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Historical reconstruction 
of the population dynamics 
of southern right whales 
in the southwestern Atlantic Ocean
M. A. Romero1,2*, M. A. Coscarella3,4, G. D. Adams5, J. C. Pedraza6, R. A. González1,2 & 
E. A. Crespo3

Understanding the recovery of whale populations is critical for developing population-management 
and conservation strategies. The southern right whale (SRW) Eubalena australis was one of the 
baleen whale species that has experienced centuries of exploitation. We assess here for the first time 
the population dynamics of the SRW from the southwestern Atlantic Ocean at the regional level to 
measure numerically the effect of whaling and estimate the population trend and recovery level after 
depletion. We reconstructed the catch history of whaling for the period 1670–1973 by an extensive 
review of different literature sources and developed a Bayesian state-space model to estimate the 
demographic parameters. The population trajectory indicated that the pre-exploitation abundance 
was close to 58,000 individuals (median = 58,212; 95% CI = 33,329–100,920). The abundance dropped 
to its lowest abundance levels in the 1830s when fewer than 2,000 individuals remained. The current 
median population abundance was estimated at 4,742 whales (95% CI = 3,853–6,013), suggesting 
that the SRW population remains small relative to its pre-exploitation abundance (median depletion 
P2021 8.7%). We estimated that close to 36% of the SRW population visits the waters of the Península 
Valdés, the main breeding ground, every year. Our results provide insights into the severity of the 
whaling operation in the southwestern Atlantic along with the population´s response at low densities, 
thus contributing to understand the observed differences in population trends over the distributional 
range of the species worldwide.

From the pioneering models for growing populations—such as the classical logistic function of Verhulst and 
Elton’s focus on population cycles—ecologists and managers have been interested in understanding how popu-
lations change over time1,2. Analyses of temporal series of animal abundances are of great interest for life his-
tory theory, population ecology, and wildlife management through providing estimates of abundance trends or 
growth rates as well as density-dependence processes3–5. Demographic assessment is also an essential step in 
conservation biology because that evaluation enables one to diagnose the cause of long-term changes in popula-
tion abundance6.

Populations of large vertebrates have undergone numerous threats, including habitat loss, harvesting, climate 
change and prey depletion, leading to drastic reductions in their abundance7,8. In the marine realm, the past 
large-scale whaling and sealing operations were the main threats for marine mammal´s populations9,10. Whales 
and seals have been pursued historically as prized sources of oil, fur, meat, baleen and ambergris11,12. At present, 
certain populations remain at low abundance levels since the end of commercial whaling, while others have 
continued to decline or have even become extinct or extirpated. Most, however, have manifested remarkable 
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recoveries after severe depletions13–15. Effective conservation actions require a better understanding of the under-
lying mechanisms that determine the magnitude of the population trends.

The southern right whale (SRW) Eubalaena australis (Desmoulins, 1822) was one of the baleen whale species 
most extensively hunted by commercial whaling in the Southern Hemisphere, having been driven almost to the 
border of extinction around the mid-nineteenth century16–20. Whaling activity started in the early seventeenth 
century, and was mainly led by American, British, French, Portuguese and Spanish whalers. Despite the whales 
having been protected by an international agreement since 1935, illegal hunting by the Soviet Union whaling 
fleet in the 1960s and 1970s killed off half the existing population at the time20,21.

Reconstructions of historical trajectories indicated that before whaling over 70,000 SRWs could be found in 
the 12 wintering grounds14,19,20,22. Between the 18th and the mid-nineteenth centuries a conservative estimate 
suggested that more than 150,000 SRW had been killed, with only around 300 individuals remaining worldwide 
by the 1920s19,20,22. Currently, the SRW populations have increased to roughly 12,000–15,000 individuals, as 
estimated in 2009 over the species circumpolar distribution22.

Despite the positive global trend, SRW populations have evidenced different population growths. Carroll 
et al.23 estimated that the New Zealand SRW population was growing at 7% per annum (95% IC = 5–9%). The 
South African-Namibian breeding population was likewise thriving with an annual population growth rate of 
6.5% (S.E. 0.3%)24. The ‘western’ Australian SRW subpopulation evidences a population trend of 5.6% per year 
(95% CI = 4–7.28%), while the ‘eastern’ subpopulation remains relatively small25. In southeastern Australia, the 
SRW population has increased at a rate of 4.7% (95% IC = 2.3% − 7.3%) per annum between 1996 and 201726. 
The continued low abundance of the SRW in certain regions, such as in southeast Australia and the Chile-Peru 
area, was linked to a strong female fidelity to calving grounds27–29.

The breeding ground off Península Valdés (42–43°S), Argentina, has been increasing at around 6–7 ± 0.2% 
annually for 40 years since the beginning of the population dynamics studies in 1970, thus housing the largest 
aggregations of SRWs in the southwestern Atlantic Ocean22,30,31. During the last ten years the rate of increase 
has declined to almost 3.15%, (95% IC = 0.53–5.75%) indicating a density-dependence process at this breeding 
ground32. A growing breeding ground also exists along the east coast of South America at Santa Catarina State 
(27–29° S), Brazil33,34, while an increasing number of sightings has been reported in Uruguay, farther north from 
Península Valdés and south of Santa Catarina and the Falkland (Malvinas) Islands35–41. All this area, referred 
to as the ´Brazil Banks´, was intensively exploited between the seventeenth and twentieth centuries by whaling 
that took a minimum of 30,000 individuals18,42,43.

Evidence from different sources suggests that SRWs from the southwestern Atlantic Ocean belong to the same 
population. The annual growth rate in southern Brazil has been estimated to be higher than expected due to a 
purely endogenous increase, suggesting that immigration from other wintering grounds, such as the Península 
Valdés, may be occurring33. This interchange of SRWs between both breeding grounds had previously been 
indicated by photo-ID studies44. Recently, satellite track data from animals tagged in northern Patagonia dem-
onstrated substantial displacements from Uruguay to South Georgia (Islas Georgia del Sur) and the Scotia Sea 
(Mar de Escocia), suggesting that the SRW inhabits vast extensions of the south Atlantic Ocean and visits mul-
tiple potential feeding areas each season45. This result is also consistent with findings from isotopic analysis46–48, 
genetic studies28,49,50 and whaling voyage logbooks that indicate a continuum in recorded catches along the South 
American Atlantic coastline16,21,51.

The current international management recognizes this population to be of a single stock, and therefore 
emphasizes the urgency of integrated conservation actions along the east coast of South America. A call was 
issued to achieve regional-scale estimates of demographic parameters in order to fully understand the dynamics 
and recovery rates of the SRW population from the southwest Atlantic52. The lack of an extensive pre-modern 
whaling dataset, however, has severely limited our ability to conduct regional assessments of the SRW commer-
cial whaling in the past so as to develop population trajectories for estimating pre-exploitation baselines and 
current recovery levels.

