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1 Introduction

The study of strings propagating in AdS3 has generated many interesting insights, ranging

from string theory itself, integrability and AdS3 quantum gravity [1–9] to Liouville theory

and condensed-matter physics [10–13]. When the background is purely of the NS-NS

type, the worldsheet theory is given by the SL(2,R)-WZNW model, a theory that has

been intensively studied since Maldacena’s conjecture [14, 15] becoming, so far, one of the

few known theoretical schemes in which the AdS/CFT correspondence may be explored

beyond the supergravity approximation. Furthermore, computations on the AdS3 side can

be compared with the two-dimensional CFT description, where powerful techniques are

also available, thus giving, in principle, the possibility of constructing dual pairs where

both sides can be exactly solved.

Over the last couple of years there has been a renewed interest in this type of AdS/CFT

scenario. These efforts are mainly concentrated on the so-called k = 1 sector, i.e. the case

with minimal AdS flux. The propagation of strings in space-times of the form AdS3×S3×
M4 was considered, including, for example, M4 = T 4, K3 and S3 × S1, and it was argued

that the corresponding field theory duals were given by deformations of symmetric orbifold

CFT’s [16–19]. Part of these considerations remain valid for the k > 1 case, albeit now

with symmetric orbifold theories containing additional Liouville factors [20].

Unlike the case of a WZNW model having a compact underlying symmetry, when the

target space is the universal cover of the SL(2,R) group manifold, the spectrum standardly

constructed upon irreducible representations of the zero-mode algebra must be enhanced

to avoid a coupling independent restriction on the masses of physical states and to give
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account of long string configurations, i.e. finite energy states classically corresponding to

strings stretched close to the boundary of AdS3 [21–23].

The key ingredient for generating the full physical spectrum is the spectral flow [24–

27], a family of automorphisms of the current algebra, labelled by an integer number ω,

the so-called spectral flow number or charge, which, in some cases, can be recognized as

the amount of winding of a long string along the angular direction of AdS3. For a rational

WZNW model, spectral flow trivializes, as it relates standard representations, mapping

primary states of one into the current algebra descendants of another. In the SL(2,R)-

WZNW model, a Lorentzian non-rational CFT, modules with different spectral flow charges

turn out to be generically non-equivalent, spectral flow automorphisms thus defining new

representations. Operators with non-trivial spectral flow describing the winding sector of

the theory were shown to play an important role in the models described above.

Correlators involving only spectrally unflowed vertex operators are obtained from the

correlation functions in the H+
3 -WZNW model [28, 29], the Euclidean counterpart of the

SL(2,R)-WZNW model, by analytic continuation. However, more care must be taken

when dealing with amplitudes involving spectral flowed insertions. There are two known

strategies for computing these correlation functions, both exploiting the singular properties

of the so-called spectral flow operator.

Regarding the first one, the computation is performed in the original space-time pic-

ture. Roughly speaking, every vertex operator associated with a state carrying a single

unit of spectral flow is expressed as an unflowed vertex convoluted with a spectral flow op-

erator, the corresponding integral being understood to hold while inside a correlator. This

integral definition was introduced and subsequently used for determining the regular term

of the propagator of two ω = 1 states and the three-point function involving two spectrally

unflowed states and one vertex with unit spectral flow in [26]. The main restraint of the

procedure comes from the fact that the referred integral definition of a spectral flowed ver-

tex exists, so far, only for operators with a single unit of spectral flow. The generalization

for an arbitrary charge of spectral flow is still lacking.

The second strategy is the so-called FZZ procedure. It was firstly developed in [30]

based on parafermionic operators and the properties of their correlation functions. Accord-

ing to it, starting with a regular unflowed correlator, a spectral flow operator is inserted

for each unit of spectral flow carried by each vertex. After Mellin-transforming the am-

plitude thus obtained to the basis in which the Cartan generator of SL(2,R) is diagonal,

also called the m-basis for short, the dependence on the “unphysical” insertion points is

removed and the worldsheet dependence, properly adjusted. The computation concludes

after transforming back to space-time picture or x-basis. No constraint on the value of ω

is imposed.

Transforming correlation functions in the m-basis back to the space-time picture is

not a simple task. In some cases in which the affine symmetry dictates the functional

dependence of a correlator on the space-time coordinates, as for the regular term of the

propagator or some three-point functions, no inverse Mellin transformation is needed and

the FZZ recipe can be easily carried out. However, knowing the dependence of a cor-

relator on the space-time coordinates may not be enough for the FZZ procedure to be

fully completed.
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In this paper, we compute the contact term of the propagator in a general setting.

Such term is expected to exist in a spectral flowed frame as it already exists for unflowed

vertex operators, its occurrence being necessary in order to properly normalize spectral

flowed states in the x-basis. Our strategy for determining this singular term relies on a

generalization of the reflection symmetry in sectors with ω 6= 0, since a single reflection in

a two-point function should switch the corresponding regular and contact terms.

Reflection in the Euclidean model is a Weyl-type symmetry expressing the unitary

equivalence of certain irreducible representations of SL(2,C) and the affine modules con-

structed upon them. In the Lorentzian case, in the m-basis, this interpretation is retained

for the family of continuous series, since the generalized reflection symmetry intertwines

between the corresponding affine modules and their spectrally flowed images. In the space-

time picture as well as for discrete representations in m-basis and their related modules,

reflection is recognized as a Z2 symmetry relating microscopic states in the sense of [29].

The final expression we get for the two-point function deserves a couple of comments.

Of course, it reduces to the known propagator in the unflowed limit, i.e. ω → 0. On the

other hand, its dependence on the worldsheet coordinates consistently shows that, although

they retain some conformal symmetries, the vertex operators in the space-time picture are

not even Virasoro quasi-primary fields. Finally, the form of the overall constant in the

propagator could be relevant for describing transport properties of conformal field theories

associated by duality with string physics in AdS3, a subject that has recently aroused inter-

est [31, 32]. Indeed, this constant admits a factorized form that is well suited for a proper

normalization of spectral flowed vertex operators in the space-time scenario. This normal-

ization become singular for some configurations suggesting that it could have an impact

while studying singularities of the propagator and their interpretation in dual models.

The paper is organized as follows. In sections 2 and 3 we review some generalities of

the H+
3 -WZNW model and its Lorentzian counterpart. We stress that by the latter we

understand the WZNW model whose target space is the universal cover of the SL(2,R)

group manifold. After introducing the spectra of both theories, we discuss the reflection

symmetry in the Euclidean model and its emergence in the SL(2,R)-WZNW model case,

including the winding sector. In section 4, we introduce the vertex operators associated

with spectrally flowed states and we review the computation of the regular term of the

propagator in the space-time picture as done in [26]. We also clarify some aspects regarding

the definition of spectral flowed vertex operators in the x-basis. In section 5, we generalize

the expression of the reflection symmetry for a sector with ω 6= 0, and use it to explicitly

compute the contact term of the propagator in section 6. In section 7, we discuss the impact

of the reflection symmetry on the integral definition of a vertex with a single spectral flow

charge. Finally, in section 8, we present our conclusions.

