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Abstract: This research aims at modeling the microwave backscatter of corn fields by coupling an
incoherent, interaction-based scattering model with a semi-empirical bulk vegetation dielectric model.
The scattering model is fitted to co-polarized phase difference measurements over several corn fields
imaged with fully polarimetric synthetic aperture radar (SAR) images with incidence angles ranging
from 20° to 60°. The dataset comprised two field campaigns, one over Canada with the Uninhabited
Aerial Vehicle Synthetic Aperture Radar (UAVSAR, 1.258 GHz) and the other one over Argentina
with Advanced Land Observing Satellite 2 (ALOS-2) Phased Array type L-band Synthetic Aperture
Radar (PALSAR-2) (ALOS-2/PALSAR-2, 1.236 GHz), totaling 60 data measurements over 28 grown
corn fields at peak biomass with stalk gravimetric moisture larger than 0.8 g/g. Co-polarized phase
differences were computed using a maximum likelihood estimation technique from each field’s
measured speckled sample histograms. After minimizing the difference between the model and data
measurements for varying incidence angles by a nonlinear least-squares fitting, well agreement was
found with a root mean squared error of 24.3° for co-polarized phase difference measurements in the
range of —170.3° to —19.13°. Model parameterization by stalk gravimetric moisture instead of its
complex dielectric constant is also addressed. Further validation was undertaken for the UAVSAR
dataset on earlier corn stages, where overall sensitivity to stalk height, stalk gravimetric moisture,
and stalk area density agreed with ground data, with the sensitivity to stalk diameter being the
weakest. This study provides a new perspective on the use of co-polarized phase differences in
retrieving corn stalk features through inverse modeling techniques from space.

Keywords: synthetic aperture radar; polarimetric radar; co-polarized phase difference; radar scatter-
ing; vegetation; radar applications; agriculture

1. Introduction

The potential of active microwaves to monitor agricultural areas is recognized as
a key feature for supporting application-oriented approaches such as crop classification
schemes (e.g., [1-3]), crop height estimation (e.g., [4—6]), soil moisture estimation (e.g., [7,8]),
among others, and to aid decision-makers in managing and assessing agricultural re-
sources. Towards this goal, the NASA /JPL’s UAVSAR airborne L-band mission was de-
ployed to support several soil moisture and vegetation features inversion strategies [9-11].
In this respect, the systematic use of polarimetric SAR data from orbiting sensors at L-
band over croplands was almost limited to JAXA’s Advanced Land Observing Satellite
2 (ALOS-2) Phased Array type L-band Synthetic Aperture Radar (PALSAR-2) mission
(global.jaxa.jp/projects/sat/alos2) over the years. However, this situation has recently
improved with the successful launch of the Argentinean L-band SAR constellation mission
SAOCOM-1A and 1B (saocom.invap.com.ar) on 7 October 2018, and 30 August 2020, re-
spectively. Both sensors have a lifespan of 5.5 years and were designed with interferometric
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and polarimetric capabilities. Within its goals, the SAOCOM constellation will provide
fully polarimetric acquisitions dedicated to monitoring large cropland areas in Argentina,
representing an important contribution to agriculture and hydrology worldwide.

The NASA-ISRO Synthetic Aperture Radar (NISAR) mission, which is planned to be
launched in 2023, will provide L- and S-band full-polarized data over vegetated terrain,
adding up its polarimetric capabilities to existing imagery [12]. In addition, the European
Space Agency has recently signed the contract to develop the new high-priority Copernicus
Radar Observation System for Europe in L-band (ROSE-L) as part of Europe’s Copernicus
program. With a launch planned in 2028, this system will present polarimetric capabilities
and its main product types and formats will be aligned as much as possible with the ones
of Sentinel-1, for enhanced continuity [13].

Among major crops, corn is the most cultivated cereal worldwide according to the
latest Food and Agriculture Organization (FAO) data [14], with a total production of
1149 Mt in 2019, followed by wheat (765.8 Mt), paddy rice (755.5 Mt), soybeans (333.7 Mt),
and barley (159.0 Mt) in the same year. Following the significant SAR missions mentioned,
amplitude and phase measurements will be systematically delivered to cover most of these
major crops, among which corn fields have unique features: corn plants have the largest
dimensions with stalk heights up to 3 m, stalk diameters up to 2.5 cm and large moisture
contents up to 0.90 g/g [11,15,16]. Furthermore, corn seeds are usually planted in a regular
pattern of 7 to 9 plants per square meter onto rows separated 75 cm apart [11,16,17]. This
pattern and the unique plant features, often in the resonant regime for wavelengths at
the L-band, make the interaction of electromagnetic waves with corn fields very complex
to model.

