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 

Abstract— Canopy structure can be estimated using gap 

fraction (GF) data, which can be directly measured with 

hemispherical photography. However, GF data accuracy is 

affected by sunlit canopy, multiple scattering, vignetting, 

blooming, and chromatic aberration. Here, we present an 

algorithm to classify hemispherical photography, whose aim is to 

reduce errors in the extraction of GF data. The algorithm, which 

was implemented in free software, uses color transformations, 

fuzzy logic, and object-based image analysis. The results suggest 

that color and texture, rather than only brightness, can be used 

to extract GF data.  

 
Index Terms— Forestry, Fuzzy logic, Fisheye photography, 

Image classification, Image texture analysis 

I. INTRODUCTION 

emote-sensing estimates of forest structural variables 

need to be validated by means of reliable methods of in 

situ measurement [1]. Hemispherical photography can be used 

to this end, but its accuracy is affected by the light condition, 

which limits its use for large-scale sampling [2]. Also, the 

results are highly sensitive to both the camera exposure [3] 

and the classification procedure [4], which together 

compromise the robustness of the method. 

Unlike devices as the LAI-2000, which measure 

transmittance and assume it equal to the gap fraction (GF), 

hemispherical photography allows the direct measurement of 

the GF [5]. The importance of GF data is that they allow 

estimating other canopy structural characteristics indirectly 

[6]. Canopy gaps refer to spaces in the canopy that could be 

pierced with a thin rectilinear probe (or light beam) without 

any contact with plant elements until reaching a point on the 

ground [7, 8]. GF is often defined as the fraction of 

unobstructed sky seen from beneath the canopy [9]. 

Nevertheless, because GF can also be measured by looking 
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downward from above the canopy [5], a broader definition is 

needed. Considering the sky and the ground as backgrounds 

for the plant element, here we defined GF as the fraction of 

background contained on the projected image plane over a 

given area defined by zenith and azimuth angles of view. 

Extracting GF from photos requires the classification of 

each pixel as gap or nongap. The standard procedure is global 

thresholding, a simple image-processing technique that works 

properly with images that have two high-contrast features 

[10]. Global thresholding consists in setting a threshold value 

that segments the image in two classes. In upward-looking 

hemispherical photographs, the traditional premise is that, in 

the blue channel, sky pixels look brighter than plant pixels. 

Thus, the standard method is to set a gray threshold value in 

the blue that separates the dark from the light pixels. To take a 

photograph whose brightest pixels are only sky pixels, it is 

important that direct or reflected light does not reach the plant 

surface facing the camera lens. Thus, it is recommended to 

proceed when the sky is fully clouded or at dawn/dusk. 

With nondiffused light, plant pixels can be as bright as sky 

pixels, a fact that leads to overestimating errors on GF. Sunlit 

canopy is an extreme case of this phenomenon: it can be 

observed when direct light reaches any canopy surface facing 

the camera lens [11]. Another process that can deliver solar 

radiation to the plant surface facing the lens, and so make it 

brighter, is multiple scattering from both the canopy element 

and the forest ground [12]. This light-condition dependency 

decreases the number of annual hours in which the 

photographs can be taken. Since this is taken as a weakness of 

the methodology, researchers have tried to find solutions with 

statistical modeling [2] and other technologies such as 

terrestrial laser scanners [13]. An alternative approach is to 

develop an image-processing method that does not require a 

bright background and dark plants or vice versa. In such a 

case, it is necessary to take into account that error sources, 

such as vignetting, blooming, and chromatic aberration, can 

also be found in image formation. Vignetting is a geometric-

mechanic phenomenon that obscures off-center pixels [14, p. 

114]. Blooming produces an increase in the brightness of the 

pixels that are around saturated ones [11]. Chromatic 

aberration is a color distortion linked with the optical 

properties of the lens, which can produce color fringes along 

the borders of photographed objects [15]. 

Techniques to minimize errors on GF data estimation have 
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been proposed as alternatives to global thresholding. 

