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a b s t r a c t 

Cheminformatics is the chemical field that deals with the storage, retrieval, analysis and manipulation of an 
increasing volume of available chemical data, and it plays a fundamental role in the fields of drug discovery, 
biology, chemistry, and biochemistry. Open source and freely available cheminformatics tools not only contribute 
to the generation of public knowledge, but also to reduce the technological gap between high- and low- to middle- 
income countries. Here, we describe a series of in-house cheminformatics applications developed by our academic 
drug discovery team, which are freely available on our website ( https://lideb.biol.unlp.edu.ar/ ) as Web Apps 
and stand-alone versions. These apps include tools for clustering small molecules, decoy generation, druggability 
assessment, classificatory model evaluation, and data standardization and visualization. 
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. Introduction 

Cheminformatics describes the use of information technology to han-
le chemical information [1] . The field itself has been integrated with
he chemical sciences for many decades. However, the term was coined
elatively recently, when the increasing amount of chemical data gen-
rated within the drug discovery field (e.g., due to the implementa-
ion of combinatorial chemistry and high-throughput screening plat-
orms) made the use of chemical information technologies increasingly
andatory [2] . Although cheminformatics has a wide scope, core tasks
ithin the cheminformatics field include the management of chemical
atabases and datasets, storage and retrieval of chemical information,
tructure-property relationships, in silico screening, and the design of
ombinatorial and focused libraries. 

As in other areas related to informatics, many relevant cheminfor-
atics software were developed under the open-source philosophy. The

pen-source paradigm began in the informatics field and is intrinsically
elated to the notions of collaborative research and public knowledge.
t was later partially adopted in other fields, for example, in the phar-
aceutical sector [ 3 , 4 ], when it was realized how efficient the collab-

rative model might become in relation to traditional close-doors and
arket-driven philosophies. The open-source approximation has special

elevance to bridge technological and scientific gaps between low- and
igh-income countries and to address neglected needs from the poorest
egions of the globe. This is well reflected in our organization: LIDeB
Laboratory of Bioactive Compounds Research and Development) is a
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E-mail address: alantalevi@gmail.com (A. Talevi) . 

ttps://doi.org/10.1016/j.ailsci.2022.100049 
eceived 23 September 2022; Received in revised form 24 November 2022; Accepted
vailable online 2 December 2022 
667-3185/© 2022 The Authors. Published by Elsevier B.V. This is an open access ar
mall academic research center dependent on the University of La Plata
UNLP, Argentina) with a focus on drug discovery projects, and a partic-
lar interest in the field of infectious tropical diseases. As part of these,
e have developed publicly accessible cheminformatics Web Apps de-
loyed through the Streamlit framework and standalone source codes.
ere, we provide an overview of these resources, which are freely ac-
essible on our website at https://lideb.biol.unlp.edu.ar/ . These include
lustering, decoy generation, druggability prediction apps, and other
econdary resources related to chemical data standardization and visu-
lization. 

Several data science and machine learning platforms have been de-
eloped thus far, enabling users with limited coding ability to create
ipelines for data exploration, analysis, and mining. Some well-known
xamples include KNIME, Pipeline Pilot, and Alteryx. Although they of-
er free and open-source distributions, most advanced features or third-
arty applications are only available under commercial licenses, which
ometimes makes them inaccessible to small research units in develop-
ng countries. 

All applications within the LIDeB Tools suite were deployed as Web
pps on the Streamlit platform, so scientists can use them through a
ser-friendly interface using computational resources allocated to the
loud. Alternatively, their standalone distributions are written in plain
ython, under an Object-Oriented Programming (OOP) paradigm and
sing open-source libraries, offering a higher level of customization and
ode reusability. Moreover, they can easily be plugged into existing
hemoinformatic pipelines. 
 1 December 2022 

ticle under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 

https://doi.org/10.1016/j.ailsci.2022.100049
http://www.ScienceDirect.com
http://www.elsevier.com/locate/ailsci
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ailsci.2022.100049&domain=pdf
https://lideb.biol.unlp.edu.ar/
mailto:alantalevi@gmail.com
https://lideb.biol.unlp.edu.ar/
https://doi.org/10.1016/j.ailsci.2022.100049
http://creativecommons.org/licenses/by/4.0/


D.N.P. Gori, L.N. Alberca, S. Rodriguez et al. Artificial Intelligence in the Life Sciences 2 (2022) 100049 

Fig. 1. A scheme of a drug discovery machine learning campaign, from assess- 
ment of target druggability to retrospective virtual screening for protocol vali- 
dation. Possible steps where our reported open-source tools can be incorporated 
are shown. 
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A general workflow of a machine learning-based drug discovery
roject is shown in Fig. 1 , which indicates the part of the workflow
n which each of our tools might be integrated. 

. Clustering tools 

Clustering of small molecules implies sorting a collection of chem-
cal structures into smaller groups (clusters) such that the molecules
ithin a cluster display a high degree of similarity (within-cluster simi-

arity) compared to their similarity to elements allocated to other groups
between-cluster similarity). Ideally, clustering should provide compact
lusters far away from each other within the relevant chemical space [5] .
 clustering strategy requires a sensible decision regarding the cluster-

ng algorithm and parameter settings to obtain a good approximation of
n optimal solution. Clusters found using a clustering procedure offer
 hypothesis of the possible groups within the data because the ground
ruth (if existent) is generally unknown [6] . 