Efforts in this direction were made on computing the scattering of a collection of
randomly distributed vertical cylinders, thus modeling the plant stalks over a dielectric
half-space. Smaller plant elements such as leaves and cobs were usually disregarded. High
order solutions involving multiple interactions among the cylinders and the underlying
dielectric half-space were obtained by Monte Carlo simulation or by radiative transfer
theory ([18,19]). However, for an application-oriented approach, a Monte Carlo simulation
is of limited practical use because of the ensemble-based statistical nature of its solution. In
the radiative transfer approach, solutions for modeling large dielectric structures such as
corn stalks should deal with an overestimation of phase and extinction matrices [18].

A more straightforward approach that incorporates much of the interaction complexity
with few input parameters is the model developed by Ulaby et al. [17]. This model relied
on previous experimental measurements to treat a corn canopy as a low-loss medium, thus
allowing for a description in terms of an equivalent dielectric medium characterized by a
complex index of refraction. With the noticeably uneven distribution of volumetric moisture
content between leaves and stalks during much of the growth stages, the contribution of
the plant leaves to total scattering can be disregarded for longer wavelengths, such as in
L-band.

Ulaby’s model was experimentally validated in [17] using an image-based relative
phase calibration, where near-range azimuth rows were assumed to have a co-polarized
phase difference near zero, and thus converting relative values to absolute values in the
remaining image. An ad hoc 180° phase shift added to the model ([17], Equation (5)) should
be disregarded on properly absolute calibrated images such as that of the aforementioned
SAR missions. The dataset used in Ulaby’s research for validation involved relatively
mature, dried vegetation with low stalk volumetric moisture [17]. No validation is reported
for other conditions, nor was further research in this respect found elsewhere. Moreover,
research on L-band co-polarized phase differences on crops is scarce (e.g., [20]). Most of the
research using polarimetric SAR data relied on higher frequencies (C- and X-band) [21-23]
or multi-polarization intensity-only studies [24]. These shortcomings will be addressed in
this manuscript, which turns out to be a novel contribution of this work.

When corn plants reach their peak biomass, vegetation water content is near maximum,
and canopy attenuation and stalk’s coherent effects are significant. The empirical fitting
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used in [17] to compute the dielectric constants of stalks from their gravimetric water
content was limited by its upper bound ([25], Chapter 4-9.2). For larger water contents, the
model developed by Métzler in [26] will be considered.

In this research, a validation of Ulaby’s incoherent multi-parameter model with
experimental data on grown corn fields is shown. Mitzler’s model for a bulk dielectric
constant is coupled with Ulaby’s model to account for the large water content found in
the stalks of grown corn plants and to avoid time-consuming, laboratory-based dielectric
constant measurements. Two datasets were used, (1) fields in Canada imaged by the
airborne sensor UAVSAR and (2) fields in Argentina imaged by the satellite-borne ALOS-
2/PALSAR-2 sensor. Good agreement is made, which enables us to consider this model for
retrieving purposes through inverse modeling techniques.

The outline of this paper is given as follows: Section 2 states a brief review of Ulaby’s
fitting model, a sensitivity assessment of its model parameters with stalk features, and
a description of Mitzler’s model to estimate stalk dielectric constant from gravimetric
measurements. Then, details of data used in this paper are introduced, including SAR
data quality and the method for estimating co-polarized phase differences. The SAR data
statistics and the fitting of the Ulaby—-Matzler’s model to remotely-sensed co-polarized
phase differences are analyzed in Section 3. This coupled model and its implications for
corn parameter retrieval are discussed in Section 4. Concluding remarks are stated in
Section 5.

2. Materials and Methods
2.1. Incoherent Multi-Parameter Fitting Model

The co-polarized phase difference ¢ is defined as the difference in the absolute phase
between the linearly polarized HH and VV complex scattering amplitudes

¢ = ¢HH — Pvv. 1)

In lossy media, ¢ accounts for many scattering mechanisms and contributions. On a
grown corn canopy, ¢ is modeled as a result of the sum of three single contributions

¢ = ¢pp+ Pt + Ps, )

where ¢, accounts for the phase term due to wave propagation through the canopy, ¢s; for
the forward scattering by the soil surface followed by bistatic scattering by the stalks, or the
reverse process, and ¢ for the specular reflection on the soil. Each one of these scattering
mechanisms was evaluated following Ulaby’s model [17] and compared to SAR data.