Therefore, in the work reported here we have assessed for the first time the population dynamics of the SRW 
from the southwestern Atlantic Ocean at the regional level in order to measure numerically the effect of whal-
ing and estimate the population trend and recovery level after depletion. We reconstructed the catch history 
of whaling for the period 1670–1973 by an extensive review of different literatures sources, and then used this 
information to estimate the current and pre-exploited population abundance, using a Bayesian state-space sur-
plus production model. The results from this analysis enhance our understanding of the response of the species 
to past exploitation and thus can assist in quantifying baselines for conservation objectives to ensure effective 
resource management.

Materials and methods
Annual whaling data.  Whalers termed the Eubalaena spp. as the ´right´ whale to kill for their accessibil-
ity in nearshore habitats, relatively slow-moving and their tendency to float when dead. Moreover, their capture 
yielded long baleen plates and copious oil19. The first whalers used the Basque-shore whaling technique which 
was exported to the South Atlantic by 160253. This basic technique was first appropriated by European nations 
but then spread all the way from Salvador de Bahia to Imbituba, Brazil54. Following the decline in the Basque-
style era at the end of the seventeenth century, the American shore and pelagic whaling methods prevailed 
during approximately two centuries55. Offshore whaling, although termed American (“Yankee”), was in fact 
conducted by many nations, plundering the South Atlantic for the remnants of the SRW population51,56,57. By 
the start of modern whaling at the beginning of the twentieth century, the species had already become rare58.

The catch history of the SRW from the southwestern Atlantic Ocean (Table S1, Fig. 1) was reconstructed by 
combining information from the following sources:
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	 (i)	 An extensive review of published articles, books, and theses. Partial catch reconstructions are available 
for different fleets, but vary in completeness and in the information tabulated. The whaling operation 
along the coast of Brazil was initially reviewed by Ellis59,60 and subsequently by Palazzo & Carter61. Du 
Pasquier42 provided a list of whaling voyages for French whaling vessels, including a detailed description 
of the whales killed. The whaling activities of American, British, French, Spanish and Portuguese fleets 
up to the middle of the eighteenth century was reviewed by Richards18. These data were assigned for the 
period 1772–1812. Additional data were compiled from62–67.

	 (ii)	 The database available on the Whaling History website (www.​whali​nghis​tory.​org). This dataset contains 
information about the American offshore whaling, the British Southern Whale Fishery, and the French 
whaling. The American Offshore Whaling Logbook database68 was extracted from the original whaling 
logbooks compiled by Lt. Cmdr. Matthew Fontaine Maury in the 1850s, by Charles Haskins Townsend in 
the 1930s and by the Census of Marine Life project (CoML, www.​coml.​org). This database contains 
records providing information on the whales seen and captured along with the date and the location of 
the vessel. These records were plotted and filtered to select all those included in the study area. The Voy-
age database of the British Southern Whale Fishery69, which operated from 1775 to 1859, documents the 
events of around 2,550 whaling or sealing voyages to the south of Britain in over 930 different vessels. 
The records provided the quantity of whale oil measured in tuns, casks or barrels, but are not linked to 
a specific geographic position. Therefore, the voyages were selected according to the destination, keep-
ing separate those whose destination was exclusively the southwestern Atlantic Ocean from the records 
where this area had been included en route to other destinations. The catches were organized according to 
the year the vessel returned from the voyage, as nearly 90% of the voyages analyzed took fewer than two 
years. The data for French whaling70 comes primarily from a digitization of T. Du Pasquier’s books. The 
criterion for filtering the data was similar to that used for the British Southern Whale Fishery database.

	 (iii)	 The Records of the Boards of Customs (Reference: CUST) of the UK Government obtained from the National 
Archives (www.​natio​nalar​chives.​gov.​uk/). The CUST 4 division is available in digital format and contains 
the ledgers of imports to Britain giving, under the names of the exporting countries, the several articles 
imported from each along with the quantities and official values. These annual records cover the period 
between 1809 and 1899. From each of these documents was extracted the information on the quantity of 
train oil and blubber (tuns) imported from South America to construct a vector of annual whale catches. 
Unavoidable uncertainties occur with respect to the whaling methods and the precise date—the latter 
since the year of export would not necessarily be the year the whale was caught. Although how to address 
this uncertainty was not apparent, this long-term dataset was nevertheless essential for reconstructing 
the catches that took place during the second half of the nineteenth century, which information is absent 
in the other sources.

	 (iv)	 Historical catch data for the period 1907–1966, computed from the International Whaling Commission 
(IWC) catch database71. The data for the illegal Soviet whaling was obtained combing the three available 
data from Tormosov21 for the southwestern Atlantic Ocean with this database.

Figure 1.   Population range of the southern right whale Eubalaena australis over the southwestern Atlantic 
Ocean, indicating the two breeding grounds (Santa Catarina and Península Valdés; black swathes). Polygon 
indicates the main area of the whaling operations. Map created with R76 through the use of marmap115 and 
ggplot2116 packages.

http://www.whalinghistory.org
http://www.coml.org
http://www.nationalarchives.gov.uk/
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We converted the reports of whale oil to rough numbers of whales using an average number of 60 barrels of 
oil (1 tun = 8 barrels; 1 cask = 6.5 barrels) per right whale, following Best43. We then filtered all records to select 
those included in the study area (Fig. 1). This area extends west of 20° W from Salvador de Bahia to the northern 
Weddell Sea (Mar de Weddell). The selection covered different periods of whaling operations although certain 
catches were duplicated or triplicated. For example, the records for the French Offshore fleet were partially cov-
ered by Du Pasquier42, Richards18 and the French database from the Whaling History website70. An additional 
source of uncertainty comes from the lack of identification of whale species in the British Southern Whale Fishery 
database and in the records obtained from the Customs of the UK. Moreover, the term train oil probably also 
included the oil from pinnipeds and humpback whales.

The uncertainties in the catch records were addressed by developing two temporal series of annual catches, 
a low- and a high–SRW-catch series. We constructed the low series considering the minimum value among 
overlapped records and excluding the Custom dataset and records with more than one destination. Since only a 
fraction of the available American offshore whaling logs have been analysed in sufficient detail to provide catch 
information68, all these records were included in the low-catch series. For the high-catch series, we assumed 
that all the estimated catches from the Custom dataset corresponded to right whales that were killed within the 
study area.

The catch series were corrected to account for whales struck by whalers but lost during whaling operation. 
The ‘struck and lost’ rate factor (SLR) for the pre-modern period (1771–1850) was set at a value of SLR1 ~ N(1.6, 
0.04) [1/(1 minus the loss rate)]. For the modern whaling period (1851–1973), the catches were corrected upward 
through the use of a factor of SLR2 ~ N(1.09, 0.04)72. No SLRs were used for 1648–1770 and 1974-present.