Jonckheere et al. [1] proposed to extract the brightness profile 

from the blue channel at a zenith angle of 57.3° for the whole 

azimuthal range and process it with derivative analysis. In 

contrast, the approach of Schwalbe et al. [16] is based on 

image processing at pixel level. An alternative approach to the 

traditional pixel paradigm is object-based image analysis 

(OBIA), which is a sub-discipline of image analysis concerned 

with automatic object recognition [17]. Although OBIA has 

not been used to process hemispherical photography of the 

forest canopy, it has been used in maize fields with promising 

results [18]. 

Our objective was to develop an algorithm to classify 

hemispherical photographs with the aim to reduce errors in 

extracting GF data, such as errors produced by: sunlit canopy, 

multiple scattering, vignetting, blooming, and chromatic 

aberration. To aid in the development of the algorithm, 

photographs were acquired in a broadleaf forest. Section II 

describes the algorithm; Section III describes how the 

photographs were taken and processed, and how they were 

used to develop the algorithm; and Sections IV and V respond 

to conventional paper structures. 

II. DESCRIPTION OF THE ALGORITHM 

A. Color-based Enhancement Algorithm 

Color has three different perceptual attributes: hue, 

lightness, and chroma. We propose to use these attributes to 

enhance the contrast between the sky and plants through fuzzy 

classification. Our premise is that the color of the sky is 

different from the color of plants. We propose the next 

classification rules, here expressed in natural language: clear 

sky is blue and clouds decrease its chroma; if clouds are 

highly dense, then the sky is achromatic, and, in such cases, it 

can be light or dark; everything that does not match this 

description is not sky. These linguistic rules can be translated 

to math language by means of fuzzy logic [19]. 

To calculate the membership to Sky-blue and Light, we 

used both fuzzy logic and the standard of the International 

Commission on Illumination (CIE) for colorimetric 

measurement, in particular the CIE 1976 (L*, a*, b*) color 

space, referred to as CIELAB. This is a tridimensional space 

defined by the axes lightness (L*), red-greenness (a*), and 

yellow-blueness (b*). The JPEG image format uses the 

standard red, green, and blue color space (sRGB). The main 

differences between these color spaces are that 1) CIELAB 

allows isolating the lightness from the other components of the 

color, and 2) the Euclidean distance between colors in the 

CIELAB space is linearly proportional to the perceived 

difference [14]. The translation of a picture from the sRGB to 

CIELAB color space produces an image with L*, a*, and b* 

channels.  

To model the Sky-blue class, we used the Gaussian 

membership function and the channels a* and b*. In the 

supplementary material, we show examples of the Gaussian 

membership function in the 

ColorBased_Enhancement_Algorithm.html file.  

The Light class required more complex modeling than the 

Sky-blue class. The greatest contrast on gray levels between 

the sky and the plants should be observed in the blue channel 

because sky scattering is relatively high in the higher 

frequencies of light, and so the blue channel ensures the 

brightest sky pixels. Nevertheless, in the blue channel, the 

interface between the sky and the foliage pixels can be as 

bright as sky pixels. These pixels look dark cyan colored 

instead of green. The color distortion observed should be 

linked with: color formation through color filter array [14, p. 

271] and chromatic aberration [15]. These phenomena may be 

related to that reported by Jonckheere et al. [4], who stated 

that “the smallest vegetation elements might be invisible in the 

blue channel, especially during blue sky conditions.” Thus, we 

propose to use an original feature that we denominate Relative 

Brightness (reBr) (1) instead of one-channel brightness:  
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where R is a red channel value, B is a blue channel value, and 

mSkyBlue is the membership to the Sky-blue class. 

To calculate the membership to the Light class, we propose 

to obtain a threshold value with the reBr feature and the 

algorithm of Ridler and Calvard [10], and to use the threshold 

value as the location parameter of a logistic membership 

function whose scale parameter depends on mSkyBlue. This 

dependence can be explained as follows: if mSkyBlue is equal 

to 1, then the membership function is as a threshold function 

because the scale parameter is 0; lowering mSkyBlue 

increases the scale parameter, thus blurring the threshold 

because it decreases the steepness of the curve.  

All these operations were implemented in the color-based 

enhancement algorithm. The result of this algorithm is a 

synthetic band in which the original RGB-blue-light pixels 

have the highest digital number. This band is obtained by 

multiplying the membership to Sky-blue by the membership to 

Light. In the supplementary material, we included the 

ColorBased_Enhancement_Algorithm.html file to 

complement the explanation of this algorithm. 