Ulaby’s model [17] to be fitted accounts for the scattering interaction between the
plant stalk and an underlying rough, moistened surface to compute (2). Corn plants were
modeled as vertical dielectric cylinders, long enough relative to the wavelength to rely on
the infinity cylinder scattering solution, which is given in the form of a series [27]

o0 )
Ty (0;, 05k a0, e56) = Y (=1)"e™CHV(6;k, a0, est), €)

n=-—oo

where Ty v is the normalized far-field scattering amplitude, the subscript states the po-
larization of the impinging wave onto a linear basis (H or V), ¢; is the incidence angle
relative to the plane containing the cylinder’s axis, and 0; is the azimuth scattered angle.
The dependence of the functions C/" on the wavenumber k of the impinging wave, the
radius a¢ and the complex dielectric constant &5 of the cylinder is cumbersome and the
reader is referred to [27] for their analytical expressions.

The solution given by (3) is applied two-fold. Firstly, Ulaby et al. [17] have shown
that propagation in a layer comprising identical vertical cylinders randomly positioned
on the ground may be modeled in terms of an equivalent dielectric medium characterized
by a polarization-dependent complex index of refraction. The model assumed stalks are
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arranged with N cylinder per unit area and are far away enough such that multiple scatter-
ing is negligible. Hence, the phase constant of the index of refraction is used to compute
the co-polarized phase difference for two-way propagation (6s = 7 in (3)). Secondly, the
scattering solution in (3) is used to compute the phase difference between waves bistatically
reflected by the stalks by considering specular scattering only (65 = 0 in (3)).

The first term on the right side in (2) computes the phase term due to the two-way,
slanted propagation through the canopy,

pp = X" tan 0[im T (0;, 7)) — Im{Ty (65, 7)}], @
where £ is stalk height. In (4), the scattering features of the stalks are accounted for in the
Ty v amplitudes, where canopy bulk features are accounted for in the stalk density N and
in h. The scattered angle is evaluated at the forward direction (8; = ) [27].
The second term in (2) accounts for the phase term resulting from forward scattering
by the soil surface followed by bistatic scattering by the stalks, or the reverse process,

_ - Im{T (6110)/T (61/0)}
fs = tan ™" (Re{ﬂ(ei, o>/T§<e,»,o>} >

©)

where the solution should be sought in the domain (—7t, 7r]. Here, 85 = 0 accounted for the
specular direction.

The third term in (2) is the contribution from specular reflection on the soil through
Fresnel reflection coefficients Ry and Ry [25]

_ _ Im{R (91', Ss)/R (91'/ 85)}
¢s = tan~! (Re{Rg(Giﬁs)/RZ(eir%)} >/

(6)

where ¢; is the complex dielectric constant of the soil surface underlying the canopy. The
contribution of this term is about —180° due to the small imaginary part of ¢, in typical
soils and the difference in sign between Ry and Ry . Because of this term, total co-polarized
phase difference ¢, over grown corn canopies yields negative values on absolute calibrated
polarimetric images.

2.2. Sensitivity Analysis of the Model Parameters

The three phase terms defined from (4) to (6) account respectively for the phase
difference by propagation through the stalks, by the bistatic reflection, and by the soil. Each
of these terms has different contributions to the total co-polarized phase difference in (2).
In what follows, a sensitivity analysis will be carried out, where frequency will be fixed at
an intermediate 1.25 GHz, that is, between those of UAVSAR and ALOS-2/PALSAR-2.

Among the three terms, the soil term ¢5 has a simple dependency on the soil’s com-
plex dielectric constant ¢; = ¢}, + ie. A typical imaginary-to-real ratio of ¢; is 0.10, and
commonly used empirical models predict this ratio to be as large as 0.25 [28-30]. Then, it
follows from Figure 1 that the ¢s dynamic range is less than 16° for an imaginary-to-real
ratio of 0.10 (black lines) and 0.25 (blue lines). Three incidence angles 20°, 40°, and 60° are
evaluated. Then, for a typical observation geometry at 40° incidence angle, the sensitivity
to the dielectric constant shown by ¢ is of little relevance to the total phase difference.

The propagation term in (4) has a linear dependence with the stalk density N and
with the stalk height /. Moreover, since they are of the same order of magnitude, the effect
of varying N or h on ¢, will be equivalent. Conversely, the ag and &5 are nonlinear model
parameters through Ty v and the following sensitivity analysis will be focused on them.
First, contour levels depicting the dependence of ¢, on ag and h at 6; = 40° are shown in
Figure 2a. The contours are variations of ¢, computed as

_ %

9
Ady aa(’]’ Aag + %Ah, @)
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where it is understood that the other three terms involving derivatives (on €, €, and N)
were computed and evaluated from the mean values collected on the ground, and these
are indicated in the inset in Figure 2a.