LIDeB Tools include two in-house clustering approximations, the it-
rative Random subspace Principal Component Analysis (iRaPCA) ap-
roach and Silhouette-Optimized Molecular Clustering (SOMoC), along
ith an implementation of some classical agglomerative clustering al-
orithms, Comparative Hierarchical Clustering Algorithms (CHiCA),
hich allows an interactive exploration of the output dendrograms for
n informed choice of the most suitable clustering method and the op-
imal level to cut the tree, depending on the user’s needs. 

.1. iRaPCA 

iRaPCA clustering is based on an iterative combination of random
ubspace (feature bagging), dimensionality reduction by Principal Com-
onent Analysis (PCA) [7] and the K-means algorithm [8] . The iRaPCA
lgorithm can be described as a sequential combination of four steps:
nput and encoding, dimensionality reduction, actual clustering and, option-
lly, iteration . To adapt iRaPCA to a particular user’s needs, the algo-
ithm includes customizable hyperparameters. 

In the input step , the molecules to be clustered should be provided as
 .csv file, where each line corresponds to a molecule in SMILES format.
fter optional standardization employing MolVS [9] , Mordred [10] is
sed to compute 1613 molecular descriptors for each molecule. Alter-
atively, users may provide their own pool of molecular descriptors as
ab-delimited .txt file. 

Subsequently, the dimensionality reduction step starts with the re-
oval of descriptors with low information content, and 100 random

ubsets of 200 descriptors are created using a random subspace/feature
agging approximation [11] , followed by the removal of highly corre-
ated descriptors within each subset. Importantly, the user may define
 higher number of random subsets in the standalone version of the
cript. Subsequently, PCA is conducted on each subset; by default, only
he first two principal components are considered for the next steps of
he procedure. In the final clustering step, the K-means algorithm is ap-
lied to the PC space by systematically varying the number of clusters
2 
K) for each subset and evaluating them using the silhouette score [12] .
he silhouette coefficient or score is a measure of how similar an ele-
ent is to the other elements of its own cluster, compared to its distance

o the elements allocated to other clusters. Assume the data have been
nto k clusters. The silhouette value s(i) of a given data point i can be
alculated as b(i)-a(i)/ max {(a(i),b(i)} , where a(i) is the mean distance
etween i and all other data points in the same cluster and b(i) is the
mallest mean distance of i to all points in any other cluster. s(i) ranges
rom − 1 to 1, with a value close to 1 indicating that the cluster to which
 belongs is compact and distant from its closest cluster. The mean s(i)
ver all points of a cluster reflects how tightly grouped all points in the
luster are. The silhouette score is the maximum value of the mean s(i)
ver all data of the entire dataset. 

The results of the systematic variation of k per step by iRaPCA are
resented in a silhouette vs. K plot for the 100 subsets (an example is
hown in Fig. 2 ). The subset and K pair that delivers the highest silhou-
tte score is typically selected. Other Cluster Validity Indexes (CVIs) are
lso provided: the Dunn Index [13] , Davies–Bouldin (DB) Index [14] and
ali ń ski-Harabasz (CH) Index [15] . 

Finally, the iteration step starts with the calculation, for each clus-
er, of the ratio of the number of molecules in a cluster over the total
olecules in the clustered dataset, followed by a new round of clustering

or those clusters that exceed a user-selected cutoff value of this ratio.
nce there are no more clusters that exceed this ratio, or the maximum
umber of rounds defined by the user has been executed, the cluster-
ng ends and several output files are generated: Cluster_assignations.csv ,
hich compiles all the molecule’s codes and their cluster membership;
luster_distribution.csv , which specifies the obtained clusters and their
izes; Validations.csv , which displays the values of the CVIs for the clus-
ered dataset plus the CVIs obtained when randomly allocating the
ataset compounds to an identical number of clusters; and Settings.csv ,
hich summarizes all the settings used in the run. 

As a benchmark exercise the clustering performance of this algo-
ithm was tested across 29 diverse datasets extracted from the litera-
ure [16] , comparing it with classic clustering techniques: Butina [17] ,
nd agglomerative clustering based on single-, complete-, average-, and
eighted-linkage [18] (Tanimoto coefficient and Morgan Fingerprints
f length = 1024 and radius = 2, an ECFP4-like representation, were
sed to characterize the molecules). In the case of Butina, the number
f neighbors for each molecule in the datasets was calculated for differ-
nt Tanimoto distance cutoff levels ranging from 0.5 to 0.90, with a step
ize of 0.01. The algorithm, as implemented in RDKit [19] , was applied
o each similarity level of the ranking generated by sorting the molecules
ccording to the number of neighbors. For each Tanimoto level, the sil-
ouette score was calculated and the optimal Tanimoto level, defined as
he one that provides the highest silhouette score, was selected. In the
ase of the agglomerative clustering approaches, the single-, complete-,
verage-, and weighted-linkage algorithms, as implemented in SciPy
20] , were applied over the Tanimoto distance matrix to obtain the
orresponding dendrogram and the distance cutoff value providing the
ighest silhouette score was selected. In all the cases, the previously
entioned set of CVIs was computed for comparison. The silhouette

cores obtained for the 29 datasets using the five clustering methodolo-
ies are presented in Fig. 3 . The silhouette values for iRaPCA correspond
o the first round of the iterative procedure. It can be observed that the
ilhouette scores for iRaPCA oscillated between 0.85 - 0.98 (that is, very
lose to the ideal value of 1), much higher than those of the other meth-
ds under comparison. 