 

B. Segmentation Algorithm 

Digital image segmentation, in a broad sense, is grouping 

pixels that go together. The raster structure of digital images is 

suitable to model regular interval measurements over a 

Cartesian space of two dimensions. Chessboard, one of the 

most straightforward segmentation algorithms, works by 

joining pixels but keeping their regular interval structure. 

The regular interval measurements performed in 

hemispherical photography are over a polar space because the 

GF is linked, by definition, with the line of sight determined 
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by the azimuth and zenith angles. For example, the 

segmentation can be done with 5° to produce 18 zenithal rings 

and 72 azimuthal sectors, i.e. a total of 1296 segments 

(hereafter referred to as sky map segmentation). 

The quad-tree segmentation algorithm is also 

straightforward: it makes recursive divisions in four equal 

parts until the homogeneous criterion is reached and then stops 

locally. As in chessboard, the usual implementation of the 

quad-tree algorithm is based on the raster structure, and this is 

why the resultant objects are squares of different sizes. We 

propose to implement the quad-tree segmentation in a polar 

space (hereafter referred to as polar quad-tree segmentation). 

In the supplementary material, we included the 

Segmentation_Algorithm.html file to complement the 

explanation of this algorithm. 

C. Algorithm of Object-based Image Analysis 

The OBIA strategy that we implemented can be exposed as 

classification-segmentation sequences, as follows: 

 

1) Classification of Level 0 (pixels) 

This step consists in automatically binarizing a 

hemispherical photograph preprocessed with the color-

based enhancement algorithm and classifying it by 

assigning the class Gap-candidate to pixels above the 

threshold and the class Plant to the rest of unclassified 

pixels. We used the Gap-candidate class to semantically 

state the potential GF overestimation.  

2) Segmentation of Level +1 (objects) 

The result is a sky map with one degree angular resolution. 

3) Classification of Level +1 

This step consists in assigning the class Mix-OR-Gap to 

segments with GF greater than 0 and the class Plant to the 

rest of unclassified segments.  

4) Segmentation of Level +1 

This step consists in a polar quad-tree segmentation of the 

blue channel and intersecting the segmentation with a 

binary mask of the pixels that were classified as Plant.  

5) Classification of Level +1 

This step has two stages: automatic selection of samples 

and sample-based classification. In the first stage, the 

brightness of the blue channel is used, whereas in the 

second stage, only Haralick textures are used. These 

textures are calculated with both the blue and red channels, 

but separately. 

We assumed that texture is more effective than brightness 

to discriminate between pure gap objects and gap-canopy 

objects only if the canopy is affected by sunlit canopy, 

multiple scattering, vignetting, blooming, and chromatic 

aberration, in any combination. Using texture implies 

dealing with its strong dependence on the sun-sensor-

object geometry. To overcome this difficulty, we used 

sample-based classification. To this end, we assumed that 

blue channel brightness is effective to identify a set of 

representative samples. The result is objects labeled either 

Gap or Mix. 

6) Classification of Level 0 

This step consists in a pixel-level classification using 

features that are related to the class of Level +1 (Fig. 1).  

7) Segmentation of Level +1 

This step is a reshape that produces smaller objects by 

intersecting Level +1 with a binary mask of the pixels that 

were classified as Gap-candidate at Level 0.  

8) Classification of Level 0 

This step consists in a regional automatic thresholding 

whose region is delimited with pixels that were classified 

as Gap-candidate at Level 0. The thresholding uses the 

feature superobject ratio of L* (RatioL*) (2) 

 

.*** meaniL LLRatio 
 (2) 

 

where L*i is the value of pixel i on channel L*, and L*mean 

is the L* object-mean value of the superobject from Level 

+1 to which pixel i belongs. The threshold is calculated 

with the algorithm of Ridler and Calvard [10]. The 

classification is finally performed by assigning the class 

Gap to pixels above the threshold and the class Plant to the 

rest of unclassified pixels inside the Gap-candidate region.  