—-180r.... B T T TR O RN

°. -185
w
k=2
c
R
S
2 -190F /e £./€,=0.10,
'% - — —g,/e,=0.10, §,=40°
S £./€,=0.10, 0,=60°
5 sl e £./e,=0.25, §,=20°
@ 19 — — -£,/e,=0.25, 0,=40°
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Figure 1. Sensitivity of soil term on the real part of the dielectric constant. The imaginary part is
assumed to be 0.10 (black lines) and 0.25 (blue lines) of the real part.

A significant gradient indicated a high sensitivity to stalk height. This related to the
linear term /4 in (4). Conversely, a small sensitivity on ay is related to a cancellation effect
due to the difference operator in (4), since both Ty and Ty depend on ay. The model exhibits
A¢, ~ 20° when evaluated at the ground measurements (white ‘+"-mark in Figure 2a).
For a better comparison to ground measurements, stalk diameter d = 2a, instead of stalk
radius ag is shown. Since N and & are of the same order, contours for ¢, varying N instead
of h will result in sensitivities similar, slightly smaller though, to the ones depicted in
Figure 2a.

The sensitivity analysis on ¢, for the real €, and imaginary ¢, parts of & is shown in
Figure 2b, where the inset indicates the parameters the model is evaluated at. Here, the
contours range from around 0° to 20°, accounting for a larger sensitivity on &g; in relation
to that on h. However, A¢, ~ 18° when evaluated at the ground measurements, similar to
the sensitivity found in Figure 2a.

25 12 .
0,240 °
25 h=2.09 m 20
24 11 d=2.05 cm
: 24 N=7 ;
ss=10.49+1.49|
= 10
5 23 23 K + 5
) 22 _ 9
G 2.2 — ° —
o 21 2 s 10 =
ey a a 8 a
_9 =3 - <
B 24 ] 20 4 2 4
£ £ 7
3 + 19 = 5
< o 6,=40 ° ] E
] ! 18 6
[77] € =32+10i
] 17 0
1.9 N=7 5
€,=10.49+1.49] 16
1.8 4 . .
2 25 3 16 20 24 28 32 36

Stalk height h [m] Real partof ¢

st

Figure 2. Sensitivity analysis of model parameters. (a) Sensitivity of the propagation term on stalk
height and diameter 2ag. The ‘+’-mark indicates the average values for the dataset. (b) Sensitivity of
propagation term on real ¢,, and imaginary ¢/, parts of .

The bistatic term ¢s; does not depend on & nor N. Moreover, overall the variation of
st ON g ranges from —7° to —2° with about —5° of variation with the model evaluated at
g
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the ground measurements. Hence, the contribution of the bistatic term to the overall model
sensitivity is negligible. Similar results are reached for the sensitivity of ¢ on ¢}, and €.

The aforementioned analysis for A¢, and A¢s: considered a fixed incidence angle
0; = 40°. Computing the contour levels at different angles showed that:

1. At6; = 20°, the ¢, variations evaluated at the ground measurements are A¢, = 0°
on the 24y, h-space and A¢, = 2° on €}, €/,-space;

2. Similarly, at 6; = 60° resulted in A¢, = 26° and A¢p, = 28°;

3. Atboth 6; = 20° and 6; = 60°, A¢s; is bounded between —6° and —3° .

From these remarks, it turns out that sensitivity improved with increasing incidence
angles for ¢, whereas the contribution to the overall sensitivity of the ¢ term is negligible.

2.3. Microwave Dielectric Constant of Stalk from Gravimetric Measurements

The propagation and bistatic terms in (4) and (5) depend on stalk diameter and dielec-
tric constant through the far-field solution in (3). Whereas the collection of ay is straightfor-
ward from the ground, &5 requires tuned laboratory measurement techniques [31]. From
a large set of dedicated measurements, semi-empirical models relating bulk vegetation
dielectric properties with vegetation moisture were developed by Ulaby and El Rayes [32],
and Maitzer [26]. These are shown in Figure 3 for the vegetation moisture within the
stalks. Concerning the range of validity, a slight drawback in Ulaby and El Rayes’ model
is the upper bound of vegetation moisture used to fit the data. In effect, the model was
fitted for gravimetric moisture m, in the range 0.0-0.7 g/g ([25], Chapter 4-9.2). On the
other hand, Mitzer’s model [26] comprised measurements with larger moisture contents,
which allowed setting an empirical fitting with ¢ in the range 0.5-0.9 g/g. Since typical
gravimetric moisture for growth corn stalks is larger than 0.6 g/g, Métzler’s model is better
suited and will be used here to estimate the dielectric constant of vegetation material within
corn stalks. Its input parameters are gravimetric moisture of plant stalks and frequency of
the impinging wave. In Figure 3, note the trend in Ulaby and El Rayes” model of larger
dielectric values with respect to those in Médtzer’s model.