.2. SOMoC 

SOMoC clustering is based on a combination of molecular finger-
rinting, dimensionality reduction using the Uniform Manifold Approx-
mation and Projection (UMAP) algorithm [ 21 , 22 ], and clustering with
he Gaussian Mixture Model (GMM) [ 23 , 24 ]. The general workflow of
he algorithm is similar to that of iRaPCA in the initial steps of input and
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Fig. 2. Example of silhouette score vs. K plot gener- 
ated by iRaPCA, for the default 100 randomly chosen 
descriptor subsets. 

Fig. 3. Performance comparison of the iRaPCA and SoMOC algorithms versus Butina and several agglomerative hierarchical clustering algorithms across 29 bench- 
mark datasets. These were ordered and labeled in the figure according to their size (i.e., by the number of compounds in each dataset). 
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ncoding, dimensionality reduction, and clustering . Its hyperparameters, as
n the case of iRaPCA, can also be customized. 

In the input step , the molecules are provided again in SMILES nota-
ion as a .csv file, but instead of calculating molecular descriptors, the
olecular representations are encoded into EState1 molecular finger-
rints, calculated by RDKit, with a fixed-length fingerprint containing 79
eatures [25] . The UMAP algorithm, a nonlinear dimensionality reduc-
ion technique based on Riemannian geometry and algebraic topology,
s then applied to reduce the hyperdimensional space of the fingerprints,
etaining the most informative features of the process. The size of the
mbedded space is determined based on the size of the dataset. In the
3 
lustering step, the GMM algorithm is applied to the molecules in the
mbedded UMAP space to search for the number of K clusters that max-
mizes the silhouette score. An elbow plot of the silhouette score vs. K
s presented for visual estimation of the optimal K. The same additional
VIs previously described for iRaPCA are also calculated and the same
utput files are generated. 

To validate SOMoC as a clustering tool, a benchmarking exercise sim-
lar to the one used for iRaPCA was performed across the same datasets,
sing Butina and agglomerative clustering algorithms as comparators.
he SOMoC algorithm displayed Silhouette scores ranging between 0.72
 0.99 across the 29 datasets. The results are presented in Fig. 3 . 
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Fig. 4. Example of a dendrogram generated by 
CHiCA. 
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Fig. 5. Example Distance cutoff vs. Silhouette score vs. Number of Molecules 
plot. 
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.3. CHiCA 

CHiCA implements diverse classical hierarchical agglomerative clus-
ering approaches. Despite exhibiting modest performance in compari-
on to iRaPCA and SOMoC, as shown in Fig. 3 , CHiCA allows the user,
y using interactive graphs, an intuitive and visual choice of the num-
er of clusters to consider. Molecules are characterized by Morgan fin-
erprints with user-defined radio and length (by default, 2 and 1024,
espectively) [26] . It is possible to include special, fuzzy features in the
ngerprints, such as hydrogen-bond donors, acceptors, aromatic rings,
alogen atoms, and acidic or basic groups. As in our other clustering
pps, the input molecules are provided in SMILES notation through .csv
les, and a distance matrix is obtained. CHiCA allows the measurement
f the pairwise distance between molecules using different metrics (e.g.,
accard, Euclidean, Cosine) by employing SciPy [20] . The SciPy’s clus-
ering package is then used to perform hierarchical clustering. Different
gglomerative methods are available for this purpose. By default, single-
inkage is used. 

The clusters are plotted in an interactive dendrogram ( Fig. 4 ) that
isplays the composition of each cluster by drawing the links between
 non-singleton cluster and its children. The top of a link indicates a
luster and its two legs specify which clusters have been merged, while
he length of the legs reflects the distance between the child clusters.
his dendrogram allows the user to visually select a distance cutoff for
lustering molecules based on their distribution in the generated clusters
nd the number of outliers. 

Additionally, an interactive scatter plot of distance vs silhouette
core vs the number of molecules is shown ( Fig. 5 ). This plot allows
he user to select an optimal cutoff for clustering based on this score
r the number of outliers, number of small clusters (defined as clusters
ith more than one molecule and less than 5% of the total molecules
y) or number of dense clusters (defined as clusters with more than 5%
f the total molecules by default). 

Once the optimal cutoff has been identified, CHiCA is re-run with this
istance value, generating four output files: Clustering_assignations.csv

hich specifies which molecules have been assigned to which cluster
ccording to the chosen cutoff value; Cluster_distribution.csv , which speci-
es the number of obtained clusters and their sizes; Validations.csv which
ontains the values of the CVIs; and Settings.csv , which contains the se-
ected parameters in the run. 