2 The H+
3 -WZNW model and the reflection symmetry

Although the WZNW model describing string propagation in AdS3 is the one based on the

universal covering group of SL(2,R), some aspects of the theory can be read off more easily

from its Euclidean counterpart, namely, the H+
3 -WZNW model. In this section, we review
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some basics of the H+
3 -WZNW model, as many of the formulas obtained in this context

remain valid for the unflowed sector of the SL(2,R)-WZNW model once the dependence

on the space-time momentum is analytically continued. Most of these formulas will be

properly generalized for sectors with non trivial spectral flow number in later sections. We

shall follow [28] closely.

The spectrum VH+
3

of the H+
3 -WZNW model carries a representation of two commuting

isomorphic sl(2,C) current algebras generated by the modes Jan and J̄an , with a = +, 0,−
and n ∈ Z. The holomorphic modes satisfy[

J0
n, J

0
m

]
= −1

2
knδn+m,0,[

J0
n, J

±
m

]
= ±J±n+m,[

J−n , J
+
m

]
= 2J0

n+m + knδn+m,0,

where k denotes the level of the current algebra. Identical relations hold for the antiholo-

morphic generators as well.

As usual, there are two commuting Virasoro algebras in the universal enveloping al-

gebra of the current algebra with generators Ln and L̄n, with n ∈ Z, defined according to

the Sugawara construction, namely,

Ln =
1

2(k − 2)

∑
k∈Z

: J+
−kJ

−
n+k + J−−kJ

+
n+k − 2J0

−kJ
0
n+k :,

where the normal ordering is defined as

: JanJ
b
m :=


JanJ

b
m if n < m,

1
2

(
JanJ

b
n + JbnJ

a
n

)
if n = m,

JbmJ
a
n if n > m,

and correspondingly for the antiholomorphic sector. The central charge is given by

c =
3k

k − 2
.

The space VH+
3

decomposes into irreducible representations of the current algebra as

VH+
3

=

∫ ⊕
C+
djRj , (2.1)

where C+ = −1/2 + iR+. The module Rj is constructed standardly. As a first step, one

considers Pj = Pj⊗Pj , where Pj denotes the unitary principal series of the sl(2,C) algebra

generated by the zero-modes. As pointed out in [28], these principal series can be realized

on the Schwartz space of functions on C by means of the differential operators

D+
j = x2∂x − 2jx, D0

j = x∂x − j, D−j = ∂x,

together with their complex conjugates. Pj is then extended to a representation of the

full current algebra by requiring JanPj = J̄anPj = 0 for n > 0, and freely generating Rj by

acting with Jan and J̄an for n < 0.
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Representations Pj and P−1−j , and thus Pj and P−1−j , are isomorphic, and so are

their affine extensions Rj and R−1−j . The form of the unitary intertwining operator will

be given explicitly below. It is useful to extend VH+
3

by setting C = −1/2 + iR in eq. (2.1)

instead of C+, and then quotienting the model by the aforementioned equivalence.

Every state |j, x〉 ∈ VH+
3

is associated with a vertex Φj(x|z), x, z ∈ C, by virtue of the

state-operator correspondence, i.e.

|j, x〉 = lim
z→0

Φj(x|z)|0〉, 〈j, x| = lim
z→∞

|z|4∆〈0|Φ−1−j(x|z). (2.2)

The vertex operators satisfy the following OPE with the currents,

Ja(z)Φj(x|w) ∼ −
Da
jΦj(x|w)

z − w
,

and similarly for the antiholomorphic currents. The operator Φj(x|z) is not only an affine

primary but also a primary for the Sugawara-Virasoro algebra, its conformal weight being

∆0 = −b2j(1 + j), b2 =
1

k − 2
.

Semiclassically, Φj(x|z) can be identified with the wave function

Ψj(x|z) =
1 + 2j

π

[
|γ(z)− x|2 eφ(z) + e−φ(z)

]2j
,

where (φ, γ, γ̄) are the Poincaré coordinates on H+
3 . The quantum operator lacks such

a simple expression because of normal ordering. Nevertheless, in the large-φ regime the

interaction vanishes and Φj(x|z) acquires the following form,

Φj(x|z) ∼: e−2(1+j)φ(z) : δ (γ(z)− x) +Bj : e2jφ(z) : |γ(z)− x|4j , (2.3)

with

Bj = −ν(b)1+2j 1 + 2j

π

Γ(1 + b2(1 + 2j))

Γ(1− b2(1 + 2j))
, ν(b) = π

Γ(1− b2)

Γ(1 + b2)
.

As proved in [28], the asymptotic expression given by eq. (2.3) fixes a normalization

of Φj(x|z) consistent with the following two-point function:

〈Φj1(x1|z1)Φj2(x2|z2)〉 =
[
δ
(
j+
12

)
δ (x12) +Bj1δ (j12) |x12|4j1

]
|z12|−4∆01 , (2.4)

where x12 = x1 − x2, z12 = z1 − z2, j12 = j1 − j2, j+
12 = 1 + j1 + j2, and ∆01 stands for the

conformal weight associated with j1. The first term of this correlator is a contact term,

while the one smeared over the boundary of H+
3 is the so-called bulk or regular term.

As we have already pointed out, representations Pj and P−1−j , and thus Rj and

R−1−j , are equivalent. The associated reflection symmetry is explicitly given by

Φj(x|z) = Rj (IjΦ−1−j) (x|z), (2.5)

where the reflection amplitude is

Rj =
π

1 + 2j
Bj = ν(b)1+2j γ(1 + b2(1 + 2j))

b2(1 + 2j)
, (2.6)

– 5 –
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and the intertwining operator Ij is defined by

(IjΦ−1−j) (x|z) =
1 + 2j

π

∫
C
d2x′

∣∣x− x′∣∣4j Φ−1−j(x
′|z). (2.7)

The overall factor in eq. (2.7) was chosen so that Ij ◦ I−1−j =Id, implying, by virtue

of eq. (2.2), its unitarity for j ∈ −1/2 + iR. Notice that a single reflection in the two-

point function swaps the contact and the bulk terms, leaving the propagator unchanged,

as expected.

Following [28], states |j, x〉 ∈ VH+
3

and their duals will be referred to as “macroscopic

states”. They are understood as distributions on dense subspaces of VH+
3

and are delta-

function normalizable, as it can be read from eq. (2.4). Analytic continuations in j of these

states deserve the name of “microscopic states”, and their consideration is crucial for the

study of the string in AdS3. Moreover, in order to give account of long string configurations

in AdS3, we shall need to relax the strong constraint and consider vertex operators built

on principal series with possibly different holomorphic and antiholomorphic spins. We will

refer to them as microscopic states as well.

3 The SL(2,R)-WZNW model and spectral flow

The standard spectrum of the SL(2,R)-WZNW model is obtained after imposing the Vi-

rasoro constraints on the affine extensions of Cjα = Cjα ⊗Cjα and D±j = D±j ⊗D
±
j , where

Cjα, α ∈ [0, 1), j ∈ C, denotes the principal continuous representations and D±j , j < −1/2,

are the principal discrete series of sl(2,R) generated by the zero-modes Ja0 and J̄a0 , respec-

tively for the left and the right sectors. It is known from harmonic analysis that these

left-right symmetric combinations of unitary irreducible representations form a complete

basis in L2(AdS3).