40 T T T T T T T T
a5 L I+ Ulaby/El Rayes (real part)
Ry o Ulaby/El Rayes (imaginary part)
«o M=+ Matzler (real part) -~
30k -l Matzler (imaginary part) » ... h
]
w "
£25F .F.-' 1
]
& )
c u_u
82 F .:.' .
Q S
g -
O 15 k L) -
9 ° o
o

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Stalk gravimetric moisture [g/g]

Figure 3. Microwave dielectric model for bulk vegetation from Ulaby and El Rayes [25,32] and from
Mitzler [26].

2.4. Study Area and Ground Data Collection

The dataset to fit the Ulaby’s incoherent multi-parameter model was taken from
the Soil Moisture Active Passive Validation Experiment 2012 (SMAPVEXx12) over south-
west of Winnipeg, Manitoba, Canada, centered on the town of Elm Creek (98°0'23"” W,
49°40/48" N) [11,33] and from intensive campaigns led by the SAOCOM mission’s science
team near the town Monte Buey (32°55'11"” W, 62°27'22" S), located in central Argentina
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over Pampas Plain. With these datasets, co-polarized phase measurements on grown corn
fields covered incidence angles roughly from 20° to 60°.

In Canada, eight corn fields were imaged by UAVSAR at peak biomass on 17 July 2012.
Each acquisition of the UAVSAR comprised four main flight lines with different incidence
angles totaling 32 data points. Vegetation was characterized within a one-day window
from the flight day: stalk height and diameter were measured. The former was measured
with a meter tape and the latter with a caliper over 10 plants within the field selected at
random positions. Then, the 10-plant average is computed. Stalk gravimetric moisture
was also measured on a less frequent basis, though, due to time-consuming laboratory
procedures. Five plants along two rows (ten in total) were collected, bagged appropriately,
and then weighted before and after the samples were placed in drying facilities to quantify
their water content [11]. A summary of the stalk features for the eight fields in Canada is
shown in Table 1.

In Argentina, CONAE has the largest instrumented site over croplands dedicated
to calibrating the soil moisture retrieval algorithm for the SAOCOM 1A and 1B mission.
In March, April, and June 2017, intensive campaigns over a 140 x 100 km region were
conducted and basic ground information over 20 corn fields among other crop types was
gathered. Ground information included 0-5-cm soil moisture, stalk height, and till status.
Stalk height measurements were taken at convenient positions while the plant was standing
in the field. Measurements involving the removal of the plant were disregarded due to
time-constraints. The stalk height is summarized in Table 1. These fields were imaged by
ALOS-2/PALSAR-2 on several dates totaling 30 data points.

Table 1. Corn stalk features from the ground data collection for two field campaigns in Canada
and Argentina.

Feature Canada Argentina
(SMAPVex12) (CONAE)
# Fields [-] 8 20
# Data points [-] 32 30
Stalk height i range [m] 1.93-2.53 1.80-3.00
Stalk diameter d range [cm] 1.85-2.35 -
Stalk moisture mg range [g/g] 0.811-0.834 -
Stalk density N [1/m?] 7.0-8.2 -

2.5. SAR Data and Its Quality and Processing Chain

Airborne UAVSAR provided full-polarimetric imagery over Canada with local in-
cidence angles ranging from 20° to 60°. It measured complex scattering coefficients at a
frequency of 1.258 GHz. Co-polarized phase measurements are given with a root mean
squared phase error ~5.3° and always smaller than 10° [34]. The pixel size on the ground
projected image is 5.0 X 7.2 m onto a swath of 20 km.

As read from its metadata, UAVSAR imagery has the coherence matrix as a native
image format where Sy Sy, is readily extracted from. Multi-looked (12 pixels in azimuth
by 3 pixels in range) and ground range projected data were used. The ground projection
method was nearest neighbor. With the Sy S7,(,-images, local incidence angle bands were
also provided.

