of all the pro-
cess classes analyzed by PATRIC. In general, these two 
strains are on the top end of gene count for most path-
ways, which could be, in part, due to the larger number 
of coding sequences present in their genomes. In gen-
eral, this is not shared by other moderately related strains 
(those with ANI values above 85%).

Energy generation
Within the category of Energy and Precursor Metabo-
lites Generation, it is remarkable in AZUL and AAP120 
the presence of 4 genes that code for soluble methane 
monooxygenases (sMMO) (Table S1), present in only 
other 4 of the 31 strains analyzed (Table S1). This enzyme 
is a three-component non-heme iron oxygenase that cat-
alyzes the initial step of the methane oxidation pathway, 
the conversion of methane to methanol. SMMOs can 
co-oxidize a very wide range of substrates together with 

methane, including alkanes, alkenes, alcohols, ethers, ali-
cyclics, aromatics and chlorinated organic compounds 
such as the pollutant trichloroethene [76].

Urea and nitrogen metabolism
Within the category of Amino Acids and Derivatives, 
AZUL and AAP120 have a considerably larger number 
of urea amidolyase and urease genes (Table S1) than the 
rest of the Rhodopseudomonas strains (Table S1). Both 
enzymatic complexes participate in the utilization of urea 
as a nitrogen source by its sequential transformation to 
ammonium [77, 78]. A larger number of genes might 
allow more efficient nitrogen utilization under a wider 
array of conditions. As mentioned for nitrogenases, this 
would prove very useful in an oligotrophic environment 
with changing levels of nitrogen from various origins.

Membrane transport
The category of Membrane Transport is represented by 
257 genes in AZUL and 252 genes in AAP120, only sur-
passed by Rhodopseudomonas sp. strain DX1 (267 genes) 
(Fig. 4). A closer inspection shows that, despite the pre-
cise gene count, different strains have different gene dis-
tribution within the subsystems of this class. Remarkable 
to AZUL and AAP120 are the number of genes involved 
in metal homeostasis, such as proteins that participate 
in copper and magnesium transport and multi-subunit 
cation antiporters (Table S1). In view of this, we did a 
semi-quantitative physicochemical analysis of the water 
sample where the strain was originally isolated from. 
Table 3 shows that metals and metalloids such as copper, 
zinc, chromium and arsenic are present in the water. Due 
to the fluctuating nature of the habitat of this strain, these 
results evidence, at the very least, that AZUL is periodi-
cally exposed to these metals.

Copper homeostasis
Within this category are Copper-translocating P-type 
ATPases CopA, CopB and ActP, as well as the cop-
per resistance proteins CopD and C and the repres-
sor CsoR of the copZA operon. While the genomes of 
most Rhodopseudomonas strains have at least 1 copA 
gene homolog, a copB ortholog was only detected in the 
genome of AZUL. Furthermore, actP homologs were 
identified in strains AZUL, BisB5, BAL398 and DSM123 
(Table S1). Both csoR orthologs, as well as sequences of 
its homolog ricR (one ricR1 and one ricR2) were also 
found in AZUL.

Table  4 summarizes the number of genes related to 
metal homeostasis detected in the AZUL genome, as 
well information regarding their protein families and 
general mechanisms. In addition to translocating P-type 
ATPases, copper (and silver) resistance in bacteria is 
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exerted via the resistance–nodulation–cell division 
(RND) metal efflux superfamily [79], which includes the 
partner proteins named membrane fusion protein (MFP) 
and outer membrane factors (OMF) [80]. These genes 
are part of the operon cusCFBA [81]. Although the cus 
operon is widespread in Rhodopseudomonas, AZUL has 
a larger number of genes compared to the rest of the 
strains, precisely 11 (Table 4).

Figure 5 shows the organization of metal homeostasis 
genes within the Rhodopseudomonas sp. strain AZUL 
genome. The cus system in AZUL is represented by three 
main operons (Fig. 4B), in two cases intercalated with cop 
genes, forming larger copper-resistance units that also 
contain cupredoxin genes (cdx). Cupredoxins function 
as electron shuttles between proteins, which opens the 
possibility that AZUL uses copper for bioenergetic pro-
cesses, as reported for other organisms [82]. These cop-
per resistance units are located in the proximity of other 
genes related to resistance, such as the gene for a multid-
rug outer membrane efflux protein, tolC [83].