The molecular structures of the group centroid for the most popu-
ated cluster obtained using iRaPCA, SOMoC and CHiCA for the human
annabinoid receptor 1 dataset (Hum_can_rec) are shown in Fig. 6 . 

. Decoy generation 

Any virtual (or, for the case, wet) screen is confronted with an in-
rinsic class imbalance: the number of active compounds in a chemical
ibrary is significantly exceeded by the number of inactive compounds.
4 
herefore, validation of the virtual screening protocol should realis-
ically reflect this scenario. In other words, the ability of the virtual
creening method to retrieve relatively few known active compounds
rom a large chemical library predominantly composed of inactive com-
ounds should be evaluated. This is often performed through retro-
pective screening experiments in which a comparatively small num-
er of known active compounds are dispersed among a large number of
proven or putative) inactive compounds. Putative inactive compounds
re also known as decoys, and in essence they are similar to the active
ompounds in terms of an array of physicochemical properties, such as
olecular weight (MW), logP (see belong) but topologically dissimilar.
s the molecular topology is key to complementarity with the pharma-
ological target, it can be assumed that decoys that are topologically
istinct from active compounds will likely be inactive compounds. If
he virtual screening protocol works properly, it is expected that the
nown active compounds will be preferentially ranked above decoys.
ruchon and Bayly showed that, for accurate estimation of enrichment
etrics, the proportion of active compounds in the library that is sub-

ected to retrospective screening should not exceed 0.05 [27] . Further-
ore, the “saturation effect ” is avoided or at least ameliorated when

uch a proportion is observed. When inactive compounds are scarce,
nown active compounds can be complemented by putative inactive
ompounds [ 28 , 29 ]. That is, unverified inactive molecules that are cho-
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Fig. 6. The figure shows the centroids and the closest and farthest neigh- 
bors from the centroids (within the most populated cluster) obtained for the 
“Hum_can_rec ” dataset using iRaPCA, SOMoC and CHiCA (weighted linkage) 
methods. 
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en on some theoretical basis to assure a rather small probability of mis-
abeling; the Directory of Useful Decoys Enhanced (DUD-E) [30] , with
 recently release improved version [31] is possibly the most popular
nline decoy-generation tool to validate structure-based screening pro-
ocols, although some other decoy generators have also been reported,
ncluding methods that rely on hard machine learning approaches [32–
4] . Although undoubtedly useful, DUD-E was at times limited by the
apacity of its online server to return putative decoys in a short time,
ometimes demanding several days to complete a task (this was particu-
5 
arly true when the number of active queries increased to hundreds and
as been greatly expedited in DUDE-Z). This led us to develop a similar
pproximation available as a standalone script, which we called LIDeB’s
seful Decoys (LUDe). 

.1. LIDeB’s useful decoys 

LUDe retrieves decoys from a curated ChEMBL30 database (cura-
ion details are provided in Supplementary Information). These decoys
re paired with some general physicochemical properties of the query
ctive compounds, which ensures that the generated decoys are chal-
enging (i.e., non-trivial) so that enrichment bias [ 35 , 36 ] is avoided.
owever, as described later, different filters are subsequently applied

o ensure that the provided decoys are topologically distinct from (and
hare no scaffolds with) any of the active compounds; thus the false-
egative bias is also reduced [36] . The general LUDe workflow is illus-
rated in Fig. 7 . Our in-house script requires a .txt file as input with
olecular representations of the query compounds (known active com-
ounds) in SMILES notation. The queries are then standardized using
olVS [10] , returning the largest organic covalent unit in the molecule
ith all atoms replaced with the most abundant isotope for that ele-
ent and their charge removed. Additionally, the ionization state at pH
.4 is calculated with the appropriate charges using Openbabel [37] .
nce the molecules have been standardized, the following physicochem-

cal descriptors are calculated using the rdkit.Chem package: molecular
eight (MW), log P (LogP), number of rotatable bonds (nRotB), number
f H-bond acceptors (nHAcc), number of H-bond donors (nHDon) and
ormal charge (Charge). Morgan fingerprints (with tunable lengths and
adii, by default radius = 2 and length = 1024) and the Murcko Scaffold
re next obtained for each compound, using the rdkit.Chem package for
his purpose. 

Afterwards, decoys are sought across different subsets of the curated
hEMBL database containing 150 K molecules per subset. A physico-
hemical similarity search with established cut-off values is carried out
n one randomly selected ChEMBL subset. By default, the retrieved de-
oys will present features in the following range in comparison to their
uery: MW ± 20 Daltons, LogP ± 0.5 log units, nRotB ± 1 bond, nHAcc ± 1
onds, nHDon ± 1 bonds, and Charge ± 1 units, although the tolerance
indows can be narrowed or expanded by the user. If fewer than 400
olecules are recovered in this randomly chosen ChEMBL subset, the
roperty limits are extended by a factor of 1.5, up to five times. For in-
tance, in the case of MW the window is extended, round by round, to
 30 Daltons, ± 45 Daltons, etc. 