Concurrent with the ground measurements over Argentina, fully polarimetric images
were acquired by satellite-borne ALOS-2/PALSAR-2 sensor at 1.236 GHz in High-sensitive
Full Polarimetry mode with a 50-km swath width at two incidence angle ranges: 25-30°
and 30-35°. This sensor delivered co-polarized phase difference measurements with an
imbalance better than 0.618° ([35], Table 3).

For ALOS-2/PALSAR-2, the processing chain started with radiometric calibration
from Single Look Complex (SLC) scenes. Subsequently, multilooking was applied (4 pixels
in azimuth by 2 pixels in range) to obtain an approximate square pixel and improve the
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images’ radiometric quality. Coherence matrices were computed and then geocoded to a
12 x 12 m ground pixel size using bilinear resampling. As the final product, output bands
for complex scattering product Sy Sy, and for local incidence angle were generated.

2.6. Polarimetric Observable ¢

With the above-mentioned phase-calibrated images, the derivation of the absolute
co-polarized phase difference defined in (1) is given by

¢ = arg(SunSvv), ®)

where Sy and Syy are the co-polarized complex scattering amplitudes, and * denotes a
complex conjugate. In (8), ¢ is defined in the range —7t < ¢ < 71. The statistical distribution
of ¢ for a speckled image is known, and its closed-form expression is [36]

T(n+1/2)(1-p3)"B

n) ..
Py (¢ po, po) = 2/70(n)(1 — B2) - )
+ U (n,11/262)

with B = pgcos(¢ — ¢o) where »F; (n,1;1/2; B?) is a Gauss hypergeometric function. In
(9), po is the correlation between Sy and Sy, also known as coherence, ¢y is the phase
difference of the sample, I'(-) is the gamma function, and # is the equivalent number of
looks, which is estimated by means of a matrix-variate estimator based on the trace of
the product of the covariance matrix C with itself (tr(CC)), thus using all polarimetric
information [37].

3. Results
3.1. Co-Polarized Phase Difference ¢y Estimation

The parameters ¢ and pg in (9) were estimated using a Maximum Likelihood Esti-
mation (MLE) [38], where (9) is the likelihood function to be maximized constrained to
the observed SAR data. The MLE technique applied to multilooked histograms led to the
fittings shown in Figure 4. Here, Figure 4a,b display the histogram for a 2.27 m-height corn
field imaged with UAVSAR, and a 2.00 m-height corn field imaged with ALOS-2/PALSAR-
2, respectively. The number of looks 7 estimated from the above matrix-variate estimator
is also shown. Thus, the co-polarized phase difference estimator ¢g is computed for each
sampling site on each acquisition day. Furthermore, uncertainties in the estimates are
computed with a 95% confidence level.

0.7 R 0.7
f \ 4= —91.6° |l Histogram 6= -127° [ Histogram
0~ —— MLE fit o” —— MLE fit
0.6 \ pg=0.39 06k pg= 0.37
z n=8.4 n=2.1

0.5 z 0.5
> >
204f 204ab
() [
= =
0.3 90.3
w w

0.2} 0.2

0.1 0.1

0 cai 0
—180 -90 0 90 180 —180 -90 0 90 180
Phase difference ¢ [°] Phase difference ¢ [°]
(a) (b)

Figure 4. MLE fitting for speckled co-polarized phase difference histograms. (a) A 2.27-m-height
corn field imaged by UAVSAR at incidence angle 49.98°. (b) A 2.00-m-eight corn field imaged by
ALOS-2/PALSAR-2 at incidence angle 26.67°.
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3.2. Ulaby’s Model Fitting to SAR Data

With the model described in Section 2.1 and the HH-VV phase estimation methodology
explained in Section 3.1, a nonlinear least-squares fitting of the measurements against the
model is performed, as shown in Figure 5. The upper panel shows the estimated coherence
po and its uncertainties as bars resulting from the MLE technique. The middle panel shows
the fitting itself with the thick black as the best-fitted total co-polarized phase difference
¢o. The dotted bands represent the interval defined by the root mean squared error (rmse).
Fitted model parameters are also shown. Each term ¢, ¢st, and ¢s is depicted separately
in Figure 5c.

1 T T T T T T T T ]
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Figure 5. Model fitting by nonlinear least-squares and estimated parameters. (a) Coherence py.
(b) Co-polarized phase difference ¢ and model fitting. The fitted parameters are indicated. (c) Each
contribution to the total phase difference is shown separately.