Several sequences that code for extracellular pro-
teins involved in copper sequestration were identified. 
For instance, two homologous genes of the mycobacte-
rial multicopper oxidase, mmcO, were detected in the 

genome of AZUL and three in the genome of BAL398, 
as opposed to single sequences in the rest of the strains 
(Table S1). MmcO possibly acts by oxidation of toxic 
Cu(I) in the periplasm [84]. In addition, single copies of 
the pcoC gene were detected in the genome of AZUL 
and several other strains (Table S1). PcoC is a periplas-
mic protein that binds excess copper ions and increases 
the level of resistance above that conferred by the copA 
operon alone [85]. The pcoC gene is part of one of the 
two cop operons present in AZUL, together with a single 
copD gene, which encodes a copper resistance protein of 
unclear function [86] (Fig. 4B).

CopA and CopB detoxify copper under aerobic con-
ditions in many bacteria [87], whereas the cus operon is 
most frequently activated under anaerobic conditions 
[81]. In addition, actP ATPase exports copper at low 
pH [88]. Thus, the genome sequence of AZUL suggests 
that this strain is well appointed for copper export under 
varying environmental conditions, as well as for neutral-
izing toxic copper ions in the periplasm. The presence of 
the ycnJ and ricR genes, which code for transcriptional 
repressors [89, 90] evidences that AZUL can also respond 
to copper limitation. The location of an extra copy of the 
silver resistance gene silP adjacent to the cus operon sug-
gests that, similar to other bacteria [91], the cus operon 
might be used for both silver and copper detoxification 
in AZUL.

Czc resistance operons
Another RND protein within the Cation Transport-
ers subsystem is CzcA, a cation-proton antiporter that 
transports excess Cd2 +, Zn2 + , and Co2 + whose gene is 
located within an operon that contains genes for the MFP 
CzcB and the OMF protein CzcC [92]. Fourteen czcA, 
czcB and czcC genes were identified in the genome of 
AZUL (Table 4), most of them shared with other strains, 
although a few additional homologs were identified. The 
Czc system of AZUL is organized in at least six differ-
ent operons, in some cases nearby other genes involved 
in efflux and resistance, such as those of the lead, cad-
mium, zinc and mercury-transporting ATPase ZntA, 
the cobalt–nickel resistance protein CnrA, the outer 
membrane efflux protein OprM and the multidrug efflux 
proteins MdtC, MdtE and BepC (Fig. 4A). One of these 
operons includes a gene for the cation diffusion facilita-
tors (CDF) CzcD, which, in AZUL, is represented by 
single czcD1 and czcD2 gene sequences. CzcD was first 
described as a regulator of expression of the CzcCBA 
operon described above, but this protein is also able to 
mediate a small degree of Zn2+/Co2+/Cd2+ resistance in 
the absence of the high resistance CzcCBA system [93], 
which implies that the strains expressing this protein 
have the ability to activate low-level metal efflux.

Table 3  Elements present in the Laguna Azul water sample as 
determined by Inductively Coupled Plasma Mass Spectrometry 
(ICP-MS)

Element Parts per billion (ppb)

B 10,640.76

Si 6,378.11

Li 2,948.40

P 1,240.92

Br 627.62

I 120.90

Fe 94.25

As 58.23

Rb 20.57

Cr 18.05

Xe 15.57

V 12.17

Ti 11.75

Se 6.20

Sr 6.10

Mo 3.56

U 2.29

Zn 2.04

Cu 2.00

Sc 1.74

Al 1.55

Ba 1.17
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Table 4  Main genes involved in metal resistance in Rhodopseudomonas sp. AZUL
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Fig. 5  Schematic view of the main operons involved in metal resistance in the AZUL genome. A Genes of the czc system for resistance to cadmium, 
cobalt and zinc (yellow boxes). B Copper resistance cop (blue boxes) and cus (purple boxes), cupredoxin genes (cdx1 and cdx-2, dark gray boxes), silP 
and tolC (green). C Chr chromate efflux genes chrA, chrB, chrC, srpC and chrp (pink boxes). D Mercury resistance genes merP, merF, merT and merR1 
genes, located in the vicinity of tniQ, tniB and tnsB genes, which participate in transposition (all orange boxes). E The main regulatory units of the 
AZUL arsenic resistance system (blue boxes) contain arsC, acr3, arsH and regulatory arsR and hlyU genes. In all the operons, box arrowheads show 
the orientation of each coding region. Light gray boxes represent unrelated or hypothetical coding regions and green boxes represent genes for 
resistance to other stressors. The numbered black lines indicate the size of each operon in base pairs. The scale is maintained for each resistance 
system, but different systems have different scales, in bp. For details about the function of each gene, please refer to Table 4