Estimates of relative abundance.  Estimates of relative abundance were calculated using a two-stage 
approach. First, an aerial-survey protocol as described in Crespo et  al.32 was performed in 1999, 2000, and 
2005–2019. Stated succinctly, the procedure was the following: A monitoring area was defined from the south of 
Península Valdés to the limit of the main concentration area, totalling a coastal strip 620 km in length. Between 2 
and 8 flights were made each year depending on the weather conditions and the financial support. Relative abun-
dance was estimated by counting the total number of whales within the monitoring area and using the methods 
described in Crespo et al.32. Flights were carried out between May 1999 and October 2019. The total number of 
whales in the area per day was estimated for each year through the generalized-linear-model (GLM) procedure 
because that method can accurately assess the parameters for the cumulative data, such as the censuses for 
the SRW73–75. As predictor variables, we included Year (categorical), Julian day (continuous), and Julian day^2 
(continuous), allowing the models to explore a nonlinear relationship resulting from the seasonal variation. We 
assumed a negative binomial distribution and log link and estimated parameters using the MASS package in 
the R Statistical Environment76. The second step, employing the parameters of the GLM, involved the use of the 
estimated daily number of whales for each year to build a cumulative curve that assessed the number of whales 
that came into the breeding ground each year:

where t is the Julian day and y the year, W is the estimated number of whales on Julian day t for the year y. As 
the whales come to the area in April, we assumed that Wt,y = 0 for the range 1 ≤ t ≤ 99 . The values for a, b, c 
and d are the parameter estimates from the negative binomial GLM.

Any individual whale will remain in the area a certain number of days that will be shorter than the whole sea-
son, and hence the number of whales estimated for the Julian day t cannot be directly added to the previous day 
to build the accumulated curve since the number of transient whales will be seriously overestimated77 through 
a failure to subtract those that have egressed. The time any given whale remains in the area is given by a prob-
ability distribution p(k) . We assumed this probability distribution function to be normal N(µ = 60; σ = 8.66) ; 
furthermore, the parameters are derived from the only available published information77. We also assumed that 
pk is independent of the day the whale came into the area.

Et,y denotes the number of individuals coming into the area during the Julian day t  (t = 1, 2, 3, . . . , 320) for the 
year y . Thus, if Ax is the accumulated number of whales coming into the area from day 1 until day x , we can write:

Moreover, we can denote St,y as indicating to the number of whales that leave the area the Julian day t  for 
the year y . The outgoing function S is related to the incoming function by means of the pk distribution in the 
following way:

where t = 1, 2, . . . , 320 . We assumed that E0,y = 0.
Both, the incoming E and the outgoing S functions are related to the estimated number of whales in a par-

ticular Julian day t  for the year y with the number of estimated whales W the following way:

Wt,y = e−a+by+ct−dt2 1 ≤ t ≤ 320, 1999 ≤ y ≤ 2019

Ax,y =

x
∑

t=1

Et,y

St,y =

t
∑

k=1

pkEt−k,y

Et,y − St,y = Wt,y −Wt−1,y = �Wt,y
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hence the difference between the number of whales entering and leaving the area is the same as the difference 
between the number of estimated whales for any given Julian day t and those present the previous day. As we 
assumed that W0,y = 0 , so we can be inferred:

then,

The final formulation for the accumulated number of whales is:

If we assume that A0,y = 0 , within the range of 1 ≤ x ≤ 320 for x and between 1999 ≤ y ≤ 2019 for the year y , 
this function enables an estimation of the accumulated number of whales Ax,y (i.e., the total number of animals 
reaching the survey area during year y ) through the use of the number of estimated whales for a given Julian 
day and the preceding one ( Ax−k,y , 1 ≤ k ≤ x ) (Table S2). Given the small probability of new whales entering 
the area after mid-November, we set the following restriction Ax = A320, 320 ≤ x ≤ 365.

Estimates of absolute abundance.  Estimated absolute abundance for 2010 of 4,245 (SE: 245) was taken 
from the IWC22.

Population dynamics modelling.  The population dynamics of the SRW from the southwestern Atlantic 
Ocean was modelled via an age- and sex-aggregated density-dependent model. The model was implemented 
in a Bayesian state-space framework. This approach is regarded as a powerful tool for modelling time-varying 
abundance indices because such an implementation simultaneously accounts for both stochastic variability (the 
state model) and stochastic measurement error (the observation model)4,78. The state model accounts for the 
unobservable stochasticity in the evolution of the animal population over time and with changes in environ-
mental conditions, while the observation model takes into consideration the imperfect detection and sampling 
variations. With this approach, all the identifiable sources of uncertainty related to the mathematical representa-
tion of the biological system were addressed in producing the posterior distribution of the parameters. The key 
population parameters comprise the carrying capacity (K), the maximum rate of increase (Rmax) , the propor-
tion of K at which maximum production is achieved (Pmsy), and the predictions of population abundance. 
The annual abundances were treated as unobserved random variables in the Bayesian modelling framework. 
The model was run for the period 1648–2019 and projected forward to 2030. The input of data for this model 
included annual-catch records, relative abundance estimates (accumulated numbers of whales), and estimated 
absolute abundance in 2010. Different modelling scenarios were proposed to test the sensitivity of model outputs 
to the available data and the assumptions of the model.

The basic population dynamic process was modelled by means of the following discrete formulation:

where Ny is the unknown underlying state variable in year y (in this instance, the unobserved annual abundance 
for the SRW population exposed to whaling, y = 1648,…,2019), Cy the number of individuals removed by com-
mercial whaling in year y , SLRy the correction factor for the year (y) to account for whales that were struck and 
lost, and f (·) a surplus-production function. This function was specified as the following generalized theta-
logistic equation79:

where Rmax is the maximum rate of increase (i.e., the intrinsic population growth rate when Ny ∼ 0), K the car-
rying capacity, and z a shape parameter that controls the level of nonlinearity in the density-dependence. This 
parameter was calculated numerically from Pmsy.

The two estimated time-series of annual catches, given uncertainty in the number of landed whales, were 
combined to estimate Cy according to Zerbini et al.80:

where π , the catch parameter, is a single time-invariant parameter that determines the true landings from Cy,min 
and Cy,max , which correspond, respectively, to the minimum and maximum total estimated catch in year y.

Et,y = �Wt,y +

t
∑

k=1

pkEt−k,y

Ax,y =

x
∑

t=1

Et,y =

x
∑

t=1

�Wt,y +

x
∑

t=1

t
∑

k=1

pkEt−k,y

=Wx,y +

x
∑

k=1

pk

(

x−k
∑

t=1

Et,y

)

= Wx,y +

x
∑

k=1

pkAx−k,y

Ax,y = Wx,y +

x
∑

k=1

pkAx−k,y

Ny+1 = Ny + f
(

Ny

)

− Cy ∗ SLRy

f
(

Ny

)

= RmaxNy

[

1−

(

Ny

K

)z]

Cy = Cy,min + π ∗
(

Cy,max − Cy,min

)
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Process error was accounted for in the state process by assuming independent and multiplicative lognormal 
error structures with the variance parameter σ 281. This model also assumed that the pre-exploitation popu-
lation was at the environmental carrying capacity before the beginning of whaling operations in 1678 (i.e., 
N1648−1677 = K ). The median population abundance in year y is Ñy . To avoid estimates of negative abundance 
and attempting to take the log of a negative number, a lower boundary was placed on Ñy

82. Therefore, the state 
process was assumed to follow a centred stochastic transition model as:

where Nc is a constraint on the minimum abundance of SRW (described below). The observation process of the 
stochastic model assumed that the accumulated number of observed right whales 