Overall, a good agreement is shown in the view of the dispersion found in the ground
measurements, most remarkably in stalk height (see Table 1). A slight overestimation
is expected since the corn plant developed above the stalk, resulting in an overall plant
structure taller than the stalk itself. Furthermore, the vegetation material within the stalks
occupied a smaller volume within the stalk rind, thus leading to an underestimation in
the fitted diameter since the outer layer comprising the rind is almost dry. By means of
Mitzler’s vegetation model, shown in Figure 3, the fitted real part €}, = 29.9 corresponds
toamg = 0.78 g/g, close to the laboratory-measured mg = (0.82 £ 0.01) g/g. Moreover,
the ¢y estimates with lower py (corresponding to 50° and 65° in Figure 5b) fitted well,
indicating that using an MLE technique over the whole histogram resulted in sound,
reliable estimates.
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With regards to the dependency on the incidence angle shown in Figure 5c, the
propagation term becomes relevant for large 6; due to increasing interaction with dielectric
stalks for slanted propagation paths through the corn plants. The soil term sets a reference
level almost insensitive to incidence angle variations.

The Canada campaign collected corn parameters regularly, covering most of the
development of the corn plants. For further assessment, the same procedure described
above was applied to the corresponding UAVSAR dataset on dates before peak biomass on
17 July 2012. Table 2 summarizes the fitted model parameters and the root mean squared
error on 5, 8, 14, and 17 July 2012. The corresponding ground measurements are grouped
by dates to compensate for missing data, thus covering all eight sites.

While the trend in stalk height seemed to correspond to the plant’s growth, the
fitted ¢ is somewhat insensitive to stalk diameter, likely due to the sensitivity of the
underlying model to these parameters and the dispersion in model parameters. Again, an
underestimation of the diameter is expected due to the smaller volume of the vegetation
material within the stalks.

On the other hand, the stalk dielectric constant showed a significant sensitivity. With
the measured stalk gravimetric moisture shown in Table 2, a straightforward comparison
of fitted &5+ with myg is made with the aid of Métzler’s model shown in Figure 3. In effect,
as followed from Figure 3, the range 0.834-0.847 g/g corresponded to the ¢/, range 32-34,
which is in reasonable agreement with the corresponding fitted parameter. Similarly, the
range 0.811-0.834 g/g corresponded to €., in the range 31-32. The complex dielectric part
is governed by the salinity of the vegetation bulk material. Hence, it can be regarded
as a second-order effect in relation to the real part dielectric constant and, therefore, its
low sensitivity.

Table 2. Stalk features as compared to the fitting and to the ground data from dates prior to peak biomass. Field campaign

in Canada with UAVSAR. The dielectric constant on ground data is estimated from stalk moisture by means of Métzler’s

model shown in Figure 3.

Date
5 July 2012 8 July 2012 14 July 2012 17 July 2012
Fitted pars.
Height / [m] 1.42 1.83 2.56 2.60
Diameter d [cm] 1.80 1.80 1.80 1.80
Dielectric constant &4 [-] 30.6 + 6.0i 314 +6.0i 32.0 + 6.0i 249 + 6.0i
Density N [1/m?] 7.15
Root mean sq. error [°] 16.3
Ground data
Height h range [m] 1.19-1.77
Diameter d range [cm] 2.00-2.29
Moisture m,g range [g/g] 0.834-0.847 0.811-0.834
Dielectric constant (real part) €}, [-] 32-34

Finally, as mentioned in the introduction, some techniques make the estimation of
crop height available. Hence, stalk height might be regarded as a known parameter in
specific applications. On the other hand, stalk diameter and gravimetric moisture are
plant features that involve time-consuming gathering procedures. If copolarized phase
measurements are available over a known corn field at some late stage, Figure 6 can aid
in parameter retrieval provided some guess in stalk gravimetric moisture or diameter is
at hand. Usually, relationships between diameter and height are available for corn and
maize elsewhere (e.g., [39]). The contour levels in Figure 6 were evaluated for several stalk
heights by parameterizing the stalk dielectric constant ¢5; with gravimetric moisture mg
using Matzler’s model.
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Figure 6. ¢-contours resulting from the evaluation of (2) when coupling Matzler’s model with
Ulaby’s. Frequency is fixed at 1.25 GHz and incidence angle is 40°. Model parameters now include
mg instead of eg;. Stalk height  is indicated. (a) # = 1.80 m. (b) & = 2.00 m. (c) h = 2.40 m.
(d) & = 2.80 m. Contours are in degrees.