This space of states, if thought of as the complete spectrum, gives rise to two problems.

On the one hand, unitarity imposes a seemingly arbitrary upper bound on the mass of string

states in AdS3, so that the internal energy of the string could not be too high. On the

other hand, it gives no account of long string configurations, known to be present in the

theory from both the classical and semiclassical approaches.

Both puzzles were addressed in [24] (see also [33]), where the spectrum was proposed to

be enhanced by the so-called spectral flow. Spectral flow automorphisms are parametrized

by an integer number ω, known as the spectral flow charge, classically related to the

number of times a long string winds around the AdS3 boundary. Given such number, the

corresponding map is defined by

J3
n → J3

n −
k

2
ωδn,0, (3.1)

J±n → J±n±ω, (3.2)

for n ∈ Z, and similarly for the antiholomorphic currents. This current algebra isomorphism

turns to be also a Virasoro-Sugawara automorphism with

Ln → Ln + ωJ3
n −

k

4
ω2δn,0, (3.3)

for n ∈ Z, and correspondingly for the L̄n.

– 6 –
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Unlike rational models, which have underlying compact group symmetries, the spectral

flow automorphisms generally give rise to non-equivalent representations when acting on

a current module. An exception is given by the case of the spectral flow image of a

representation induced by a lowest-weight discrete series with spin j, which is isomorphic

to one built upon a highest-weight discrete series with a “reflected” spin −k/2− j and an

additional unit of flow. This module isomorphism, referred to as the series identification,

restricts the discrete representations allowed in the spectrum to be either those induced

by the lowest or by the highest-weight series, while constraining the spin to lie in the

real interval1

−k − 1

2
< j < −1

2
.

It was conjectured in [24] that the full spectrum of the SL(2,R)-WZNW consists of the

standard spectrum as well as their spectral flow images, running over all possible values of

ω. Explicitly, the spectrum of the model VSL(2,R) decomposes as

VSL(2,R) =
⊕
ω∈Z

[ ∫ − 1
2

− k−1
2

djDωj +

∫
C
dj

∫ 1

0
dα Cωjα

]
,

where Dωj and Cωjα are the spectral flow images of D+
j and Cjα, respectively.

A suitable realization of VSL(2,R) is obtained by means of vertex operators in the so-

called m-basis, where the label m is introduced in order to keep track of the eigenvalue

of J3
0 in the unflowed frame. This basis is the best suited for a Wick rotation from the

H+
3 -WZNW model as well as to further include a spectral flow charge while computing

correlation functions. We shall denote the affine primary fields realizing the unflowed

spectrum by Φj(m|z) and their images under a spectral flow automorphism by Φω
j (m|z).

The OPE of these fields with the currents and their conformal weights are given by

J3(z)Φω
j (m|w) ∼ m+ kω/2

z − w
Φω
j (m|w),

J±(z)Φω
j (m|w) ∼ ∓j +m

(z − w)1±ωΦω
j (m± 1|w),

∆ = ∆0 − ωm−
k

4
ω2,

and analogously for the antiholomorphic counterparts. Let us stress that spectral flowed

primaries Φω
j (m|z) with non-trivial ω are not affine primaries. However, after the Sugawara

construction in the spectral flowed frame, it can be proved that they are indeed conformal

primary fields.

Unflowed vertex operators in the Lorentzian model are related to states in the H+
3 -

WZNW model through the following Mellin-like transform,

Φj(m|z) =

∫
d2x

∣∣xj+m∣∣2 Φ−1−j(x|z), (3.4)

1Standard L2 normalization on AdS3 gives rise to the upper bound (see [24]). The lower bound arises

from spectral flow considerations.
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where the integrated operator corresponds either to a macroscopic state if Φj(m|z) lies

in a continuous series or to a microscopic state if Φj(m|z) is associated with a state in a

discrete series. Notice that (3.4) has a meaning as long as m− m̄ ∈ Z, a fact that we shall

always assume.

After applying this formula to (2.4) we get the following expression for the two-point

function involving only unflowed states,

〈Φj1(m1|z1)Φj2(m2|z2)〉 =
[
δ
(
j+
12

)
+ Y −1−j1

m1
δ (j12)

]
δ2(m1 +m2) |z12|−4∆01 , (3.5)

where

Y j
m =

πBj
γ(−2j)

γ(−j −m)

γ(1 + j −m)
, γ(x) =

Γ(x)

Γ(1− x̄)
,

and

δ2(m) =

∫
C
d2x

∣∣xm−1
∣∣2 = 4π2δ(m+ m̄)δm,m̄.

In order to obtain eq. (3.5) we have repeatedly used the following complex extension of

Euler integral: ∫
C
d2x

∣∣∣xa−1(1− x)b−1
∣∣∣2 = π

γ(a)γ(b)

γ(a+ b)
, (3.6)

and the identity

γ(x)γ(1− x̄) = 1.

The reflection symmetry also has a counterpart in the Lorentzian model. Indeed,

eq. (3.4) when applied to (2.5)–(2.7) gives

Φj(m|z) = Y −1−j
m Φ−1−j(m|z). (3.7)

For j ∈ C, this formula defines the intertwining between Cjα and C−1−j,α. For a real value

of j, this expression lacks this interpretation and eq. (3.7) is just a functional relation

between the analytic continuations of vertex operators, i.e. microscopic states.

Correlation functions in the SL(2,R)-WZNW model can violate spectral flow number

conservation according to certain selection rules (see [26] for more details), their compu-

tation being more involved than those with trivial total spectral flow charge. However,

these selection rules state that the two-point function must necessarily preserve the total

spectral flow charge. Since different assignments of spectral flow adding up to the same

amount only affect the overall worldsheet dependence of correlators, it follows that〈
Φω1
j1

(m1|z1)Φω2
j2

(m2|z2)
〉

= δω1+ω2,0δ
2(m1+m2)

[
δ
(
j+
12

)
+ Y −1−j1

m1
δ (j12)

] ∣∣∣z−2∆1
12

∣∣∣2 . (3.8)

Importantly, the reflection symmetry extends to the spectral flowed sector as

Φω
j (m|z) = Y −1−j

m Φω
−1−j(m|z). (3.9)

We will make extensive use of this property below.
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4 Winding modes in the space-time picture

As we have already pointed out, the m-basis is convenient for introducing spectral flow

charges. However, the space-time picture is the best suited for interpreting any result in

the context of the AdS/CFT conjecture since the x-basis vertex operators are ingredients

for the string theory operators describing states created by sources in the boundary of the

target space. Indeed, if Θ(z) is a spinless worldsheet vertex corresponding to the internal

CFT, the operator

Vj(x) ∼
∫
C
d2zΦj(x|z)Θ(z)

can be realized (as long as the scaling dimension of the full vertex equals one) as describing a

string state created by a point-like source located at x on the boundary of AdS3. By means

of the AdS/CFT correspondence, it can be identified with a CFT operator inserted at the

same point. Scattering amplitudes involving operators in the space-time representation

and integrated over the string worldsheet acquire a similar interpretation as correlation

functions on the dual two-dimensional CFT.