Physicochemical similarities between the queries and the generated
reliminary list of decoys are estimated. For this, the difference between
ach known active compound and each decoy in terms of the six pairing
roperties is calculated and summarized with a physicochemical similar-
ty score (PSS) ranging from 0 (lowest similarity) to 1 (highest similarity)
38] . The compounds are then ordered with descending PSS values, and
he top 200 are selected. 

Three successive topological similarity filters are applied to these
etrieved decoys to selectmolecules that are topologically less similar to
he query compound. First, the Tanimoto similarity coefficient between
he query compound and each potential decoy is calculated. By default,
nly decoys with a maximum similarity coefficient of 0.2 are kept. The
aximum common substructure (MCS) between the query compound

nd each surviving decoy is then determined, and the ratio between the
umber of atoms in the MCS and the total number of atoms in the query
ompound (fMCS) is calculated [39] . Only decoys with fMCS below a
ser-defined value (by default, 0.5) are retained. The Murcko scaffold
40] of the query compound is compared with those of the potential
ecoys, keeping only those that present scaffolds that are different from
he query. 

The previous steps are repeated with another ChEMBL subset until
 total of 500 potential decoys for each query compound have been
ecovered or all subsets have been exhausted, whichever happens first. 
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Fig. 7. General workflow for LUDe. 

Table 1 

Number of decoys generated in each step of the LUDe workflow for five active compounds in the FABP4 dataset of DUD-E. 

Query Molecules 

Selected by matching 
physicochemical 
properties 

Pass the Tc filter 
per active 

Pass the fMCS 
filter 

Pass the 
Framework filter 

Non- duplicated 
decoys per 
active: 

Pass the cross-check TC 
filter against all queries 
submitted 

Query 1 800 582 582 582 582 217 
Query 2 1000 641 640 640 625 286 
Query 3 1000 624 623 623 586 285 
Query 4 1000 755 754 754 523 185 
Query 5 800 642 622 622 515 182 

Tc: Tanimoto coefficient. 
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After performing the workflow for all query molecules, the molec-
lar fingerprints of the resulting list of decoys are compared to those
f all query compounds, and only decoys with a Tanimoto similarity
elow 0.2 (by default) to any query are retained. This ensures that the
ecoys are not only different from the query they were derived from
ut also from any of the known active compounds used to generate
hem. Up to 50 decoys per query compound are retrieved by default,
lthough this number can also be customized. The following output
les are generated: Generated_decoys.csv, which contains all the de-
oys in SMILES notation; Decoys_analysis.csv, which provides a table
ontaining a summary of the number of molecules that passed each suc-
essive filter; and Decoys_setting.csv, containing a summary of all the
ettings used in the run. As an example, Table 1 presents the number
f decoys obtained when using the active compounds included in the
atty Acid Binding Protein 4 (FABP4) subset from DUD-E as queries for
UDe. This dataset contains 47 FABP4 inhibitors. Only five of these have
een included in the table, for illustrative purposes. For instance, LUDe
ound 800 molecules that were physicochemically similar to query 1.
mong these, 582 passed the three filters that ensure topological dis-
imilarity from the query. Of these, only 217 molecules were dissimilar
o the remaining queries. By default, fifty decoys were then randomly
elected for query 1, and the same analysis was repeated for every other
uery. It is important to emphasize that because 2D similarity methods
re used to select decoys for each query (excluding decoys with high
D similarity to any query), LUDe decoys should not be used to assess
he performance of in silico screens based on 2D similarity approxima-
ions/molecular fingerprints. This is a general warning for any method
hat uses a 2D similarity criterion to exclude potential decoys from
he list. 

The performance of LUDe was compared with that of DUD-E
cross 102 target subsets of active compounds and their correspond-
ng DUD-E-generated decoys, which are available on the DUD-E website
 http://dude.docking.org/subsets ). For each set of active compounds, a
6 
ew set of decoys was generated using LUDe. The total number of decoys
btained for each subset is included in the Supplementary Information
Table S1). 

The quality of the generated decoy molecules, in terms of the physic-
chemical matching of decoys and the risk of allowing latent active
ompounds in the decoy set (LADS), was determined by the deviation
rom the optimal embedding score (DOE score) and the assessment of
he Doppelganger score, respectively, as recommended by Vogel et al.
38] . The DOE score was obtained by analyzing the spatial distances
f the molecules in the chemical space defined by the six normalized
hysicochemical properties used to match queries and decoys. Briefly,
he distances from each active compound to all remaining active com-
ounds and decoys were calculated in the normalized multidimensional
pace and molecules were sorted in ascending order according to these
istances. The real class of each molecule (labeled 1 for active com-
ounds and 0 for decoys) and the obtained distances were later used to
uild a Receiving Operating Characteristic (ROC) curve for each active
ompound, and the average absolute value of the difference between
he area of these ROC curves and the area of a randomly sorted list of
ompounds (0.5) was defined as the DOE score: 

 𝑂𝐸 𝑠𝑐𝑜𝑟𝑒 = 

1 
𝑚 

𝑚 ∑

𝑎 =1 
𝐴𝐵𝐶 

𝐷𝑂 𝐸 

𝑎 

here m is the number of queries (active compounds). Optimal embed-
ing of active compounds into decoys corresponds to a value of zero,
hereas a value of 0.5 denotes no embedding at all. 