Finally, the class Plant obtained in step 1 is added to the 

classes Plant and Gap obtained in step 8, and all the pixels 

classified as Saturated are assigned to Gap. 

 

In the supplementary material, we included the 

OBIA_Algorithm.html file with complementary figures. 

 

III. MATERIALS AND METHODS 

Five sampling sites were selected in a broadleaf stand of 

Nothofagus pumilio, in the South of Argentina (Northwest of 

the province of Chubut, 43 ° 49´ S, 71 ° 28´ W). The selection 

was done in the field by visual analysis of the canopy cover 

(the proportion of horizontal vegetated area occupied by the 

vertical projection of canopy elements). The aim of the 

selection process was to avoid the inclusion of sites with 

similar canopy cover
1
.  

At each selected site, we installed a permanent structure to 

support the photographic equipment (with the optical axis 

oriented to the local zenith and pointing upward). The 

structure allowed us to take quick multiple photographs with 

the same viewpoint but on different days and at different 

times. We used the Nikon FC-E9 converter attached to the 

Nikon Coolpix 5700 camera. This equipment allows obtaining 

circular fish-eye photographs with equidistant projection. We 

 
1In the supplementary material named Reference_Data.zip, we include the 

color photographs and the binarized images used as reference data. 

 

 
 

 

Fig. 1.  Pixel level classification using features related to classes from Level 

+1.  
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set up the camera to store high-quality JPEG pictures, and thus 

acquire hemispherical images with 1596 pixels in diameter.  

The photographs were taken between December 5 and 

December 9, 2009. The weather was stable, with mild breezes 

and low cloud cover. Photograph acquisition was organized in 

series of five photographs at one picture per site rate. The sites 

were chosen along a transect with at least 20 m between the 

nearest sites. With this spatial configuration, completing each 

series demanded about 10 min. This time constraint was fixed 

to minimize the variation in the daylight during each set of 

photographs. To minimize the effect of topography, we chose 

the forest in a relatively flat 250-m area. To follow the 

protocol of Zhang et al. [20], we made sure that the whole 

sampling site had a nearby gap to take the automatic exposure 

without obstructions, at least from nadir to 75°. A few seconds 

before starting the photograph acquisition and only once per 

series, the exposure was estimated with the protocol of Zhang 

et al. [20] with two stops of overexposure above the reference.  

The photographs were taken in three different conditions: 1) 

during dawn and dusk (diffused light) and determining the 

exposure with the protocol of Zhang et al. [20]; 2) with 

diffused light and determining the exposure automatically with 

the centrally weighted average mode; and 3) with nondiffused 

light and determining the exposure automatically with the 

centrally weighted mode. We took a total of 75 photographs at 

a rate of five series per mode (25 photographs per mode and 

15 per sampling site).  

The photographs were used to assess different strategies of 

image analysis for algorithm development. The assessment 

was the comparison of the accuracy of the OBIA algorithm 

versus that of the standard procedure. The latter consisted in 

the automatic global thresholding of the blue channel with the 

algorithm of Ridler and Calvard [10]. The selection of this 

procedure was based on [4]. To calculate accuracy, we used 

the difference between the reference GF and the estimated GF, 

i.e., error. The estimated GF was extracted from: 1) the images 

processed with the OBIA algorithm, and 2) the images 

binarized with the standard procedure.  

The reference GF was obtained following these steps: 1) the 

highest contrast series was selected through visual analysis of 

the photographs acquired with diffused light and the protocol 

of Zhang et al. [20], where by “contrast” we mean the 

difference between sky and plant brightness; 2) for each of the 

five photographs of the chosen series, we performed a global 

interactive (manual) thresholding of the blue channel with the 

original color photographs as visual reference; and 3) the GF 

was obtained with the binarized images.  

The Total GF was calculated with the CLMPML program 

of the CIMES package [6] and with image area between 30 

and 60° zenith angle [21]. To compare between the estimated 

and the reference GF at the segment level, we used the GFA 

program of CIMES. The program was set to extract GF with 9 

rings and 36 sectors. This setting performs segmentation with 

10° of angular resolution. This analysis was done with image 

segments between 30 and 60° zenith angle [21].  