For unflowed primaries, the definition of the coordinate basis vertex operators comes

from the Euclidean model as microscopic states, i.e. through analytic continuation. The

corresponding correlators follow analogously from those of the H+
3 -WZNW model. Now,

when dealing with spectral flowed primary fields the situation is more complicated since

these operators generally lie in representations with energy unbounded from below. A

solution for this issue was proposed in [26]. An arbitrary lowest-energy state can be seen

from a spectral flowed frame with ω > 0 as the lowest-weight state of a certain discrete

representation of the global algebra generated by the zero-modes with a spin J being equal

to −m − kω/2. Similarly, if the flow number ω is negative, the associated spectral flow

automorphism maps the same state into the highest-weight state of a discrete representation

with J = m + kω/2. The algebra generated by the Ja0 is identified with the space-time

isometry algebra acting on the background and the global sl(2,C) symmetry algebra of the

CFT at the boundary. Therefore, vertex operators in the x-basis having flowed primaries

and their global descendants as moments were proposed as those being relevant for physical

applications.

Note that the eigenvalues of the Cartan generators do not necessarily agree and, there-

fore, it will also be the case for the global right and left-moving spins, namely, spectral

flowed vertex in the x-basis are no longer expected to be spinless operators, their space-

time planar spin being given by the difference between J and J̄ . This number has to be

an integer in order for the corresponding correlation functions to be single-valued. On the

other hand, since the lowest- and highest-weight states both contribute to the same oper-

ator, a flowed vertex in the space-time picture is not labelled by the spectral flow number

but, strictly speaking, by its absolute value. We shall denote the flowed vertex operators

as Φjω
J (x|z), where ω is now the (positive) amount of spectral flow and the superscript j

was introduced in order to remind the spin of the unflowed state this vertex is built from.

These operators should be understood as microscopic states, as for the Euclidean theory,

that are not Virasoro primaries and thus not affine primary fields either, although they

– 9 –
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are quasi-primary affine vertices. We shall argue later about some conformal symmetries

they retain.

The transformation between the space-time picture and the m-basis is carried out in

analogy with (3.4), namely,

Φjω
J (M |z) =

∫
C
d2x

∣∣xJ+M
∣∣2 Φ−1−j,ω

−1−J (x|z), (4.1)

where M is the J3
0 eigenvalue. By means of this map, we have

Φjω
J (±J |z) ∝ Φ∓ωj (±J ± kω/2|z). (4.2)

As stressed in [26], by virtue of (4.1) and (4.2), a given x-basis vertex receives contribu-

tions from states in both lowest- and highest-weight modules. Unlike for the H+
3 -WZNW

model, in the Lorentzian theory it is not possible to univocally associate a single irreducible

representation of the current algebra to a vertex operator defined in the space-time picture.

If the normalization of Φjω
J (x|z) is defined so that the relation in (4.2) is actually

an identity, this can then be used for determining the regular term of the propagator in

the x-basis. The dependence of the amplitude on the boundary coordinates is fixed once

invariance under the global sl(2,C) symmetry is imposed, so that〈
Φj1ω1

J1
(x1|z1)Φj2ω2

J2
(x2|z2)

〉
∝ δ2(J12)

∣∣∣x2J1
12

∣∣∣2 ,
for J1 ∼ J2. Transforming this expression by means of (4.1) we obtain〈

Φj1ω1

J1
(M1|z1)Φj2ω2

J2
(M2|z2)

〉
∝ πδ2(J12)δ2(M1 +M2)

γ(1 + J1 −M1)γ(−1− 2J1)

γ(−J1 −M1)
,

where the proportionality constant depends on all the parameters, with the exception of

the spin projections. This overall factor can thus be computed by setting M1 = −J1 and

M2 = J2, after using (4.2), together with (3.8). We obtain〈
Φj1ω1

J1
(x1|z1)Φj2ω2

J2
(x2|z2)

〉
= −|1 + 2J1|2

π2
δω1ω2δ

2(J12)
[
δ
(
j+
12

)
+ Y j1ω1

J1
δ (j12)

] ∣∣∣x2J1
12 z

−2∆1
12

∣∣∣2 , (4.3)

where

Y jω
J =

πBj
γ(−2j)

γω(−1− j − J)

γω(j − J)
, γω(x) = γ(x+ kω/2),

and

∆ = ∆0 − ω − ωJ +
k

4
ω2.

In the unflowed limit, namely, for ω1 = 0 and J1, J̄1 → j1, this expression reduces to the

regular term of (2.4).

Notice that a possible contact term in the two-point function of operators in the spec-

tral flowed sector cannot be determined using this type of arguments. Indeed, such a term

should only be relevant for J1 ∼ −1 − J2, which would prevent us from setting both spin

projections to extremal weights while attempting to use eq. (4.2) as before.
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5 Reflection symmetry in the winding sector

A natural way to look for the contact term of the two-point function is by making use

of the reflection symmetry, since, as we have already mentioned, a reflection operated in

one vertex in the propagator would swap its contact and its regular terms. In this section

we describe how such an operation can be defined for vertex operators with non-trivial

spectral flow and in the space-time picture.

Eq. (3.9) constitutes the naive extension of the reflection symmetry to spectral flowed

sectors in the m-basis. We can read the effect of this symmetry in the x-basis by using,

again, eq. (4.2). By virtue of this equation, it follows from (3.9) that

Φjω
J (±J |z) = Y −1−j,ω

−1−J Φ−1−j,ω
J (±J |z). (5.1)

The states appearing on the left- and right-hand side in this expression and their global

descendants contribute to Φjω
J (x|z) and Φ−1−j,ω

J (x|z), respectively. Moreover, eq. (5.1)

remains valid for any weight, as can be easily seen simply by acting with rising and lowering

operators on both sides. Thus, by shifting to the x-basis we can write2

Φjω
J (x|z) = Y jω

J Φ−1−j,ω
J (x|z). (5.2)

Note, however, that this Z2-symmetry does not constitute a “genuine” reflection symmetry

in space-time. In particular, it does not generate any contact term for the propagator when

acting on (4.3), which is actually left invariant. In other words, eq. (5.2) is merely a remnant

of the reflection symmetry in the unflowed frame.

As opposed to (5.2), a well-suited reflection should reduce to an integro-differential

expression reducing to (2.7) upon setting ω = 0. In the very same way that the in-

tertwining operator adjusts the asymptotic behavior of Φ−1−j(x|z) to that of Φj(x|z) in

the H+
3 -WZNW model, the symmetry we seek should properly change the dependence of

Φ−1−j,ω
−1−J (x|z) on the worldsheet coordinates to that of Φjω

J (x|z) as well. As for the Eu-

clidean case, we furthermore expect an integration over the worldsheet with a power-law

kernel, namely, an identity of the form

Φjω
J (x|z) = RjωJ

(
IjωJ Φjω

−1−J

)
(x|z), (5.3)

with(
IjωJ Φjω

−1−J

)
(x|z) =

1

π2
|1 + 2J ||1 + α|

∫
C
d2x′d2z′

∣∣∣(x− x′)2J (z − z′)α
∣∣∣2 Φ−1−j,ω

−1−J (x′|z′),

(5.4)

where α could depend, in principle, on j, J , and ω. As already stated for the unflowed

reflection formula for j /∈ −1/2 + iR+ below eq. (3.7), its generalization for the spectrally

flowed case must be seen as a functional relation between microscopic vertex operators.

