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Abstract: We study in this article the representation theory of a family of super alge-
bras, called the super Yang-Mills algebras, by exploiting the Kirillov orbit method a la
Dixmier for nilpotent super Lie algebras. These super algebras are an extension of the
so-called Yang-Mills algebras, introduced by A. Connes and M. Dubois-Violette in (Lett
Math Phys 61(2):149-158, 2002), and in fact they appear as a “background independent”
formulation of supersymmetric gauge theory considered in physics, in a similar way as
Yang-Mills algebras do the same for the usual gauge theory. Our main result states that,
under certain hypotheses, all Clifford-Weyl super algebras Cliff, (k) ® A, (k), for p > 3,
or p = 2and g > 2, appear as a quotient of all super Yang-Mills algebras, forn > 3 and
s > 1. This provides thus a family of representations of the super Yang-Mills algebras.

1. Introduction

This article is devoted to the study of the super Yang-Mills algebras, and in particular their
representation theory. Let us briefly recall the definition of the super Yang-Mills algebras.
Given two nonnegative integers n, s € Ng \ {(0, 0)}, and a collection of (s x s)-matrices
F;,b, fori =1,...,n(a,b=1,...,5), the super Yang-Mills algebranym(n, s)F over
an algebraically closed field k of characteristic zero is defined as the quotient of the free

super Lie algebra f(x, ..., x,, 21, . . ., Zs), for even indeterminates x1, ..., x, and odd
ones z1, ..., Zs, by the (homogeneous) relations given by
n 1 N
ro,i = Z[Xj, [xj, xi1] — 3 Z Iy plzas zp],
j=1 a,b=1
n N
Fa= > > Tilxi. 2]
i=1 b=1

* The author is an Alexander von Humboldt fellow.
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fori = 1,...,nanda = 1,...,s, respectively. It can also be regarded as a graded
Lie algebra with deg(x;) = 2, fori = 1,...,n, and deg(z,) = 3, fora = 1,...,s.
The associative enveloping algebra U/ (ym(n, s)7') will be denoted YM(n, s)!". They
have been previously considered by M. Movshev and A. Schwarz in [25] (see also the
preprint article in this ref.). Also, the case s = 0 (and n > 2) leads to the definition
of Yang-Mills algebra given by A. Connes and M. Dubois-Violette in [10]. Omitting
the trivial cases with n = 0, or the already known ones with s = 0, we shall see that,
for each (n, s) € N2, it is noetherian if and only if n = | and either s = 1 or s = 2.
However, it is coherent for all values of the parameters (n, s) (see Remark 6).

From the physical point of view, it can be seen that the components of the covariant
derivative and the dual spinor field of a supersymmetric gauge theory on the Minkowski
space provide a representation of the corresponding super Yang-Mills algebra (cf. [13],
and see also Remark 1). Otherwise stated, these super algebras can be regarded as pro-
viding a “background independent” formulation of the supersymmetric gauge theory in
physics. They can also be considered in order to provide a noncommutative version of
it, over the noncommutative torus or the noncommutative flat space (cf. [14]). It is thus
natural in this context to analyze the connection to the so-called Clifford-Weyl super
algebra. Our interest in them comes then in order to shed more light in this direction.

The main result of this article may be formulated as follows:

Theorem 1. Letn, s, p, g € Nbe positive integers, satisfying n > 3. We suppose further
that either p > 3, or p = 2 and q > 2. Then, there exists a surjective homomorphism
of super algebras,

Uym(n, 5)7) — Cliff, (k) ® A, (k),

where Cliff ; (k) ® A (k) denotes the Clifford-Weyl super algebra. Furthermore, there
exists | € N such that we can choose this morphism in such a way that it fac-
tors through U(hym(n, s)F/Fl(t)m(n, )TY), where Fl(ym(n, s)7) is the Lie ideal of
nm(n, s) formed by the elements of degree greater than or equal to | + 2.

We would like to remark that the Clifford-Weyl super algebra Cliff, (k) ® A, (k)
appearing in the previous theorem has the Z/27Z-grading given by the usual grading
of the Clifford (super) algebra Cliff, (k) and by considering the Weyl algebra A (k)
to be concentrated in degree zero (see [19], Ex. 1.2). This differs from the grading of
the “Clifford-Weyl algebras” C(g, 2p) considered in [26], since in that case the Weyl
algebra has also a nontrivial homogeneous component of odd degree.