Page 15 of 19Guardia et al. BMC Microbiology          (2022) 22:297 	

Chromium resistance
Additional genes that participate in metal homeostasis/
resistance were identified within the Stress Response, 
Defense and Virulence gene class. Many of them are 
present in most strains, albeit in different numbers. For 
instance, the genomes of AZUL and AAP120 feature a 
larger number of genes involved in chromium resist-
ance than the rest of the strains (7 genes each, Table 
S1). These genes belong to the CHR family, composed 
of transmembrane proteins that act as chromate efflux 
pumps driven by a chemiosmotic gradient [94]. Three 
copies of both chrA1 and chrA2 genes were identified 
in the genome of AZUL, as well as two copies of the 
chrA homolog srpC and one copy of the transcriptional 
regulator gene chrB [95]. Some of the genes involved 
in chromate efflux are organized in AZUL within two 
main operons (Fig. 5C), while the rest of the copies are 
located in other parts of the genome.

Chromate reductase genes chr1 and chr2 were iden-
tified in the genomes of all the Rhodopseudomonas 
strains, whereas chr3 homologs were only found in 
AZUL and a few other strains. In addition, single gene 
copies of the chromium-activated superoxide dis-
mutase SodM-like protein ChrC/F were identified 
in AZUL and AAP120. Chromate reduction confers 
resistance to this metal in conjunction with chromate 
transport [96].

Mercury resistance
A cluster of sequences homologous to genes of the mer 
operon were identified in AZUL, namely one merA, 
two merR, two merT/F and one merP. MerA is mer-
cury reductase, which catalyzes the reduction of Hg(II) 
to volatile Hg(0), while the rest of the mer genes encode 
proteins involved in regulation (MerR), cytoplasmic 
transport (MerT/F) and periplasmic binding (MerP) [97]. 
Mer sequences were found in other 8 of the Rhodopseu-
domonas strains, although only one merR and no merT 
were identified in any of them (Table S1). Interestingly, 
close to the AZUL mer operon, we identified tniQ, tniB 
and tnsB genes, which participate in transposition of the 
mer operon (Fig. 4D) [98], suggesting that this could have 
been the mechanism for acquisition of these genes in 
AZUL.

Arsenic resistance
We detected sequences homologous to genes from the 
ars1 or ars2 operons, which confer resistance to arsenite 
and arsenate in a number of species [99, 100]. Specifically, 
arsC1 and arsC2 (arsenate reductases), acr3 (bile/arsen-
ite/riboflavin-type permease), and arsR (transcriptional 

repressor) were identified in all the Rhodopseudomonas 
strains (Table S1). Additional sequences for arsH1 and 
arsH2 were only found in AZUL, with only one ortholog 
present in a few of the Rhodopseudomonas strains. ArsH 
proteins are organoarsenical oxidases that detoxify triva-
lent methylated and aromatic arsenicals by oxidation to 
the pentavalent species [101]. Contrary to CGA009 [102], 
we did not find evidence of an arsenite S-adenosylme-
thionine methyltransferase gene (arsM) in the genome 
of AZUL, suggesting that the pathway for As (III) meth-
ylation and subsequent volatilization through this protein 
is not among the mechanisms of resistance to arsenic in 
this strain. The ars genes are organized in two main oper-
ons in AZUL, one of them upstream of a chromate trans-
porter gene chrA (Fig. 4E).

Multidrug resistance
The genomes of Rhodopseudomonas sp. AZUL and 
AAP120 feature many genes that take part in efflux sys-
tems for multidrug resistance, represented in AZUL by 
94 detected genes, among the largest number detected 
in the 31 Rhodopeudomonas strains (Table S1). Multi-
drug efflux pumps export a wide variety of compounds 
in bacteria [103]. Interestingly, several multidrug genes 
within the AZUL genome were identified contiguous to 
genes of metal resistance (Fig. 4).