Formulas (5.3)–(5.4) do not necessarily imply any equivalence between irreducible repre-

sentations for the SL(2,R)-WZNW model current algebra.

2This relation will be checked explicitly for operators with unit winding in section 7.
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In order to explicitly determine the quantities α and RjωJ appearing in (5.3) and (5.4),

let us apply these to both vertex operators in a two-point function. More precisely, we

ask for〈
Φj1ω1

J1
(x1|z1)Φj2ω2

J2
(x2|z2)

〉
= Bj1ω1

J1
Bj2ω2

J2

∫
C
d2x′1d

2x′2d
2z′1d

2z′2

∣∣∣(x1 − x′1
)2J1 (z1 − z′1)α1 (5.5)

×
(
x2 − x′2

)2J2 (z2 − z′2)α2

∣∣∣2 〈Φ−1−j1,ω1

−1−J1 (x′1|z′1)Φ−1−j2,ω2

−1−J2 (x′2|z′2)
〉

to hold, where, in analogy with (2.6), we have introduced

Bjω
J =

1

π2
|1 + 2J ||1 + α|RjωJ . (5.6)

Under the assumption that J = J1 ∼ J2, the correlators on both sides of this expression

take the form in eq. (4.3). We thus get[
δ
(
j+
12

)
+ Y j1ω

J δ (j12)
] ∣∣∣x2J

12 z
−2∆
12

∣∣∣2
= Bj1ω

J Bj2ω
J

∫
C
d2x′1d

2x′2d
2z′1d

2z′2

∣∣∣(x1 − x′1
)2J

(z1 − z′1)α1
(
x2 − x′2

)2J
(z2 − z′2)α2

∣∣∣2
×
[
δ
(
j+
12

)
+ Y −1−j1,ω

−1−J δ (j12)
] ∣∣∣x′−2−2J

12 z
′−2∆−2ω(1+2J)
12

∣∣∣2 , (5.7)

where ω = ω1 = ω2. If, in addition, we set j = j1 ∼ j2, it follows that

Y jω
J

∣∣∣x2J
12 z
−2∆
12

∣∣∣2 =
(
Bjω
J

)2
Y −1−j,ω
−1−J

∫
C
d2x′1d

2x′2d
2z′1d

2z′2

∣∣∣(x1 − x′1
)2J

(z1 − z′1)α
∣∣∣2

×
∣∣∣(x2 − x′2

)2J
(z2 − z′2)α

∣∣∣2 ∣∣∣x′−2−2J
12 z

′−2∆−2ω(1+2J)
12

∣∣∣2 .
By using eq. (3.6) in order to compute all integrals above, together with the following

identities

Y jω
J Y −1−j,ω

J = 1, Y jω
J Y jω

−1−J =

[
πBj

γ(−2j)

]2 γω(−1− j − J)γω(−j + J)

γω(1 + j + J)γω(j − J)

we obtain

α = −1 + ω(1 + 2J),

and

Bjω
J =

iBj |1 + 2J |
πγ(−2j)γ(ω(1 + 2J))

√
γ(2∆ + 2ω(1 + 2J))γω(−1− j − J)γω(−j + J)

γ(2∆)γω(1 + j + J)γω(j − J)
, (5.8)

so that

RjωJ =
iπBj
γ(−2j)

γ(1− ω(1 + 2J))

ω|1 + 2J |

√
γ(2∆ + 2ω(1 + 2J))γω(−1− j − J)γω(−j + J)

γ(2∆)γω(1 + j + J)γω(j − J)
. (5.9)
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When ω = 0 it follows that α = −1, trivializing the worldsheet integration in (5.4), as

expected. Furthermore, by taking J, J̄ → j we get

Bjω
J →

Bj
Vconf

,

the conformal volume in this expression cancelling the one coming from the computation

of residues in the worldsheet, or, equivalently,

RjωJ → Rj .

We thus find a complete agreement of (5.4) with (2.5)–(2.7) in the unflowed limit.

Setting j = j1 = j2 in (5.7) allowed us to compute both α and Bjω
J . However, we

still need to check that these expressions are consistent with the terms proportional to

δ(j+
12) in (5.7). Since α does not depend on j, the worldsheet and space-time integrations

in (5.7) give the same result if, instead, we set j = j1 = −1− j2. It follows that (5.7), and

thus (5.5), are satisfied as long as

Bjω
J B−1−j,ω

J = −|1 + 2J |2

π4

γ(2∆ + 2ω(1 + 2J))

γ(ω(1 + 2J))2γ(2∆)
.

It is easily seen that the expression obtained in (5.8) satisfies this identity.

Last but not least, we also need to check for the idempotence of the reflection symmetry

defined by (5.4). Indeed, after applying (5.4) twice, this follows from the expression for the

complex delta function,

δ(x12) = −|ε|
2

π2

∫
C
d2y

∣∣(x1 − y)−1+ε(y − x2)−1−ε∣∣2 , (5.10)

used on both the worldsheet and the space-time integrations, together with

RjωJ R
−1−j,ω
−1−J = 1,

an identity that straightforwardly follows from (5.9).

6 The contact term and the full propagator

Eq. (5.4) can be used to compute the contact term of the propagator. For this, we take

the two-point function and reflect a single vertex operator, leading to〈
Φj1ω1

J1
(x1|z1)Φj2ω2

J2
(x2|z2)

〉
= Bj1ω1

J1

∫
C
d2x′1d

2z′1

∣∣∣(x1 − x′1
)2J1 (z1 − z′1)α1

∣∣∣2
×
〈

Φ−1−j1,ω1

−1−J1 (x′1|z′1)Φj2,ω2

J2
(x2|z2)

〉
.

For J1 ∼ −1− J2, the two-point function in the integral can be replaced by the bulk term

written in (4.3), so that〈
Φj1ω1

J1
(x1|z1)Φj2ω2

J2
(x2|z2)

〉
= −|1 + 2J1|2

π2
δω1ω2δ

2(J+
12)Bj1ω1

J1

[
δ (j12) + Y −1−j1,ω1

−1−J1 δ
(
j+
12

)]
×
∫
C
d2x′1d

2z′1

∣∣∣ (x1 − x′1
)2J1 (z1 − z′1)−1+ω1(1+2J1)

(
x′1 − x2

)−2−2J1

×
(
z′1 − z2

)−2∆1−2ω1(1+2J1)
∣∣∣2.
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After integrating over x′ and z′ we obtain〈
Φj1ω1

J1
(x1|z1)Φj2ω2

J2
(x2|z2)

〉
= δω1ω2δ

2(J+
12)Bj1ω1

J1

[
δ (j12) + Y −1−j1,ω1

−1−J1 δ
(
j+
12

)]
×πγ(2∆1 + ω1(1 + 2J1))γ(ω1(1 + 2J1))