In order to prove the theorem we needed to extend the so-called Dixmier map for
nilpotent Lie algebras to the case of nilpotent super Lie algebras, which was done in [19].
Even though this article may be considered as an extension and generalization of the
results proved in [20], it also deals with several difficulties and differences with the latter,
which mainly follow from the fact that the study of the enveloping algebras of super Lie
algebras has various and important differences with the case of enveloping algebras of
Lie algebras. To mention just a few, the super Yang-Mills algebras are not Koszul, at
least not for any definition we are aware of, even though they behave quite the same,
there are not any a priori morphisms between different super Yang-Mills algebras for
arbitrary I"’s (see the paragraph at the end of Subsect. 2.1), there are several differences
between the Dixmier map of nilpotent Lie algebras and of nilpotent super Lie algebras
(e.g. the super dimension of a polarization at an even functional does not determine
the weight of the ideal that it defines, which explains the phenomena that appears in
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Remark 8, etc), the enveloping algebra of a super Lie algebra is not necessarily semi-
primitive, and the determination of its radical is usually a highly nontrivial task, etc.

The contents of the article are as follows. In Sect. 2 we recall the definition and sev-
eral elementary properties of super Yang-Mills algebras, some of them with a physical
flavour. In particular, we show in Subsect. 2.2 that the typical odd supersymmetries of
the supersymmetric gauge theories considered in physics also appear, under the same
assumptions as there, as super derivations of the super Yang-Mills algebra.

In Sect. 3 we study the homological properties of this family of super algebras. In
fact, Subsect. 3.1 provides a complete description of the minimal projective resolution
of the trivial module k over the graded Lie algebra ym(n, )T, for (n, s) # (1, 1), which
satisfy a property similar to koszulity. Using a procedure similar to the one employed by
R. Berger and N. Marconnet in [6], Sect. 4, we furthermore obtain the minimal projective
resolution of the super Yang-Mills algebra YM(n, s)©, considered as a graded algebra,
in the category of bimodules, for the same set of indices. From the particular description
of these minimal projective resolutions we prove that YM(n, s)! is AS-regular in the
sense of [24] and graded Calabi-Yau, for (n, s) # (1, 1). We later derive some conse-
quences, computing in particular the Hilbert series of both ym(n, s)!" and YM(n, s)".
Moreover, we prove that, forn > 2, orn = 1 and s > 3, the super Yang-Mills algebra
pm(n, s)!" contains a finite codimensional Lie ideal which is a free super Lie algebra.
This is done using simpler methods than the ones used in [20], Sect. 3. From this fact,
we derive several consequences, and in particular that these graded algebras are not
noetherian, but they are coherent.

Finally, in Sect. 4 we prove our main result, Theorem 14, and describe the families
of representations appearing in this way.

2. Generalities

In this first section we fix notations and recall some elementary properties of what we
call the super Yang-Mills algebras, all of those seem to be well-known to physicists.

2.1. Definition. Throughout this article k will denote an algebraically closed field of
characteristic zero. The main convention and notations on super vector spaces, super
algebras and modules over them (and also for the graded analogous ones) that we fol-
low are the same as in [19], to which we refer. Unless otherwise stated, a module over
an algebra (resp. a graded algebra, a super algebra), will always denote a left mod-
ule. Moreover, we consider the category of modules over graded (resp. super) alge-
bras provided with homogeneous linear morphisms of degree zero. It is also endowed
with the shift functor (—)[1], defined by (M[1]), = M,41, for n € Z in the graded
case, and n € Z/27 in the super case. Given two modules M and N over a graded
(resp. super) algebra A, homy (M, N) will stand for space of morphisms in the previ-
ously described categories. Furthermore, the internal space of morphisms is given by
Homs (M, N) = @;jcghomy (M, N[i]), where G = Z or G = Z /27 for the graded or
the super case, respectively.

We fix the following setup. Let V = V() @ V| be a super vector space over k of super
dimension (n, s) € Ng with n + s > 0, such that the even part Vj is provided with a
nondegenerate symmetric bilinear form g. Note that the algebraic group SO(Vy, g), and
hence the Lie algebra so(V)p, g), acts on V{y (with the standard action). We shall also write
V =V(n,s), Vo = V(n)gor Vi = V(s); if we want to stress the (super) dimension.
We suppose further that there exists a map of the form I : 2 Vi — V.
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Choose a (homogeneous) basis B = By U By of V, where By = {xj, ..., x,} and
Bi ={z1,..., 2z}, with |x;| =0, foralli =1, ...,n,and |z,| = 1,foralla =1, ..., s,
and let B* = Bj U By, where By = {x},...,x;} and B = {z], ..., z{}, be the dual
basis of V*. Set I') , = x/(I'(z}, z3)), fori =1,...,nanda,b =1,...,s, and g~!
the inverse nondegenerate symmetric bilinear form on V', i.e. g~ ! is the bilinear form
on V' defined as the image of g under the k-linear isomorphism Vo — V" given by
V> g(v —). We further write g’/ = g ](xl ,x*) and g; j = g(x;, xj).