4. Discussion

Availability of a fully polarimetric dataset involving airborne and satellite-borne
images and stalk dielectric, structural, and spatial parameters enabled a multi-parameter
modeling over corn fields. The model considered here for the co-polarized phase difference
comprised three incoherent contributions with different sensitivities. Whereas the soil
term set an almost constant reference level of around -180°, propagation and bistatic terms
had a marked dependency with height, diameter, and moisture of the stalks. By adding
them up, the incoherent, interaction-based model fitting showed good agreement with
UAVSAR and ALOS-2/PALSAR-2 acquisitions, provided the dispersion in the ground
measurements be accounted for. By separating each of the contributions, a more accurate
understanding of crop interaction is made, advancing previous research where a full
explanation of observation data could not be given since considerable modeling efforts
were required [20,24]. Moreover, a number of dedicated radar experiments [15,16,40] with
detailed field measurements collected on corn fields can benefit from incorporating a co-
polarized phase model to extend their findings to phase-related observables, since modeling
efforts associated with these experiments were limited to intensity-related observables only.

More accurate crop scattering models will likely include detailed canopy physical
attributes, other than only stalk height and width, such as leaf area index, leaf orienta-
tion distribution, and leaf size [41], among others. As a result, a direct relationship of
the scattering with plant biophysical parameters might not be easy to develop. On the
other hand, scattering models with interaction at higher orders for randomly distributed
vertical cylinders rely on Monte Carlo simulations or iterative methods [18]. Thus, the
few parameters implied in the Ulaby’s model and its straightforward analytical expression
highlight its usefulness.

From the sensitivity analysis on Ulaby’s model described in Section 2.2, the stalk
height resulted in the highest sensitivity on the propagation term ¢, for all the incidence
angles. This goes in line with the application mentioned at the end of Section 3, where the
contours shown in Figure 6 leverage the stalk height retrieval from other remotely-sensed
techniques (i.e., [21]) through the improved sensitivity of the term ¢, in the total ¢p. In
this regard, corn height estimates with a root mean square error around 40-50 cm over a
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growing season were demonstrated with machine learning techniques over a dataset of
polarimetric SAR observables at the C-band [21]. This study also highlighted the relevance
of polarimetric features related to double-bounce scattering (i.e., ¢s;) [21]. Moreover, model
parameterization by stalk gravimetric moisture content instead of its complex dielectric
constant using Matzler’s model demonstrated a potential resource for dimensionality
reduction, thus helping future application-oriented developments.

Several techniques are usually validated with data from airborne campaigns and then
expected to be readily applied with similar levels of accuracy to imagery acquired by orbit-
ing sensors. In the case analyzed in this research, field-based estimates from satellite-borne
acquisitions such as those of ALOS-2/PALSAR-2 were clearly constrained by histograms
with fewer data points since the larger pixel sizes involved were compared to airborne
acquisitions. With the sound histogram-based, matrix-variate Maximum Likelihood Esti-
mation technique described in Section 3.1, the estimates from ALOS-2/PALSAR-2 resulted
in slightly larger, otherwise reasonably bounded, uncertainties than UAVSAR ones.

With the increasing availability of L-band space-borne SAR missions adding to ex-
isting C-band SAR resources (e.g., European Space Agency’s Sentinel-1), multi-frequency
methodologies may become fully operational in the near future. The multi-frequency
approach exploits different penetration capabilities into the vegetation canopy. For in-
stance, these enhanced capabilities can potentially circumvent typical issues regarding
the classification of crops with similar architectures such as corn and sorghum, the latter
widely spread in America and Africa. To a greater extent, if multi-frequency polarimetric
SAR data become available, polarimetric modeling such as the Ulaby-Maétzler model can
enhance further corn plant parameter retrieval.

5. Conclusions

Research on crop scattering processes can primarily benefit from fully polarimetric
data. In addition to usual power scattering coefficients, a promising polarimetric observable
for crop monitoring is the phase difference between the co-polarized complex scattering
amplitudes. By leveraging the penetration capabilities at the L-band, fully polarimetric
SAR missions become worthwhile over croplands. This study presents a scattering model
coupled with a semi-empirical dielectric model for co-polarized phase differences resulting
from the interaction of microwaves with grown corn canopies. The dataset included
airborne and space-borne fully polarimetric SAR data with incidence angles ranging from
20° to 60°. A set of 60 data points was analyzed and used to perform an experimental
data fitting with a nonlinear least-squares technique. The results showed a satisfactory
agreement for corn co-polarized phase differences at the field scale, with an RMSE of
around 24.3° considering airborne and space-borne acquisitions. Compared with available
studies on corn phase differences with SAR data, this research provides a new perspective
on using phase-related observables on fully polarimetric SAR data over corn fields.
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