We used R [22] to program the algorithm and to perform all 

mathematical, statistical, and graphical operations. The script 

uses colorspace [23], raster [24], pracma [25], EBImage [26], 

and class [27] packages. The standard binarization was carried 

out with the Ridler and Calvard [10] algorithm implemented in 

ImageJ. We used Welch Two Sample t-tests to compare error 

means (0.05 alpha). 

 

IV. RESULTS AND DISCUSSION 

A. Error Analysis at Image Level 

The reference Total GF ranged from 0.110 to 0.230. The 

Root Mean Square Error (RMSE) of the Total GF was 0.208 

and 0.076 with diffused light, and 0.245 and 0.076 with 

nondiffused light. In both cases, the greatest RMSE was that 

of the standard procedure, whereas the lowest RMSE was that 

of the OBIA algorithm. The statistical significance of this 

difference was verified (diffused: t = -11.6905, df = 45.476, p-

value = 2.675 x 10
-15

; nondiffused: t = -10.9771, df = 38.168, 

p-value = 2.269 x 10
-13

). The normality of errors was tested 

with Shapiro-Wilk test. Nevertheless, at image level, we were 

not able to evaluate whether the error estimation was affected 

by the self-cancellation of errors from different areas of the 

hemisphere.  

B. Error Analysis at Segment Level 

Figure 2 shows the differences between the classification 

procedures at the segment level, in which it can be seen that 

the GF extracted from images processed with the OBIA 

algorithm are closer to the 1:1 line than the GF extracted from 

images binarized with the standard procedure. Nevertheless, a 

bias of overestimation is observed in all cases. The 

interquartile range (IQR) of the model residuals is lower for 

the OBIA algorithm than for the standard procedure. A lower 

IQR indicates less self-cancellation. In conclusion, the 

analysis at segment level confirms that the significant 

difference between the OBIA algorithm and the standard 

procedure was not artificially produced by self-cancellation. 

Thus, this suggests that the OBIA algorithm may be more 

exact than the standard procedure. 

C. Discussion  

The same data used for the development of the algorithm 

 

 
 

 

 
Fig. 2.  Comparison between the OBIA algorithm and the standard procedure 

at the segment level. Each point represents a sky segment of 10° zenithal 

angle by 10° azimuthal angle. There is no distinction between images. GF = 
Gap fraction; (Non-) Diffused = photos were taken with (non-) diffused light. 

Solid lines are second-order polynomial models. IQR = interquartile range of 

the model residuals.  Dashed line is 1:1 relationship. All photos were taken 

with auto-exposure.  
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was used for the analysis of errors. However, it is important to 

note that the algorithm is fundamentally a nonstatistical 

approach designed with general principles of image analysis. 

The results demonstrate that OBIA is an effective way to use 

color and texture dimensions for hemispherical photograph 

analysis. The advantage of the OBIA algorithm over the 

method proposed by Jonckheere et al. [1] is that the former 

allows analyzing more amplitude of zenith angle. The method 

proposed by Schwalbe et al. [16] does not deal with errors 

produced by direct solar radiation, which is a disadvantage in 

contrast with the OBIA algorithm. However, the method 

proposed by Schwalbe et al. [16] allows subpixel estimation, 

which could be considered as an advantage if low-resolution 

images are used [28] but not when working with current high-

resolution equipment [29]. Our results confirm that the 

standard procedure with diffused light and automatic exposure 

overestimates GF. Although we obtained promising results 

using the OBIA algorithm with automatic exposure, future 

works should evaluate if better accuracy can be obtained with 

other exposure-determination procedures. 

V. CONCLUSION 

Here, we proposed an algorithm to preprocess 

hemispherical photographs whose aim is to reduce errors in 

the extraction of GF data. The target errors are those produced 

by sunlit canopy, multiple scattering, vignetting, blooming, 

and chromatic aberration. We based the algorithm on general 

principles for the sake of robustness. The script was developed 

with free software and can be downloaded without restriction 

under the GPL 3 license from the supplementary material. In 

future works, it will be necessary to assess the algorithm 

performance with independent data, acquired in other forest 

ecosystems with other hemispherical photograph equipment. 

To this end, we recommend the sampling design presented in 

this work.  
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