If §(V) denotes the free super Lie algebra generated by the super vector space V, the
super Yang-Mills algebra is defined as the quotient

om(V, )" = f(V)/(R(V. &),
where R(V, g)!" is the super vector space inside f(V) spanned by the elements

n
l
roi= » gg"Ixj, [x, xmll - Z w plzas 2],

Jilim=1 a b=1

n N
g = ZZ F(ib[xis Zp],

i=1b=1

(D

fori=1,...,nanda =1, ..., s, respectively.

We consider the universal enveloping algebra YM(V, g)I' = U@mym(V, g)'") of
ym(V, g)7, and also call it the (associative) super Yang-Mills algebra. By definition, it
is the super algebra given by the quotient of the tensor algebra 7'V (n, s) of the super
vector space V (n, s) by the two-sided ideal generated by the same super vector subspace
R(V(n,s), g)"", now seen inside of F3TV (n, 5), where {F*TV (n, 5)}ecN, denotes the
canonical (increasing) filtration of the tensor algebra. Note that I/ (ym(n, s)''), being the
enveloping algebra of a super Lie algebra, need not be a domain, whereas U (ym(n, s)g )
is always so. However, we shall see below that 2/ (ym(n, s)7) is also a domain.

It is direct to check that R(V, g)!" is independent of the choice of the homogeneous
basis B, so we may suppose that By is orthonormal, in which case the relations simplify
to give

n

1 &
ro,i = Z[xj, [xj, xi1]1 = 3 Z I, plzas 2p],

j=1 a,b=1

Ma = ZZ b[xz,Zb]

i=1 b=l1

2)

which we will assume from now on. Therefore, if the super vector space V has super
dimension (1, s), we may also denote the super Yang-Mills algebras by ym(n, s)" and
by YM(n, s)©, respectively. We may also write R (n, s)! instead of R(V, g)! . Note that
they generalize the Yang-Mills algebras defined by A. Connes and M. Dubois-Violette
in [10], since ym(n) = ym(n, 0)°, and have been previously considered by M. Movshev
and A. Schwarz in [25]. We would also like to mention that, as far as we know, there is no
direct relation between the previously defined super algebra and the superized versions
of the Yang-Mills algebra defined in [11], Sect. 1.4, and, more generally, in [18], Ex. 3.2.
We are aware of the fact that the superized version of the Yang-Mills algebra in [11],
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Sect. 1.4, was also called super Yang-Mills algebra there, but we decided to use the same
name just due to the connection to supersymmetric Yang-Mills theory in physics.

We say that the super Yang-Mills ym(n, ) is equivariant if V) is a representation
of the Lie algebra so(Vp, g) such that the map I" : $2 Vi — Vyisso(Vp, g)-equivariant,
and there also exists an s0(Vp, g)-equivariant map I" : S2V; — Vj, which satisfy the
following condition. Rewriting I" and I" as elements y € Hom(Vp, Hom(V;*, V{)) and
y € Hom(Vy, Hom(Vy, V")) defined by 23 (y (v)(z})) = g(I"(z], 23), v), forallv € Vj
and z7, 25 € V{*,and by y (v)(z1)(22) = g(I"(z1, 22), v), forallv € Vpand z1, z2 € V1,
respectively, the assumption reads as follows:

() 0y () = g(v. v)idys.

- . 3)
y () oy (v) = g(v, v)idy,,

for all v € Vp. In particular, this implies that I is uniquely determined from I". If we

denote "0 = xi*(F(za, zp)),fori =1,...,nanda,b =1,...,s, we notice that the

conditions (3) can be rewritten as

S
ST FI TP = 28 8 v
b=l

We remark the easy fact that an equivariant super Yang-Mills algebra with s # 0 satisfies
a fortiori that s(s + 1) /2 > n, for Vj is an irreducible so(Vp, g)-module and I" # 0.