Fig. 8 A shows that the DOEs obtained with LUDe decoys are above
hose obtained with DUD-E decoys for 65% of the 102 targets. Moreover,
6% of the subsets of decoys generated by our script achieved a DOE
core below 0.2, whereas this proportion represented 74% of the targets
or DUD-E decoys. 

In contrast, the Doppelganger score captures the structural similar-
ty between actives and their most structurally related decoys. To assess

http://dude.docking.org/subsets
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Fig. 8. A) DOE scores of the original DUD-E set 
(blue) compared with the LUDe generated de- 
coys (red) across 102 targets. The targets with 
even indices were not labeled on the x-axis ow- 
ing to space limitations. B) Mean doppelganger 
scores of the original DUD-E set (blue) com- 
pared with the LUDe generated decoys (red) 
across 102 pharmacological targets. The targets 
with even indices are not labeled on the x-axis 
owing to space constraints. 
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his score, FCFP6 fingerprints were generated using RDKit [19] for ev-
ry known active compound and decoy, and for each of the 102 phar-
acological targets; the similarity between each decoy and each ac-

ive compound (query) was assessed using the Tanimoto coefficient.
he Doppelganger score of a decoy is defined as the maximum value
f the Tanimoto coefficient obtained in this way, across all active com-
ounds used as queries. For each target, we report the mean Doppel-
anger score over all decoys and the maximum structural similarity be-
ween an active and a decoy. Fig. 8 B shows the mean Doppelganger
core over all decoys for each of the 102 targets. The Doppelganger
core was lower for 85% of the targets for LUDe decoys than for DUD-E
ecoys, with an average Doppelganger score across the targets of 0.23
or LUDe decoys and 0.25 for DUD-E decoys. This possibly reflects the
ffect of the additional filters implemented in LUDe to ensure topolog-
cal dissimilarity between the decoys and queries (fMCS, Mucko scaf-
old). The maximum average Doppelganger score per target was very
imilar for LUDe and DUD-E (0.36 and 0.37, respectively). This sug-
ests that the chance of false-negative decoys tends to be reduced for
UDe. 

. Druggability prediction tool 

Druggability refers to the ability of a given protein to bind with a
igh affinity to small drug-like molecules [41] . Assessing the drugga-
ility of potential pharmacological targets prior to initiating a target-
ocused drug discovery campaign is crucial. Fast Druggability Assessment

FaDrA) is a druggability prediction web application based on four lin-
ar classifiers that can discriminate druggable from non-druggable tar-
ets from complete proteomes within a few minutes, with acceptable
ccuracy, based only on the protein sequence. 
7 
To develop these algorithms, a protein dataset was compiled from
hEMBL [42] , DisProt [43] and DCD [44] . Proteins were labeled “drug-
able ” if at least two of the following conditions were met: more than
00 reported small-molecule modulators with IC50 < 20 μM; more than
% hit rate in reported high-throughput screening campaigns; at least
ve publications reporting modulators per year, indexed in Scopus. Oth-
rwise, the proteins were labeled as “non-druggable ”. Using these crite-
ia, 222 protein sequences were retrieved, of which 111 were considered
ruggable and 111 were considered non-druggable. 

Seventy percent of the proteins in each class was sampled for the
raining set of the classifiers. The remaining proteins were used as a test
et to validate the generated models externally. To realize this sampling
epresentatively, we used a clustering strategy that combined dimen-
ionality reduction of Zernike descriptors [45] by Principal Component
nalysis (PCA) followed by the application of the k-means clustering
lgorithm. 

The dataset proteins were then characterized using 147 CTD descrip-
ors available in PyBioMed [46] , which are independent of the sec-
ndary, tertiary, or quaternary structure of the proteins, as they only
equire the sequence of the protein as input. The pool of 147 descrip-
ors for the training set was subjected to a random subspace approach
enerating 1000 subsets of 20 descriptors each. Then, using a Forward
tepwise strategy we generated 1000 linear classifiers with no more
han five descriptors each. The robustness of the models and chance of
purious correlations were assessed using Leave-Group-Out (LGO) cross-
alidation and randomization tests. LGO cross-validation was performed
sing randomly stratified subsets composed of eight druggable and eight
on-druggable proteins that were removed from the training set in each
ross-validation round, and the model was regenerated using the re-
aining proteins as training examples. The resulting model was used
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Table 2 

Results of the randomization test and the LGO cross-validation for the four best 
models. 

Model Accuracy (s.d.) 1 

Accuracy 
Randomization test 
(s.d.) 1 

Accuracy 
LGO 

(s.d.) 1 

260 0.820 (0.066) 0.499 (0.150) 0.723 (0.110) 
361 0.808 (0.069) 0.500 (0.134) 0.712 (0.113) 
424 0.814 (0.068) 0.503 (0.129) 0.758 (0.110) 
763 0.801 (0.069) 0.499 (0.128) 0.744 (0.104) 

1 s.d. indicates Standard Deviation. 

Table 3 

Performance of the best models in the external validation. 