γ(2∆1 + 2ω1(1 + 2J1))
δ (x12)

∣∣∣z−2∆1−ω1(1+2J1)
12

∣∣∣2 ,
or, more explicitly,〈

Φj1ω1

J1
(x1|z1)Φj2ω2

J2
(x2|z2)

〉
=
i|1 + 2J1|

π
δω1ω2δ

2(J+
12)
[
δ
(
j+
12

)
+ Y j1ω1

−1−J1δ (j12)
]

(6.1)

×

√
γ(2∆1 + ω1(1 + 2J1))2γω1(1 + j1 + J1)γω1(−1− j1 − J1)

γ(2∆1)γ(2∆1 + 2ω1(1 + 2J1))γω1(j1 − J1)γω1(−j1 + J1)

×δ (x12)
∣∣∣z−2∆1−ω1(1+2J1)

12

∣∣∣2 .
The full expression of the propagator for the SL(2,R)-WZNW model is obtained by

adding (6.1) to (4.3). A well suited parametrization of the two-point function can be

obtained by considering the following ansatz :〈
Φj1ω1

J1
(x1|z1)Φj2ω2

J2
(x2|z2)

〉
= Sj1ω1

J1
Sj2ω2

J2
δω1ω2

[
δ
(
j+
12

)
+ Lj1ω1

J1
δ (j12)

]
(6.2)

×
[
δ2
(
J+

12

)
δ (x12) +M j1ω1

J1
δ2 (J12)

∣∣∣x2J1
12

∣∣∣2] ∣∣∣z−∆1−∆2
12

∣∣∣2 .
Notice that the factorization of the overall constant is a highly nontrivial proposal that, if

fulfilled, would allow us to absorb this factor through a proper redefinition of the spectral

flowed vertex fields. Let us show that this is indeed the case.

It can be seen from (4.3) and (6.1) that the identities

SjωJ S−1−j,ω
−1−J =

i|1 + 2J |
π

√
γ(2∆ + ω(1 + 2J))2γω(1 + j + J)γω(−1− j − J)

γ(2∆)γ(2∆ + 2ω(1 + 2J))γω(j − J)γω(−j + J)
,

SjωJ Sjω−1−JL
jω
J =

i|1 + 2J |Bj
γ(−2j)

√
γ(2∆ + ω(1 + 2J))2γω(−j + J)γω(−1− j − J)

γ(2∆)γ(2∆ + 2ω(1 + 2J))γω(j − J)γω(1 + j + J)
,

SjωJ S−1−j,ω
J M jω

J = −|1 + 2J |2

π2
,(

SjωJ

)2
LjωJ M

jω
J = −|1 + 2J |2

π2
Y j,ω
J

must hold. The solution is given by

SjωJ =

√
γ(2 + 2J)γ(2∆ + ω(1 + 2J))γω(−1− j − J)

πγ(2∆)γω(j − J)
, (6.3)

LjωJ =
πBj

γ(−2j)
, (6.4)

M jω
J =

γ(−2J)γ(2∆)

πγ(2∆ + ω(1 + 2J))
. (6.5)
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As a consistency check, note that in the unflowed limit these expressions reduce to

SjωJ → V
−1/2

conf , LjωJ →
πBj

γ(−2j)
, M jω

J →
γ(−2j)

π
,

so that the conformal volume factors coming from Sj1ω1

J1
and Sj2ω2

J2
cancel the divergence

coming from the product of delta functions and the expected propagator (2.4) is obtained.

As stated in [26], the terms proportional to δ
(
j+
12

)
in (6.2) are irrelevant for operators

describing short strings. This also holds for the contributions with a factor δ2
(
J+

12

)
in

situations with non-trivial winding, since J+
12 also becomes a strictly positive number. As

for the unflowed case, this results in the absence of a contact term. For the continuous series

this is not longer the case since m1 and m2 are allowed to take any real value. Consequently,

the contact term has to be taken into account for long strings configurations.

A relevant aspect to point out concerning the propagator is related to the dependence

of its contact term (6.1) on the worldsheet coordinates, which is, indeed, different from

that of the regular term (4.3). This fact shows that, as advertised above, the spectral

flowed vertex operators in the space-time picture are not only not conformal primaries,

but not even Virasoro quasi-primary fields. As it can be read off from (6.2), invariance

of the two-point functions under special conformal transformations is manifestly broken in

spectrally flowed sectors, although they retain their invariance under translations, rotations

and dilations.

We would like to make a final comment about the spectral flowed two-point function in

target space. In order to compute the propagator in space-time, we need to consider (6.2),

modify its dependence on the worldsheet coordinates to give account of the internal CFT,

then integrate over z and z̄ and divide it by the volume of the conformal group on the

sphere. At the end, this produces an additional factor V −1
conf. Since none of the delta

functions appearing in (6.2) needs to be evaluated for the continuous series, a finite result

is achieved in string theory by normalizing the vertex fields as Φjω
J (x|z)→

√
Vconf Φjω

J (x|z).

Note that this normalization differs from the one in [26]. For short strings, delta functions

involving J1 and J2 must be evaluated producing an extra overall factor Vconf. Therefore,

unlike the case of the long string, we do not have to rescale the operator Φjω
J (x|z).

7 The singly flowed sector

In [26] the authors introduced a definition of vertex operators with one unit of spectral

flow based on the fusion of the unflowed state Φ−1−j(x|z) and the so-called spectral flow

operator Φ−k/2(x|z), with no transformation neither from nor to the m-basis. In our

notation, this definition reads

Ψj
J(x|z) =

|1 + 2J |2

π2
Y j,ω=1
J lim

ε→0

∣∣∣ε1+J−k/2
∣∣∣2 ∫

C
d2x′d2y

∣∣∣(x− x′)2Jyj−1−J+k/2
∣∣∣2

× Φ−1−j(x
′ + y|z + ε)Φ−k/2(x′|z). (7.1)

As a quick consistency check of this equation, let us replace the unflowed vertex in the
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integrand in (7.1) by means of its reflection (2.5). We obtain

Ψj
J(x|z) =

|1 + 2J |2

π2
Y j,ω=1
J B−1−j lim

ε→0

∣∣∣ε1+J−k/2
∣∣∣2 ∫

C
d2x′d2x′′d2y

×
∣∣∣(x− x′)2J(x′ + y − x′′)−2−2jyj−1−J+k/2

∣∣∣2 Φj(x
′′|z + ε)Φ−k/2(x′|z).

After the integration over y is performed, and defining u = (x′′ − x′), we get

Ψj
J(x|z) =

|1 + 2J |2

π2
Y j,ω=1
J

πB−1−j
γ(2 + 2j)

γω=1(j − J)

γω=1(−1− j − J)
lim
ε→0

∣∣∣ε1+J−k/2
∣∣∣2

×
∫
C
d2x′d2u

∣∣∣(x− x′)2Ju−2−j−J+k/2
∣∣∣2 Φj(x

′ + u|z + ε)Φ−k/2(x′|z)

= Y jω=1
J Ψ−1−j

J (x|z),

which explicitly shows that a reflection in the unflowed sector does not induce the emergence

of a reflection in the spectrally flowed case but simply the identification eq. (5.2).