(

Ay , y = 1999, . . . , 2019
)

 were 
proportional to the true abundance 

(

Ny

)

 through the catchability coefficient q and a parameter that determines 
the level of density-dependence in catchability (β) . Observation error was accounted for by assuming a multi-
variate lognormal error structure:

where Ay and Ny are vectors of the accumulated and estimated number of observed whales, respectively, and Σ 
is the variance–covariance matrix of the log accumulated number of observed whales calculated by numerical 
simulation (Table S3). Catchability was derived by analytically integrating over a log

(

q
)

∼ uniform(−∞,∞) 
prior and the multivariate lognormal likelihood, resulting in evaluation of the likelihood with q replaced by the 
analytical catchability ( ̂q):

to calculate the marginal likelihood. Observation error for absolute abundance in 2010 was accounted for by 
assuming a univariate lognormal error structure:

Minimum population size.  We included a constraint (Nc) on the minimum abundance of right whales 
based on the number of maternally inherited mitochondrial DNA (mtDNA) haplotypes. Recent work has 
sequenced 24 unique mtDNA haplotypes of SRW in Southern Brazil22 and we used the IWC recommended 
3 × correction for constraining population models to account for males and non-contributing individuals84. 
Therefore, the constraint on minimum abundance was set to Nc = 72 individuals. Sensitivity to the minimum 
population size was also explored given multiple estimates of the number of haplotypes (described below).

Parameter estimation.  Bayesian estimation was applied to estimate both the abundance trajectory (N1, 
…, Ny with y = 1648–2030) and the uncertainty in the parameter estimates following a backwards approach85 
using a sampling-importance-resampling (SIR) algorithm implemented by McAllister et al.86. Rather than esti-
mating and assigning a prior to carrying capacity (K) directly, the backwards approach assigns a prior to a 
recent abundance Nrecent and back-calculates the abundance trajectory. Therefore, the unknown parameters in 
the model were Rmax ,Nrecent , Pmsy , q,β , SRL1, SRL2,π , and σ 2 . Priors for base case and sensitivity models are 
described below. A total of 20,000 posterior draws were generated for each model. The posterior distribution 
for catchability was sampled across posterior draws from a multivariate lognormal distribution according to the 
following density function:

In our Base Case model, vaguely informative prior distributions were used for model parameters, centred 
at plausible values, and constrained within realistic biological bounds (Table 1). Owing to uncertainty about 
an appropriate prior mean for Rmax , a uniform prior distribution spanning 0 – 0.11 was chosen. The uniform 
prior distribution was restricted to a maximum value of 0.11, based on the maximum biologically possible rate 
of increase87. A uniform distribution over the interval 100–10,000 was used to describe the prior for Nrecent in 
2019 (Table 1). The ‘struck and lost’ rate factors for pre-modern and modern eras (SRL1, SRL2) were assumed 
to be normally distributed (described above). A uniform prior was imposed on π spanning 0 to 1. The prior 
for the process error variance p

(

σ 2
)

 was chosen to be a uniform distribution. The lower bound of the uniform 
distribution was derived by simulating an age-structured population through time with process error in juvenile 
and adult survival using the model implemented by Punt et al.88 and calculating the variance in total abundance 
at equilibrium. To simulate the age-structured population we sampled the following input parameters from31: 
annual calf mortality rate (0.179; S.E. 0.027), annual adult mortality rate (0.026; S.E. 0.003), annual rate of popu-
lation increase (1.065, S.E. 0.002), age-at-first-pregnancy (7.58, S.E. 0.18). Annual variation was accounted for 

Ñ1648−1677 = K

Ñy+1 = max
{

Nc ,Ny + f
(

Ny

)

− Cy ∗ SLRy
}

for y > 1677

Ny

∣

∣Ñy ∼ log− normal
(

log
[

Ñy

]

, σ 2
)

for y = 1648− 2030

Ay

∣

∣Ny , q,β ,Σ ∼ log− normal
(

log
[

qN1+β
y

]

,Σ
)

y = 1999, 2000, 2005− 2019

q̂ = exp

(

∑

Σ
−1log

(

Ay

N
1+β
y

)

/
∑

Σ
−1

)

A2010|N2010, τ
2 ∼ log− normal

(

log[N2010], τ
2
)

q
∣

∣Ny ,Ay ,β ,Σ ∼ log− normal

(

log

[

Ay

N
1+β
y

]

,Σ

)
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by adding normally distributed deviates of annual calf (mean 0; S.D. 0.097 31;) and adult survival (mean 0; S.D. 
0.19423) estimated from North Atlantic Right Whales89. To our knowledge, there are no current estimates of 
interannual variation in adult mortality rate of SRW. We therefore assumed interannual variation in the log-odds 
of survival of SRW was similar to that estimated for North Atlantic Right whales. Variance in the population at 
equilibrium likely represents the lower bound in process error of the total population given that we ignore process 
error in reproduction. Given a lack of information to inform the upper bound of the uniform distribution, the 
upper bound was derived by multiplying the lower bound by 10. Model sensitivity to the selected upper bound 
was explored by fitting models where the upper bound was selected by multiplying the lower bound by 2 and 
100 (described below). We assumed no density-dependence in catchability and assumed β = 0.

A useful diagnostic from a Bayesian numerical integration is the so-called post-model-pre-data distribution. 
These distributions reveal how the priors interact with a model given the catch data but before the model is fitted 
to an abundance index. This approach enables evaluation of the extent to which fitting the model to abundance 
index data updates the distributions determined by the interaction of the priors and inputted catch records 
within the model formulation. The post-model-pre-data distribution was compared to the posterior distribution 
to indicate the extent of posterior updating on each parameter.

Sensitivity analysis.  Model sensitivity to the prior probability specifications and the input data was evalu-
ated by exploring 14 alternative models to the Base Case scenario (Table S4). `Model assumption` scenarios 
assessed variation in the model outputs when different prior distributions were specified for Rmax , σ 2 , and 
Nrecent . Scenario Scen 1 evaluated a vaguely informative lognormal prior distribution was used for Rmax with 
a mean of 0.069. Distribution parameters were computed from SRW life-history data22,87 with a CV of 50%, 
enabling sufficient flexibility to be able to estimate the probable value of Rmax . In Scen 2, a CV of 30% was used 
to evaluate the sensitivity of the posterior distribution of Rmax to a more informative prior distribution. In Scen 
3, a truncated lognormal prior on Rmax was used instead of the lognormal prior. The prior was truncated at 2% 
and 11% (minimum and maximum plausible)87. In scenarios Scen 4 and Scen 5, the upper bound of the uni-
form distribution on σ2 was moved to 100 times and twice the lower bound, respectively. In Scen 6, a uniform 
prior from 100 to 10,000 was used for Nrecent for 2004. The `Catch` scenarios investigated the effects when 
struck-and-lost rates were excluded (Scen 7), and when only the low (Scen 8) or the high- (Scen 9) catch series 
was considered. The `Minimum population size` scenarios investigated the impact of an alternative population 
constraints (Nc) based given multiple estimates of the number of mtDNA haplotypes22. Nc of zero (Scen 10), 75 
(Scen 11), and 111 (Scen 12) were considered to evaluate the lack of population bounds and estimates of 25 and 
37 mtDNA haplotypes, respectively. `Index` scenarios evaluated the potential for time-varying and/or density-
dependent catchability. In the breeding ground of Peninsula Valdés, because of the population growth, expan-
sion to less dense regions (i.e., suboptimal habitats) by some types of groups was recorded32,39,90. This change in 
distribution could mean that catchability of animals in the sampling area is varying over time. Scen 13 evaluated 
the potential for time-varying catchability by including additional observation error attributable to variation in 
catchability91. An estimated observation error term τ 2 was added to the diagonal of Σ . A vaguely uninformative 
lognormal prior was used for τ with a mean of 0.2 and CV of 50%. Given habitat use of the survey area may be 
density-dependent32, Scen 14 evaluated the potential for density-dependent catchability by assuming a vaguely 
informative normal prior with a mean of 0 and SD of 0.1 for β . The priors used for τ and β in Scen 13 and 14, 
respectively, were not informed by previous information, but were selected to evaluate model sensitivity to alter-
native catchability assumptions while also limiting overfitting.