Model Accuracy (s.d.) 1 Recall (s.d.) 1 Precision (s.d.) 1 

260 0.803 (0.066) 0.939 (0.059) 0.744 (0.070) 
361 0.802 (0.070) 0.757 (0.108) 0.839 (0.085) 
424 0.818 (0.069) 0.818 (0.095) 0.825 (0.082) 
763 0.803 (0.068) 0.908 (0.072) 0.756 (0.074) 

1 s.d. stands for Standard Deviation. 
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o predict class labels of the removed proteins. The procedure was re-
eated 1000 times, with each of the training set examples removed at
east once. 

In contrast, in the randomization test the class label was random-
zed across the proteins comprising the training set. The training set
ith the randomized variable was used to train new models, from the
escriptor selection step. This procedure was repeated 1000 times for
ach descriptor subset. Randomized models are expected to have poor
ccuracy compared with real models. 

The results of both tests are presented in Table 2 . The results sug-
est some degree of overfitting for each classifier, but very low chances
f spurious correlation (as seen as the mean accuracy in the random-
zation test, practically identical to the expected accuracy for random
lassification, i.e., 0.5 for balanced sets). 

The equations of the four best models and the definitions of the de-
criptors included in them have been incorporated in the Supplementary
nformation. The predictive power of the selected models was further
xamined by calculating the accuracy, recall and precision over the 66
rotein sequences that compose the test set ( Table 3 ). 

Finally, the predictions of the four models were combined in a meta-
lassifier to reduce the number of false positives, that is, proteins that
re predicted to be druggable but are actually non-druggable. The meta-
lassifier considers the predictions of the four individual models and the
ssessment of the applicability domain (AD) using the leverage approach
nd 3d/n as the cut-off value, where d is the number of descriptors in the
orresponding model and n is the number of compounds in the training
et. Finally, meta-classifier prediction is performed using the decision
ree shown in Fig. 9 . 

Table 4 compares the performance of each individual classifier,
n terms of accuracy, with that of the meta-classifier. It can be ob-
erved that the meta-classifier obtains the best accuracy within the non-
ruggable class; it is also the scheme that leads to less “non-conclusive ”
esults. 

FaDrA allows druggability prediction of complete proteomes within
 few minutes. The app receives a “.fasta ” file as input. This file may
Table 4 

Accuracy by category for each selected model and the meta

Model 260 Model 36

Druggable accuracy 0.848 0.800 
Non-druggable accuracy 0.593 0.700 
Number of “Non-conclusives ” 9 6 

8 
nclude a simple sequence, a few protein sequences, or a complete pro-
eome. After reading the file, the necessary descriptors for the models
re calculated using PyBioMed and the four models are applied to each
rotein. In addition, the applicability domain is determined. A pie chart
s displayed ( Fig. 10 ) showing the percentage of “druggable ” and “non-
ruggable ” proteins, and the percentage of “non-conclusive ” results. Fi-
ally, a .CSV file is generated that summarizes the predictions for the
our individual models and the meta-classifier, as well as whether each
rotein sequence belongs to the ADs of the models. For example, the
omplete proteome of Escherichia coli (Genome assembly ASM584v2)
as run in FaDrA. 4298 proteins were loaded of which 1978 (46%) were
redicted as “non-druggable ”, 2084 (48.5%) were predicted as “drug-
able ”, and 236 (5.5%) generated non-conclusive results. Table 5 shows
he predictions for the first ten proteins in the E. coli proteome. 

. Other tools 

In addition to the previously discussed Web Apps, LIDeB Tools also
nclude three other secondary tools that employ available packages
nd algorithms with minor changes and are implemented with a user-
riendly interface. These are Heatmap-Similarity, LIDeB’s Standardiza-
ion Tool (LISTo), and Metrics. 

The Heatmap-Similarity Web App builds a heatmap of molecular
imilarities using RDKit. These plots of intermolecular similarity allow
or fast visual inspection of the molecular diversity of chemical datasets.
he inputs for the app are two .txt files (which can be identical or dif-
erent), where each line corresponds to a molecule in SMILES. The al-
orithm constructs a similarity matrix between two loaded sets of com-
ounds, computed as a Tanimoto similarity coefficient using Morgan
ngerprints with a user-defined radius (from 1 to 3, 2 by default) and
it length (1024 by default). The matrix is plotted as a heatmap with
 color scale indicating similarity, and the resulting plots can be down-
oaded as .png files. 

LISTo is a standardization Web App that helps to automatically stan-
ardize collections of chemical structures that may present different,
on-homogeneous molecular representations. This simple standardiza-
ion is useful for ensuring a homogeneous format of molecules before
alculating any conformation-independent molecular descriptor. In this
rocess each molecule, submitted in a .txt file in SMILES notation, passes
hrough a series of standardization steps that are included in MolVS. By
efault, LISTo retains only the parent fragment of the molecule (the
argest organic covalent unit in the molecule), removes all stereochem-
cal information from tetrahedral centers and double bonds, mantains
he uncharged version of the fragment parent, replaces atoms with the
ost abundant isotope, disconnects metals from organic atoms, ap-
lies a series of transformations to correct common drawing errors,
nd removes hydrogen atoms. The Web App also returns the canoni-
al tautomer, which is a unique representation, selected with a scor-
ng function from all possible tautomers that could be generated from
 molecule; importantly, the canonical tautomer is not necessarily the
ost energetically favorable [47] . A log file with additional information

egarding potential problems for specific standardization actions can
e downloaded. In addition, the standardized molecules can be visual-
zed in the Web App through the interactive chemical viewer mols2grid
 https://github.com/cbouy/mols2grid ). 