The appearance of multidrug resistance in conjunc-
tion with resistance to metals within the same genome 
might not be casual. A study conducted in Laguna 
Azul showed a correlation between multi-resistance to 
UV radiation, arsenic and antibiotics, despite the fact 
that selective pressure for antibiotic resistance is not 
expected in that habitat [12]. The authors proposed 
that, under the extreme UV radiation that the HAALs 
are exposed to, bacteria have increased mutation rates 
in which spontaneous resistance to antibiotics can 
emerge. Indeed, our results show that, in AZUL, mul-
tidrug genes are often located adjacent to metal resist-
ance operons, which could have important implications 
related to their origin and/or regulation.

Protein and nucleoprotein secretion system, Type IV
Within the Membrane Transport class, AZUL, AAP120 
and BAL398 have several genes involved in Vir-like 
type 4 secretion (Table S1). The type IV (T4SS) is one of 
several types of secretion systems that microorganisms 
use for the transport of macromolecules such as pro-
teins and DNA across the cell envelope [104]. It is the 
most versatile family of secretion, mediating transport 
of monomeric proteins as well as multi-subunit pro-
tein toxins and nucleoprotein complexes. In the case of 
DNA transfer, it is known to greatly increase genomic 
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plasticity, helping microorganisms to adapt to changes 
in their environment [104].

Metal uptake
Many genes that take part in metal uptake are common 
among all or most of the Rhodopseudomonas strains. One 
exception is the mgtB gene, which encodes a P-type ATPase 
involved in Mg2+ intake under limiting conditions [105] 
that was only detected in AZUL. In addition, two homologs 
of the hoxN gene, involved in high-affinity nickel uptake 
[106] are present in AZUL, while only one homolog, or 
none, were found in the rest of the strains (Table S1).

Response to UV
The sequences related to tolerance to UV are, in gen-
eral, common between AZUL and the rest of the Rho-
dopseudomonas strains. Nevertheless, there are a few 
exceptions. For instance, single homologs encoding 
RuvA and RuvB, the subunits of an ATP-dependent 
DNA helicase that participates in recombinational 
repair of UV damage [107], were identified in all the 
Rhodopseudomonas strains, while an extra gene for a 
RuvB subunit was only found in the genome sequence 
of AZUL. As another example, homologs of the deoxy-
ribodipyrimidine photolyase gene phrA, involved in 
photorepair [108], were identified in all the strains ana-
lyzed, whereas its counterpart, phrB, was only identi-
fied in AZUL and 2.1.18.

Conclusions
In this work, we have presented the draft genome 
sequence of Rhodopseudomonas sp. AZUL, a strain 
isolated from an endorheic basin in the Argentinean 
Andean region. In addition, we have done comparative 
genomic analyses that included most of the Rhodop-
seudomonas strains with available sequenced genomes. 
This has led us to conclude that the Rhodopseu-
domonas genus has an open pangenome, as the addi-
tion of strains to the analysis increased the size of the 
total gene repertoire with a linear trend. These results 
are expected given the great metabolic adaptability of 
this genus. In this scenario, our results reinforce the 
idea that Rhodopseudomonas strains evolve from the 
basal metabolic flexibility of the genus into the genera-
tion of ecotypes greatly adapted to their specific niches 
[2]. Our genomic analysis has shown that, in addition 
to the metabolic complexity of the genus, AZUL has 
numerous mechanisms for both the uptake and export 
of minerals and other chemicals, as well as for chemical 
detoxification. Being able to accomplish the four types 
of carbon and energy metabolism, it is likely that AZUL 

has evolved to not only tolerate but also use some of 
these compounds as electron carriers.

The genome of AZUL has also several transport genes 
for DNA and nucleoprotein uptake, which could con-
fer remarkable genomic plasticity that surely helps 
this strain adapt to changes in its surroundings. This 
is ideal considering that the natural habitat of AZUL 
experiences drastic changes in environmental param-
eters and seasonal contraction and expansion of the 
water levels that modify the amount of minerals and 
other compounds from geochemical and volcanic ori-
gin [17, 109]. In addition to a remarkable adaptation 
to a hostile environment, the genome of AZUL makes 
us envision promising industrial applications of this 
microorganism. Future experimentation will inter-
rogate its capacity to bioremediate both metals and 
organic compounds.
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