Model uncertainty.  The relative probabilities of the competing models were inferred by calculating Bayes 
factors assuming all models were equally probable a priori92. All models were comparable given they contained 
the same data. The consistency between the model and the data was checked by the Bayesian posterior-predic-

Table 1.   Estimable parameters and prior specifications for Bayesian state-space models. Alternative prior 
specifications were considered in the sensitivity analyses (Scens 1–14).

Parameter Base case prior Alternative prior

Nrecent N2019 ∼ unif (100, 10, 000) N2004 ∼ unif (100, 10, 000) (Scen6)

Maximum rate of increase

Rmax ∼ unif (0, 0.11) Rmax ∼ lnorm(−2.67, 0.5) (Scen1)

Rmax ∼ lnorm(−2.67, 0.3) (Scen2)

Rmax ∼ lnorm(−2.67, 0.5)t(0.02, 0.11) (Scen3)

Process variance
σ 2 ∼ unif

(

6.5e−5, 6.5e−4
)

σ 2 ∼ unif
(

6.5e−5, 6.5e−3
)

 (Scen4)

σ 2 ∼ unif
(

6.5e−5, 1.3e−4
)

 (Scen5)

Depletion at maximum sustainable yield Pmsy ∼ unif (0.5, 0.8)

Struck and lost’ rate factor (period: 1771–1850) SRL1 ∼ norm
(

1.6, 0.042
)

Struck and lost’ rate factor (period: 1851–1973) SRL2 ∼ norm
(

1.09, 0.042
)

Catch parameter π ∼ unif (0, 1)

Catchability Analytically derived τ 2 ∼ lnorm
(

log(0.2), 0.5
)

 (Scen13)

Density-dependence of catchability β = 0 β ∼ norm(0, 0.1) (Scen14)
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tive-checking procedures designed to check the ability of the model a posteriori to replicate abundance data 
similar to those observed. Additionally, we performed multi-model inference using Bayesian model averaging 
to balance model goodness of fit and model uncertainty, rather than relying on one ‘true’ model93. The posterior 
distributions from the candidate models were sampled relative to the models posterior probability based on the 
calculated Bayes factors. Scen 4 and Scen 5 and models belonging to the `Catch` scenarios were not included in 
model averaging because those scenarios were proposed aiming only to assess the sensitivity of model outputs.

Results
The reconstruction of annual catches suggested that since the mid-seventeenth century the whaling operation 
had killed between 35,000 to 74,000 SRWs along the east coast of South America, under the scenario of maxi-
mal catches (Table S1). The largest number of whales caught occurred from the mid-18th to mid-nineteenth 
centuries, peaking between 1761 and 1776. The first stage in the whaling activity involved a monopoly of the 
Portuguese crown, resulting in an expansion of the armação (land whaling station) southwards along the Brazil-
ian coast59,60. The Brazilian whalers exploited the breeding stock of SRWs from these coastal whaling stations. 
During the period 1772–1812, American (40% of the total number of identified whaleships), British (49%), 
French (8.6%), and Spanish (2.4%) whalers dominated the exploitation of SRWs at the Brazil Bank18. The catches 
of the nineteenth century were led by the British fleet (50% of total catches), followed by the French (28%) and 
the Portuguese (0.16%). Relatively few whales were taken during the modern whaling period. Until the advent 
of international protection in 1935, 40% of the whales caught were taken by Norway, 26% by Argentina, 17% 
by the UK, and 15% by Chilean whalers. Illegal Soviet catches during the period 1951/52–1971/72 peaked in 
1961/1962 when 1,335 whales were caught off the Patagonia21,71.

Overall, the Bayesian population dynamic model performed here provided the first estimate of pre-exploi-
tation abundances while predicting reasonable dynamics for the SRW from the southwestern Atlantic Ocean 
at the regional level. Through the use of the multi-model inference procedure, eleven models were selected to 
generate the model-averaged trajectory (i.e., the posterior distribution of mean abundances, Ny) (Tables S5 and 
S6, Fig. 2). Table 2 summarises the posterior distributions of the key biological parameters after model averaging. 
All the parameters fall within biologically plausible constraints. The estimated means were generally greater than 
the medians, thus indicating a positive skewness. The median model-averaged estimated analytically derived 
q̂ was 0.36, which means that close to 36% of the SRW population visits the waters of the Península Valdés, the 
main breeding ground, every year.

The model-averaged population trajectory indicated that the pre-exploitation abundance was close to 58,000 
individuals (median K = 58,212; 95% CI = 33,329–100,920 individuals). After the beginning of whaling opera-
tion, the population decreased slightly in abundance followed by a rapid and severe depletion of the SRW 
population in the early 1770s due, primarily, to the sizeable catches taken along the coast of Brazil (Fig. 2). The 
abundance dropped to the lowest abundance levels in the 1830s when close to 2,000 individuals (median = 1,829; 
95% CI = 355–3,969 individuals) were left along the southwestern Atlantic Ocean. The population remained 
at low levels during the nineteenth century, and by the early twentieth century was estimated to be around 

Figure 2.   Model averaged population trajectories (blue lines) and time series of estimated catches (red lines) of 
southern right whale (SRW) Eubalaena australis. The solid blue line represents the median estimated model-
averaged trajectory of the population abundance (Ny), while the shaded areas correspond to the 50% and 95% 
credible intervals. The dashed line represents the median estimated base case trajectory of the abundance. The 
solid red line represents the average number of whaling catches as estimated by the catch parameter (π), while 
the red shaded areas correspond to the 50% and 95% credible intervals. The grey and black dots represent the 
estimated and observed, respectively, absolute abundance in 2010 (confidence and credible intervals can be 
found in Fig. S4).
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5% of the pre-exploitation abundance. A brief recovery period was observed after 1920, followed by a second 
decline in abundance in the 1960s when illegal Soviet whaling operated in the Southern Hemisphere. Since 
no whaling occurred after 1973, the population increased at a growth rate close to Rmax (median = 0.012; 95% 
CI = 0.001–0.034) until the present. The current median population abundance (N2021) is estimated at 4,742 whales 
(95% CI = 3,853–6,013), revealing that the SRW population still remains small relative to its pre-exploitation 
abundance (median depletion P2021 8.7%: 95% CI = 4.2–16.1%; Fig. 2). The projected abundance, however, indi-
cates that the population will continue to grow for the next decade. The projected median population abundance 
in 2030 (N2030) was estimated at 5,299 whales (95% CI = 3,886–7,931).