Finally, the Metrics Web App evaluates the performance of clas-
ificatory models by calculating different metrics implemented in
-classifier in the test set. 

1 Model 424 Model 763 Meta-classifier 

0.879 0.933 0.727 
0.643 0.667 0.900 
5 8 3 

https://github.com/cbouy/mols2grid
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Fig. 9. Decision tree for meta-classifier druggability assessment. For each protein, the predictions of four individual classifiers are provided along with their respective 
AD predictions. Depending on how many predictions are considered valid (i.e., inside the AD), the class assignment follows different criteria. 

Fig. 10. Pie chart for FaDrA prediction of the E. coli proteome. 

Table 5 

Output table for the prediction of the first 10 proteins in E.coli proteome. 

Protein ID PREDICT 1 AD 1 PREDICT 2 AD 2 PREDICT 3 AD 3 PREDICT 4 AD 4 CLASSIFICATION 

NP_414542.1 Druggable NO Non-druggable NO Non-druggable NO Druggable NO Non-conclusive 
NP_414543.1 Druggable YES Druggable YES Druggable YES Druggable YES Druggable 
NP_414544.1 Druggable YES Druggable YES Druggable YES Druggable YES Druggable 
NP_414545.1 Druggable YES Druggable YES Druggable YES Druggable YES Druggable 
NP_414546.1 Non-druggable NO Non-druggable NO Druggable NO Druggable NO Non-conclusive 
NP_414547.1 Non-druggable YES Druggable YES Druggable YES Druggable YES Non-druggable 
NP_414548.1 Druggable YES Druggable YES Druggable YES Druggable YES Druggable 
NP_414549.1 Druggable YES Druggable YES Druggable YES Druggable YES Druggable 
NP_414550.1 Druggable YES Druggable YES Druggable YES Non-druggable YES Non-druggable 
NP_414551.1 Druggable YES Druggable YES Druggable YES Druggable YES Druggable 
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cikit-learn [48] . The input is a .txt file with two columns, named “class ”
nd “score ”, where each line corresponds to a molecule; the “class ” col-
mn should indicate the active and the inactive compounds (class 1 and
 respectively) and the “score ” column the score which was given by
he classification model that was employed. The output includes dif-
erent performance metrics (accuracy, balanced accuracy, F-measure,
recision, recall and Matthews correlation coefficient) and a confusion
atrix for the user-selected score threshold to split active and inac-

ive compounds (by default is set to 0.5). Moreover, this threshold can
e modified, and in this case the results will be updated immediately.
oreover, the ROC and Precision-Recall curves are plotted ( Fig. 11 a)

nd their areas under the curve are presented in a table along with the
9 
EDROC for a specific alpha (20 by default) and the EF for a specific
op-ranked fraction of the entire set (0.01 by default). The values of al-
ha and the fraction can be modified by the user and the results will
e immediately updated in the table. These last metrics are presented
s a mean value with a standard deviation, sampling without replace-
ent (by default, 100 iterations) 85% of the entire dataset (by default).
dditionally, a Positive Predictive Value surface (PPV) rotatable sur-

ace is generated displaying the interplay between PPV, the Se/Sp ra-
io (sensitivity/specificity ratio associated with a given score threshold
alue) across a theoretical range of Ya (yield of actives) ( Fig. 11 b). PPV
elps estimate the probability that a predicted hit will confirm its activ-
ty when subjected to experimental testing. By visual inspection of this
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Fig. 11. a) Example of ROC and PR curves generated by Metrics Web App; b) Examples of PPV surfaces generated by Metrics Web App. 
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D plot, or by analyzing the table with the Se, Sp, and PPV values for
ifferent score cutoff values, it is possible to choose an adequate score
hreshold, associated with the desired PPV range, to select predicted
its in prospective virtual screening experiments [49] . Importantly, the
e/Sp ratios observed in the ROC curve for each cut-off value are used
o build the graph, assuming that such ratios will remain approximately
he same across different datasets. 

. Conclusions 

We presented and discussed an array of cheminformatics tools
eveloped in our academic drug discovery laboratory. These open-
ource resources are freely available as online Web Apps ( https://lideb.
iol.unlp.edu.ar/ ) and as standalone versions ( https://github.com/
IDeB/ ). They were developed using publicly available open-source re-
ources and internal programming. 

The open source/open-software model contributes to the develop-
ent of public knowledge and bridges the technological gap between

ow- to middle-income countries and high-income countries. Although
uch a gap exists in practically all fields of science and technology, it
s possibly narrower within the informatic community, because of the
ersistent efforts of global developers to make valuable resources freely
vailable to the public. 
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