Starting from (7.1) and using the four-point function

〈Φj1(x′1 + y1|z1 + ε1)Φ−k/2(x′1|z1)Φj2(x′2 + y2|z2 + ε2)Φ−k/2(x′2|z2)〉 (7.2)

= Bj1δ(j12)
∣∣∣zk/221 (z21 + ε21)−2∆01 z−j1 (1− z)−j1 x′−k21

(
x′21 + y21

)2j1 (z − x)2j1
∣∣∣2 ,

where the cross ratios are given by

x =
y1y2

x′21(x′21 + y21)
, z =

ε1ε2
z′21(z′21 + ε21)

,

the authors re-obtained the bulk term of the propagator (6.2) for the case ω = 1. More

precisely, this method generates only the part of the bulk term that is proportional to δ(j12).

In order to get the term proportional to δ(j+
12) one has to consider a second solution to

the Knizhnik-Zamolodchikov equation and null-state condition associated to the four point

function on the left-hand side of (7.2), which is of the form zj1δ(x − z) [26]. Of course,

this term had to be there, otherwise (5.2) would lead to an inconsistency. Alternatively,

we could obtain the same result by re-defining

Ψj
J(x|z)→ 1√

2

[
Ψj
J(x|z) + Y j,ω=1

J Ψ−1−j
J (x|z)

]
,

which is not unexpected since, as stated above, the identity (5.2) is a manifestation of the

reflection symmetry of the unflowed sector of the theory.

As described in the previous section, the two-point function (6.2) is not given solely by

the bulk contribution. It also includes a contact term that cannot be derived from (7.1).

In order to address this issue our guide will once again be the reflection symmetry in the

spectrally flowed sector. Recall that, for unflowed vertex operators, both terms in (2.4)

were simply exchanged upon reflecting one of the operators by using (2.5), leaving the full

correlator unchanged. An analogous statement of course holds for the two-point function

in the ω = 1 sector, where the reflection is now given by (5.4). Based on this property,
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and inspired by the asymptotic expression in eq. (2.3), we introduce a simple ansatz for

completing the definition of Φjω=1
J (x|z) in the space-time picture. Concretely, we propose

to include the reflected version of the expression in the right-hand side of (7.1), i.e. we define

Φjω=1
J (x|z) ≡ 1√

2

[
Ψj
J(x|z) +Rjω=1

J

(
Ijω=1
J Ψj

−1−J

)
(x|z)

]
. (7.3)

Let us show how the new term looks like. By using (5.4), and performing a trivial integra-

tion in the x-variables, we find(
Ijω=1
J Ψj

−1−J

)
(x|z) =

1

π2
|1 + 2J |2

∫
C
d2x′d2z′

∣∣∣(x− x′)2J (z − z′)2J
∣∣∣2 Ψ−1−j

−1−J(x′|z′)

= − 1

π2
|1 + 2J |2Y −1−j,ω=1

−1−J lim
ε→0

∣∣∣ε−J−k/2∣∣∣2
×
∫
C
d2z′d2y

∣∣∣(z − z′)2JyJ−1−j+k/2
∣∣∣2 Φj(x+ y|z′ + ε)Φ−k/2(x|z′).

Equivalently, we can write(
Ijω=1
J Ψj

−1−J

)
(x|z) = − 1

π2
|1 + 2J |2Y −1−j,ω=1

−1−J lim
y→0

∣∣∣yJ−j−k/2∣∣∣2
×
∫
C
d2z′d2ε

∣∣∣(z − z′)2Jε−1−J−k/2
∣∣∣2 Φj(x+ y|z′ + ε)Φ−k/2(x|z′).

The last expression was obtained by using the following identity [26]

lim
ε→0
|εm|2

∫
C
d2y

∣∣y−1−j−m∣∣2 Φj(x+ y|z + ε)Φ−k/2(x|z)

= lim
y→0

∣∣y−j−m∣∣2 ∫
C
d2ε
∣∣εm−1

∣∣2 Φj(x+ y|z + ε)Φ−k/2(x|z).

We see that the integrated variables have shifted from space-time to worldsheet coordinates

in comparison to (7.1). The new term in the definition of the vertex is thus fully local in

space-time.

Our goal, by following the recipe outlined above, is to prove that the definition (7.3)

allows us to obtain the full two-point function, i.e. including the contact term. The proof

is two-fold: we need to compute the corresponding two-point function by considering sep-

arately the direct and cross terms in the product Φj1ω=1
J1

(x1|z1)Φj2ω=1
J2

(x2|z2). The former

give rise to the bulk term, while the latter originate the novel contact term.

We start with the first cross term, which takes the following form:

Rj2ω=1
J2

〈
Ψj1
J1

(x1|z1)
(
Ij2ω=1
J2

Ψj2
−1−J2

)
(x2|z2)

〉
= A× lim

ε1,ε2→0

∣∣∣ε1+J1−k/2
1 ε

−J2−k/2
2

∣∣∣2 (7.4)

×
∫
C
d2x′1d

2y1d
2z′2d

2y2

∣∣∣(x1 − x′1
)2J1 (z2 − z′2

)2J2 yj1−J1−1+k/2
1 y

J2−j2−1+k/2
2

∣∣∣2
× 〈Φ−1−j1(x′1 + y1|z1 + ε1)Φ−k/2(x′1|z1)Φj2(x2 + y2|z′2 + ε2)Φ−k/2(x2|z′2)〉,
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with

A = −|1 + 2J1|2

π2
Y j1,ω=1
J1

Y −1−j2,ω=1
−1−J2 Bj2ω=1

J2
. (7.5)

Inserting (7.2) and changing variables to

wi =
yi
x′21

, ξi =
εi
z′21

,

for i = 1, 2, with x′21 = x2 − x′1 and z′21 = z′2 − z1, (7.4) becomes

Rj2ω=1
J2

〈
Ψj1
J1

(x1|z1)
(
Ij2ω=1
J2

Ψj2
−1−J2

)
(x2|z2)

〉
= AB−1−j1δ(j

+
12)

× lim
ξ1,ξ2→0

∣∣∣ξ2+J1+j1−k/2
1 ξ

1+j1−J2−k/2
2

∣∣∣2 ∫
C
d2x′1d

2z′2

∣∣∣(x1 − x′1
)2J1 (z2 − z′2

)2J2
× x′ J2−J1−1

21 z
′ 1+J1−J2−k/2−2∆01

21

∣∣∣2 ∫
C
d2w1d

2w2

∣∣∣wj1−J1−1+k/2
1 w

J2−1−j2+k/2
2

× (w1w2 − ξ1ξ2(1 + w2 − w1))−2−2j1
∣∣∣2 . (7.6)

The last integral over w1 and w2 can be explicitly computed after a further change of

variables:

w1 =
√
sz t, w2 =

√
sz t−1.