The data were compared with the median and the 95% credible intervals of the corresponding posterior 
predictive distributions, with all the observed abundance points falling within the 25th and 75th percentiles of 
the predictions (Ay) provided by the model (Fig. 3 and Fig. S4.1–S15).

Figure 4 illustrates the posterior distribution of the model parameters selected for the Base Case and the 
fourteen sensitivity scenarios. All the models implemented converged adequately given the number of unique 
samples derived from the SIR algorithm (> 10,000). Despite the relatively wide posterior distributions, most 
key parameter distributions differed from the prior and post-model-pre-data distributions, suggesting that the 
information content in the likelihood was informative for parameter estimation (Fig. 5 and Fig. S2.1–S15).

In general terms, the posterior probability distributions of the proposed sensitivity scenarios were consist-
ent with the Base Case scenario (Fig. 4). However, when a lognormal prior on population growth was used 
(Scen 1–3), the posterior distribution was updated to higher values (Fig. S2.1–4) and historical abundance was 

Table 2.   Posterior mean, standard deviations and 50% and 95% Bayesian credible intervals (CI) for the key 
biological parameters estimated by the model-averaged assessment of the southern right whale Eubalaena 
australis. PMin refers to the minimum estimated abundance relative to K.

Mean Median 2.5% 25% 75% 97.5%

Rmax 0.014 0.012 0.001 0.006 0.02 0.034

K 60,682 58,212 33,329 48,271 70,580 100,920

PMSY 0.648 0.647 0.506 0.571 0.724 0.793

σ 0.0189 0.0197 0.0091 0.0155 0.0229 0.0253

NMin 1,958 1,829 355 969 2,919 3,969

N2021 4,796 4,742 3,853 4,400 5,143 6,013

N2030 5,466 5,299 3,886 4,698 6,079 7,931

PMin 0.032 0.03 0.008 0.019 0.042 0.067

P2021 0.087 0.082 0.042 0.064 0.103 0.16

P2030 0.1 0.091 0.043 0.069 0.122 0.205

Figure 3.   Trend of the observed (black dots) and estimated (grey dots) accumulated numbers of the southern 
right whale Eubalaena australis and associated 95% confidence interval (black bars) and 95% posterior 
predictive intervals (grey bars). The solid blue line represents the median estimated model-averaged trajectory 
of the population abundance (Ny) multiplied by posterior catchability (q), while the shaded areas correspond to 
the 50% and 95% credible intervals.
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decreased (Fig. S3.1–4). The posteriors for the process error variance (Scen 4–5) were sensitive to their prior 
distribution, and had some effect on the other estimated parameters. For example, increasing the upper bound 
on the process error variance (Scen 4) led to increased uncertainty in Rmax and K and a lower minimum popula-
tion size. Posterior medians for Rmax ,K and q were slightly lower when the struck-and-lost rate factors were not 
included in the analyses (Scen 7) or when the catches were modelled with the low- SRW catch series (Scen 8). 
Overall, apart from scaling the population size, the parameter estimates were relatively insensitive to the `Catch` 
scenarios. Similarly, changing the prior for Nrecent (Scen 10), altering the number of mtDNA haplotypes (Scens 
11–12), or accounting for density dependence/time-varying catchability (Scens 13–14) had little impact on the 
results. However, for Scen 13, the additional observation error to account for time-varying catchability 

(

τ 2
)

 was 
poorly estimated (Fig. S2). The posterior 95% CI for β in Scen 14 overlapped with 0 (Table S5), indicating limited 
evidence in support of density dependent catchability.

Discussion
The SRW was one of the baleen whale species that has experienced long periods of exploitation. Here, we inte-
grated information from multiple sources for a better understanding of the SRW population dynamic from the 
southwestern Atlantic Ocean over a 370-year time frame. The modelling approach was based on a Bayesian 
state-space surplus production model that, for the first time, enabled to estimate the population trajectory and 
its historical carrying capacity. An in-depth reconstruction of whaling catches was essential to generate credible 
population dynamics. Our estimates of the total SRW removals from the study area since the seventeenth century 
are higher than previous estimates, which were limited to shorter time periods or smaller areas than considered 
here. Richards18 reported a total removal of 30,000 whales during the period 1772–1813, this value is close to 
our low catch-series. If this catch series is corrected by the ‘struck and lost’ rate factors, at least 50,000 SRW were 
removed from the southwestern Atlantic Ocean since the beginning of whaling activities.

Figure 4.   Posterior probability distribution of the key biological parameters for the Base Case (blue), sensitivity 
scenarios (grey), and model-averaged (red) assessment of southern right whale (SRW) Eubalaena australis. 
The mean (dotted line in the boxes) and median (solid black lines in boxes) estimates, first and third quartiles 
(boxes), and the 95% CIs (whiskers) are presented. Bayes factors are presented for each scenario at the bottom.



11

Vol.:(0123456789)

Scientific Reports |         (2022) 12:3324  | https://doi.org/10.1038/s41598-022-07370-6

www.nature.com/scientificreports/

Uncertainties in the data and the structure of the model.  Stock assessments of cetacean species are 
subject to different sources of uncertainty that impact the estimation of population trajectories. The Bayesian 
state-space framework implemented here enabled that uncertainty in the estimates of parameters, catch data, 
biological stochasticity, and measurement error to be adequately incorporated78. The selection of plausible prior 
distributions for parameters combined with the multi-model inference provided reliable posterior distributions 
for the parameters. Although the slightly wide posterior credible intervals suggested some degree of uncer-
tainty in the parameters, no estimation problems were diagnosed upon subjection to the analytical criteria. The 
posterior distribution for most of the estimated parameters were smooth and unimodal (Fig. S2). Alternative 
possibilities such as a larger sample size or sampling replicates could substantially improve the capacity of the 
state-space model for monitoring biological populations94,95, but for many observational studies such as those 
performed here, to have replicates of estimates is often impossible. Similarly, in a Bayesian framework, specifying 
informative priors typically stabilizes model fitting and reduces the uncertainty regarding estimated quantities, 
but specification of the latter should rely on a solid foundation such as meta-analyses or independent data.