Recalling that we are only interested in the small-z limit, it reduces to

δ2
(
J+

12

) π γω=1(j1 − J1)γ(−1− 2j1)

γω=1(−1− j1 − J1)
(ξ1ξ2)−2−j1−J1+k/2 . (7.7)

This formula is important for several reasons. First, we have obtained the non-trivial

condition on the weights, i.e. J2 = −1−J1, through the delta function δ2
(
J+

12

)
. Moreover,

this same condition implies that the exponents of ξ1 and ξ2 in (7.6) are equal, and these

factors are exactly cancelled by the last factor in (7.7), trivializing the ξ1,2 → 0 limit.

Furthermore, we see that x′1 integral is also greatly simplified. It takes exactly the form

in (5.10) up to the overall constant and this means that what we just computed is actually

a contact term. The remaining integration over z′2 results in a factor proportional to∣∣∣z1−k/2−2∆01

12

∣∣∣2 =
∣∣∣z−∆1−∆2

12

∣∣∣2 .
The dependence on z12 thus reproduces that of (6.2). Putting everything together we find

that (7.6) becomes

Rj2ω=1
J2

〈
Ψj1
J1

(x1|z1)
(
Ij2ω=1
J2

Ψj2
−1−J2

)
(x2|z2)

〉
= − π4AB−1−j1γ(1 + 2J1 + 2∆1)γω(j1 − J1)

|1 + 2J1|2γ(2j1)γ(2J1)γ(2∆1)γω(−1− j1 − J1)

×δ
(
j+
12

)
δ2
(
J+

12

)
δ (x12)

∣∣∣z−∆1−∆2
12

∣∣∣2 .
By means of (7.5) one can show this expression exactly reproduces that of the contact term

in (6.2) for ω = 1. More precisely, we have only obtained one of the two contributions to
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the contact term. This was to be expected since the reflection (5.4) acts on both j2 and J2

simultaneously. In order to get the one proportional to δ (j12) it is necessary to redo this

calculation by using the contact term of the unflowed four-point function mentioned above.

The second crossed term in the product Φj1ω=1
J1

(x1|z1)Φj2ω=1
J2

(x2|z2) is computed analo-

gously and renders the same result. Therefore, it just remains to show that the contribution

with two reflected operators also gives the usual bulk term. We do not write any details

here and simply state that this is indeed the case. The manipulations needed to carry out

this computations are similar to those we just used.

Thus, we conclude that the definition (7.3) is consistent with the general two-point

function in the spectral flowed sector written in eq. (6.2) for the particular case of unit

winding. Of course, it would be interesting to see whether this simple ansatz holds for

higher-point functions as well. We leave this computation for future work.

8 Final remarks

Let us recall what we have done and summarize the main results of this paper. First,

we briefly reviewed the relevant aspects of the H+
3 -WZNW model: conserved currents,

spectrum and vertex operators. In particular, we highlighted some important properties of

the latter, namely, the reflection symmetry presented in eqs. (2.5)–(2.7), relating Φj(x|z)

and Φ−1−j(x|z), and also the exact two-point function, given in (2.4), where the bulk

and contact terms are precisely the reflection the one of the other. Then, we studied the

Lorentzian counterpart, that is, the SL(2,R)-WZNW model, focusing on the appearance

of the spectrally flowed operators. At the classical level, some of these states are related

to long strings winding ω times around the AdS3 boundary. As a matter of fact, vertex

operators can be thought of more intuitively by shifting to the m-basis, where they can be

constructed by starting with one of the unflowed affine primaries Φj and acting with the

spectral flow automorphism characterized by eqs. (3.1)–(3.3). In the space-time picture,

the resulting flowed vertex was denoted Φjω
J (x|z), where, besides ω, J (and J̄ , which is

omitted) is the relevant quantum number, i.e. the eigenvalue of the Cartan generator,

while j is only written explicitly as a reminder of how the operator was constructed.

In the spectral flowed sector of the theory only the regular term of the two-point

function had been computed so far. Moreover, and not unrelated to this, no counterpart of

the reflection symmetry was known. Indeed, a naive extension was introduced in eq. (5.2)

and, roughly speaking, it merely states the existence of alternative ways to define operators

with the same values of the spectral flow charge and spin. We proposed a full-fledged

reflection symmetry for operators with non-trivial spectral flow, namely,

Φjω
J (x|z) = RjωJ

(
IjωJ Φjω

−1−J

)
(x|z), (8.1)

with (
IjωJ Φjω

−1−J

)
(x|z)

=
ω

π2
|1 + 2J |2

∫
C
d2x′d2z′

∣∣∣(x− x′)2J (z − z′)−1+ω(1+2J)
∣∣∣2 Φ−1−j,ω

−1−J (x′|z′),
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the reflection amplitude RjωJ being defined in (5.9). This property is consistent with the

form of the bulk term in the two-point function. Furthermore, it relates operators with

spins J and −1− J , so that it allowed us to compute exactly the missing contact term in

the propagator. We presented the complete form of the correlator in eq. (6.2).

Interestingly enough, the factorization of the global factor in eqs. (6.2) as Sj1ω1

J1
Sj2ω2

J2
,

where SjωJ is explicitly given by eq. (6.3), suggests a normalization for the flowed vertex

operators more suited than the one set when introducing (4.2) above. More precisely, by

rescaling

Φjω
J (x|z)→ SjωJ Φjω

J (x|z),

we get〈
Φj1ω1

J1
(x1|z1)Φj2ω2

J2
(x2|z2)

〉
= δω1ω2

[
δ
(
j+
12

)
+ Lj1ω1

J1
δ (j12)

]
×

×
[
δ2
(
J+

12

)
δ (x12) +M j1ω1

J1
δ2 (J12)

∣∣∣x2J1
12

∣∣∣2] ∣∣∣z−∆1−∆2
12

∣∣∣2 ,
where LjωJ and M jω

J are given by (6.4) and (6.5), respectively. Moreover, in this normaliza-

tion the reflection symmetry is still given by (8.1), albeit with a much simpler coefficient

given by

RjωJ =
πBjγ(−2J)

πγ(−2j)

γ(1− ω(1 + 2J))

ω|1 + 2J |2
.

Notice that, unlike in the Euclidean case, none of the factors in the propagator coincide

with the reflection coefficient.

There have been interesting recent developments in the study of string propagation

in AdS3. Most notably, in [34, 35] integrability techniques were used to solve part of

the worldsheet dynamics, while in [20, 36] a symmetric-product orbifold CFT at large

N was proposed as the boundary theory, wherein long-string excitations are related to

a specific Liouville factor. Regarding the construction of [34, 35], only the short-string

sector of the model has been described, up to date, by means of integrability, rendering a

comparison with our results futile. Indeed, as stated at the end of section 6, the contact

term in (6.2) do not appear in this sector of the theory. Concerning the analysis of [36] (see

also [37]), the authors have presented closed expressions for several x-basis correlators of

spectrally flowed states. However, space-time vertex operators defined in these references

are somewhat different from those introduced in [26], which were used throughout this

work. Indeed, while vertex operators in the former are built upon a specific lowest-weight

state by means of translations in x-space, a single vertex in the latter gives rise to both D+
J

and D−J , as stated in [26] and already stressed below eq. (4.2). Consequently, an explicit

agreement at the level of the two-point function seems difficult to obtain. It would be

interesting to understand these issues in more detail in the future.
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