The model-structure uncertainty—within the context of analyses of cetacean populations—is related mainly 
to uncertainties concerning the stock structure96. In the example of SRW, the biological and historical evidence 
do not currently suggest multiple separate populations calving in the southwestern Atlantic Ocean. Recent evi-
dence from genetic data indicates a connectivity between Brazil and Argentina. Samples from the South Georgia 
(Georgias del Sur) feeding ground were associated with wintering grounds in the South Atlantic, rather than the 
Indo-Pacific and were closer to the Argentinian and Brazilian wintering grounds than to the South-African50. The 
authors also suggested that the Chile-Peru population could have historically been a “stepping stone” between the 
south Atlantic and Indo-Pacific, rather than more closely linked to the southwest Atlantic wintering grounds as 
they had initially hypothesized. Analyses of SRWs satellite-tracked from the north of Península Valdés indicated 
areas of potentially major foraging on the outer continental shelf off southern South America, the South Atlantic 
Basin, the Eastern Scotia Sea (Mar de Escocia), and the northern Weddell Sea (Mar de Weddell)45. All these 
findings were considered during the filtering of whaling records from the multiple historical datasets studied 
for the generation of the time-series of catches impacting on population dynamics.

Whaling catches have been identified as another source of uncertainty that usually has great impact on 
estimates of the current abundance of cetacean populations97. Zerbini et al.80 assessed the recovery of southwest-
ern Atlantic humpback whales (Megaptera novaeangliae) and found that scenarios where pre-modern whaling 
catches and struck-and-lost rates were not included resulted in a lower estimate of pre-exploitation abundance 
and higher estimates of the status parameters, thus underscoring the need to incorporate all available catches 
and loss rates in cetacean assessments. Although certain caveats associated with catch series estimates still 
remain (e.g., the barrel-to-whale conversion factor, local whaling stations for which no catch records exist, the 

Figure 5.   Posterior probability distributions of the key biological parameters for the Base Case (thick grey line) 
and model-averaged (thick black line) assessment of southern right whale (SRW) Eubalaena australis. Post-
model pre-data probability distributions of the key biological parameters for the Base Case are presented in the 
thin grey line.
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patchiness of import records), the large amount of data compiled here about the whaling operation in the South 
Atlantic and information about the ‘struck and lost’ rate47 enable us to minimise the sources of uncertainty in 
the whaling catches.

The uncertainty or gaps in the whaling records may also lead to an imprecise estimate of the pre-exploitation 
baseline because analyses for cetacean stocks conventionally started in the first year for which catches were 
recorded with the assumption being made that the stock was at carrying capacity at that time. The choice of 
baseline year is not a trivial task and may lead to unrealistically low estimates of depletion levels, having consid-
erable management implications for the rebuilding and conservation of these populations98–100. In general, the 
estimates of carrying capacity from analyses in which the projections start fairly recently (e.g., when the model 
projections start after the stock has been subject to unknown previous catches) are imprecise96. Recently, Collins 
et al.101 demonstrated that for eight species of Canadian mammals the use of 1850 rather 1970 as the baseline 
year resulted in a shift of four species from an increase to a decrease in population since 1970. For the SRW, in 
2001, the IWC performed a global assessment to obtain an estimate of the initial population size19 setting the 
pre-exploitation baseline in 1770. This analysis estimated recovery levels at approximately 20–25% in 2009 for 
the Southern Hemisphere populations. In our study, the population was assumed to be at equilibrium (carrying 
capacity) in 1678, when the first estimates of annual catches are available60. Before this year, coastal whaling 
activity was restricted to northern Brazil and its catches were assumed to be negligible within the context of 
the history of whaling. Overall, through the use of long-term corrected whaling records and an accounting for 
certain key uncertainties (e.g. through a state-space framework, sensitivity analyses and model averaging) by 
a Bayesian modelling approach, this study presents a reasonable assessment of the population dynamics of the 
SRW in the southwestern Atlantic Ocean.

Population modelling.  The estimated model-averaged trajectory suggested that the pre-exploitation SRW 
population abundance was between 48,000–70,000 (50% CI) individuals. The most plausible values agreed with 
the results obtained from other populations and basins. Jackson et al.102 estimated a pre-exploitation abundance 
of the New Zealand SRW population at between 28,000–47,000 individuals. For the SRWs off South Africa, the 
initial population size was roughly estimated at 20,000 individuals103, based on a cumulative catch estimate of 
12,000 whales from 1785 to 1805. Within the circumpolar area, the most recent analysis estimated a total of 
95,000–102,000 including both males and females14. Those authors also estimated a pre-exploitation abundance 
totalling 70,000 individuals for the Atlantic and Indian Oceans; which figure is consistent with the estimates 
available for South Africa and the southwestern Atlantic Ocean, though information is lacking with respect to 
other management units. Although the current state of knowledge about the interplay of biotic and abiotic fac-
tors of the Southern Ocean is incomplete, a credible estimate of the baseline state of the system has enabled us to 
have a more comprehensive understanding of the true impact of anthropic activities.

Our model indicated that the population had collapsed by 1830. de Morais et al.67 had reconstructed the 
pre-modern catch data in the tropical southwestern Atlantic Ocean by establishing a relationship between whal-
ing stations’ history and the distribution of the species hunted along the coast. That study suggested that this 
population collapsed within the same decade based on increasingly rare reports of sightings for the nineteenth 
century and the closing of the last armação in the breeding grounds off southern Brazil.

The current observed abundances were accurately estimated by the SRW model (Fig. 3), suggesting a total 
population abundance in 2021 of close to 5,000 individuals throughout the study area. This figure implies a 
recovery rate lower than 10% from the pre-exploitation abundance. Similar rates were estimated for the New 
Zealand region (i.e., 7–12%)102, and circumpolar distribution. Tulloch et al.14 estimated that the SRWs worldwide 
remain at less than 11% of their estimated carrying capacity. The South-African population manifested a total 
abundance of 6,116 animals in 2017, suggesting a recovery of over 25%, although mention was made that this rate 
needed a reconsideration24,104. The SRW recovery level is lower than the humpback whale, which species exhibits 
an estimated current population of 93% of its pre-exploitation size in the southwestern Atlantic Ocean80. This 
recovery can be explained in part by the high growth rate estimated for this population (median Rmax = 0.087).

The slow recovery rate of the SRW may be the consequence of multiple causes in a process that is undoubt-
edly dynamic. Relatively limited removals in the late nineteenth and twentieth centuries from a population at 
an extremely low abundance constituted a major condition contributing to the failure of SRW recovery in the 
southwestern Atlantic Ocean for more than 100 years. Recent SRW-calf die-offs at Península Valdés has been 
identified as a potential threat to future recovery105. The fidelity to migratory destinations has been inferred to 
explain the spatially variable recovery of the SRW27,106 and humpback whale107,108. The apparent loss of cultural 
memory when whales are extirpated that display fidelity to a migratory destination likewise seems to be contrib-
uting to the slow recovery of the SRW28,103. This influence could also be exacerbated if individuals show fidelity 
to suboptimal feeding grounds. In the southwestern Atlantic Ocean, González Carman et al.109, using Ensemble 
Distribution Models, found evidence that the Subtropical Frontal Zone and the Polar Front systems stand as 
prominent potential feeding grounds for SRWs from late spring to early fall within the circumpolar region. 
Those authors hypothesized that the cultural memory of feeding in the relatively stable and predictable high 
productive waters of the Subtropical Frontal Zone might have been lost because of whaling. The location of the 
whaling operations supports this hypothesis since most of the whaling records involving SRWs have occurred 
at mid-latitudes. Moreover, reproductive success has been linked to climate conditions through a negative effect 
on foraging-ground quality110,111; and accordingly, in view of the current global-warming projections, the level 
of recovery of the SRW population from the southwestern Atlantic Ocean would be compromised in overcoming 
years of low recruitment through changes in prey distribution and abundance driven by climate111.

Nevertheless, the differences in movement patterns reported from satellite tracking45 along with the diversity 
of food sources revealed from isotopic signals47,48 have suggested a degree of plasticity in the migratory fidelity of 
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SRWs in the southwestern Atlantic Ocean. This notion is also supported by evidence of recolonization of previ-
ously inhabited migratory destinations33,39–41. Sueyro et al.90, assessing the change in the distribution of SRWs in 
the breeding grounds of Península Valdés, proposed that a threshold in the whale’s density within breeding areas 
triggered a density-dependent response, with the mother-calf pairs remaining in the area and the other groups 
being displaced to new regions. Currently, the underlying process of the observed recovery of the SRW popula-
tion from the southwestern Atlantic Ocean appears to involve a slower increase within the traditional feeding 
ground32 accompanied by a higher probability of recolonizing ancient habitats39,90. These findings, together with 
model estimates for the entire study area, lead us to propose that the SRW population will continue growing for 
many decades, though density-dependent effects on population parameters can be expected.

Limitations and future directions.  Bayesian surplus production models are useful when the available 
data comprise only aggregate catches and population abundance time series112. Although modern catch series 
offer information on sex composition71, most pre-modern whaling data on the SRW are only available on the 
species level or have been reconstructed by converting barrels of landed and exported oil into whale numbers 
(e.g., the data from the Records of the Boards of Customs of UK). Currently, the lack of age- or size-structured 
data for SRW catches from Brazil Bank limits the development of models that enable an assessment of selective 
catching (e.g. mothers with dependent calves) to the population trajectory. Nevertheless, production models are 
widely used for the stock assessment of cetaceans (e.g., 80,102), and experience has often indicated little justifi-
cation for the inclusion of sex-structure in such analyses96. A notable exception occurs when catches have been 
female-biased, in which instance the decline in the population could be underestimated.

The density-dependent logistic model used here assumes that K and Rmax are constant over time. This assump-
tion agrees with the current modelling approach used by the IWC. The time-invariant carrying capacity would 
limit the ability of our model to project the population trajectory of the SRW forward over the long-term if both 
food availability and space to reproduce change over time, thus reducing the environmental carrying capacity. 
Past changes in available calving and foraging habitats are less likely to have affected the estimated trajectory 
since the population remained at an extremely low level of abundance over the past 200 years. A recent study 
coupled a predator–prey model to a global climate change model to project the SRW population in the Atlantic 
and Pacific basins forward to 2100. This study suggested that, despite the initial recovery from historical whal-
ing, the circumpolar populations will show substantial reductions in total numbers by the end of this century 
under the climate change scenery113.

Even though the prior for the maximum rate of population increase was set at values close to the highest rates 
of annual increase (R) reported for the population22,30,31,87 (Scen 1), our model updated the distribution of the 
parameter, favouring values below 6%. The trend of combined direct-surveys data and catch-series data does 
not support a higher maximum rate of increase, as suggested by the stage-structured model based on photo-id 
data31. Similar results were observed for the New Zealand SRW population, where the density-dependent model 
used favoured population growth rates below 6% since higher rates were associated with a low bottleneck in 
abundance102.

Changes in the catchability in the surveyed area could explain the low maximum rate of increase estimated. 
As mentioned previously, the observed redistribution of the whales in the Península Valdés area32,39,90 suggests 
that the area is getting close to its carrying capacity in the survey area as optimal habitat while solitary individu-
als and breeding groups are forced to use deeper waters or to move out of the region, in particular to Golfo San 
Matías39,90. Although `Index` scenarios exploring time-varying and/or density-dependent catchability were not 
able to estimate high rates of increase, models that assume a negative trend in catchability might favour higher 
values. Unfortunately, information about temporal variation in the proportion of the population inside the survey 
area is not available to better estimate a trend in catchability. If abundance in the traditional breeding grounds 
remains stable over time and the population continues to increase across its distribution, future studies should 
prioritize the generation of information to estimate the trend in catchability.

On the other hand, different age- and sex-structured population dynamics models have been explored to 
identify the existence and cause of delayed density-dependent feedbacks in seven species of baleen whales (sub-
order Mysticeti)114. A model with a growth rate that is not fixed and is density-regulated by intraspecific natural 
selection was the most plausible for explaining the observed time lag. The selection-delayed model estimated 
higher rates of current growth for all species and a higher initial abundance for the SRW. These conclusions have 
implications on the conservation status of the species and should be explored in future assessments of the SRW 
population from the southwestern Atlantic Ocean. At the same time, the present analysis did not account for 
other possible low anthropic impacts—e.g., habitat degradation, ship strikes, entanglement, kelp seagull harass-
ment, impact of man-made debris—that would probably lead to an overestimation of the current conservation 
status of the population. Continued annual monitoring of the population will be essential to assess progress 
toward recovery and will, therefore, allow for validation (or not) of the results presented here on a scale that 
fitted to correspond to the analysis of the species past disruption.

Conclusion.  The SRW is recovering from severe depletion, but is still far from its historical abundance. In the 
present work, we assessed for the first time the population dynamics of the SRW population from the southwest-
ern Atlantic Ocean employing a backward reconstruction of the population trajectory. The density-regulated 
model implemented produced plausible estimates of the SRW population trajectory and life-history parameters. 
This satisfactory approximation of the trajectory was made possible by integrating our long-term whale abun-
dance database with the reconstructed series of catch data. Our results provide insights into the severity of the 
whaling operations that occurred in the South Seas and the way in which the population responded at low densi-
ties, thus contributing to an understanding of the observed differences in population trends over the worldwide 



14

Vol:.(1234567890)

Scientific Reports |         (2022) 12:3324  | https://doi.org/10.1038/s41598-022-07370-6

www.nature.com/scientificreports/

distribution of the species. We also contributed to a filling-in of the gaps in the exploitation history, mainly 
within the pre-modern period. Overall, the results constitute a baseline for future studies aimed at account-
ing for alternative modelling structures and data (e.g., mark-recapture data, catchability trend), and additional 
anthropically caused cetacean mortalities.

Data availability
All the data generated or analysed during this study are included in this published article (and its Supplementary 
Information files). The Model runs, data and R code used in all population modelling can be found on GitHub 
(https://​github.​com/​SW-​atlan​tic-​right-​whale-​2021-​asses​sment/​Right​whale​Runs). An R package developed to 
implement the SIR model is also available on GitHub (R Package: https://​github.​com/​SW-​atlan​tic-​right-​whale-​
2021-​asses​sment/​State​Space​SIR).
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