Note that if the super Yang-Mills is equivariant, then the action of SO(Vp, g) (and so
the action of so(Vp, g)) on V induces an action by automorphisms of SO(Vj, g) (and
hence an action by derivations of so(Vj), g)) both on the tensor super algebra 7V and
in the free super Lie algebra f(V), which preserves the corresponding ideal (R(n, s)!')
generated by R(n, s)” in the tensor algebra 7V and in the free super Lie algebra f(V),
respectively. As a consequence, we get an action by automorphisms of SO(Vj, g), and
an action by derivations of so(Vj, g), on both super Yang-Mills algebras YM(n, s)F
and ym(n, s)’.

Even though in the examples coming from physics the super Yang-Mills algebra is
equivariant, it will be useful to consider a weaker notion, already considered in [25]. We
say that I', or even the super Yang-Mills algebra, is nondegenerate if n # 0 and there
exists a nonzero linear form A € Vi such that L o I" : V* ® V" — k is nondegener-
ate, if s # 0. We remark that the super Yang-Mills algebra is nondegenerate if s = 0.
Also, note that condition (4) implies that an equivariant super Yang-Mills algebra with
s # 0 is always nondegenerate (in fact each matrix I"? is invertible). From now on, we
shall assume that the super Yang-Mills algebras we are considering are nondegenerate.
Without loss of generality, we shall furthermore suppose that, if s # 0, A = x{|y, and
that B is orthonormal with respect to xj|y, o I". This hypothesis of nondegeneracy is
though not necessary for most of this subsection and the next one, except for some minor
indicated cases, but it will be necessary (and assumed) from Subsect. 2.3 on.

As mentioned before, the case where s = 0 and n > 2 has been previously studied in
[10] (see also [20]). If n = 1 and s = 0, then the (super) Yang-Mills algebra is just the
one-dimensional abelian Lie algebra, which was not studied in the mentioned articles
because of its simplicity. Moreover, if n = 2 and s = 0, ym(2) is isomorphic to the
Heisenberg Lie algebra b1, with generators x, y, z, and relations [x, y] = z, [x, z] =
[v,z] = 0, and, for n > 3, ym(n) is an infinite dimensional Lie algebra (see [20],
Rem. 3.14). On the other hand, forn = 0 (so s > 0), the super Yang-Mills algebra is just
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the free super Lie algebra generated by the odd elements z, . . ., ;. The nondegenera-
cy assumption on the I" also implies that ym(1, s) =~ k.x; & f(V(1))/(>5_[2a, zal)s
and then YM(1, s) >~ k[x1] ® k(z1, ...,zs)/(za 125 ) In particular, ym(1, D isa
supercommutative super Lie algebra of super dimension (1, 1), and ym(1, 2)” has super
dimension (2, 2), with basis x|, z1, z2 and [z2, z2], where [z, z1] = —[z2, z2], and all
other brackets vanish. We remark that, since the case where s = 0 is trivial, we will
focus ourselves on indices (n, s) € N x Np, unless otherwise stated.

As noted in [25], it can be also useful to consider ym(n, $)T as an N-graded Lie
algebra, where the elements x; are of degree 2, foralli = 1, ..., n, and the elements z,
of degree 3, foralla = 1, ..., s. Similarly, taking the grading induced by the previous
definitions, the associative super Yang-Mills algebra YM(n, s)! can also be regarded
as an Ny-graded algebra. These gradings for both the Lie and associative versions of
the super Yang-Mills algebra are exactly the special gradings (opposed to the usual
ones) considered in [20], Sect. 2, and [21], Sect. 2.1, when s = 0. We remark that the
underlying super Lie algebra and super algebra of these latter definitions yield the ones
given at the beginning. Moreover, when the super Yang-Mills algebra ym(n, s)” is seen
as a graded Lie algebra, we may consider the descending sequence of graded ideals
{F*ym(n, S)F}.eNo, where Fft)m(n, $)I" is the graded vector subspace of ym(n, T
given by elements of degree greater than or equal to j + 2. It is the quotient under the
canonical projection of the descending filtration F*f(V (n, s)) of the graded free Lie
algebra given by elements of degree greater than or equal to j + 2. This also induces a
descending sequence of ideals of the underlying super Lie algebra of either the graded
free Lie algebra §(V (n, s)) or the graded Lie algebra ym(n, s)! considered above.

Remark 1. We remark that this super algebra appears naturally when studying super-
symmetric gauge field theories. We will only recall what we need for our explanation,
and we refer to [12] and [13] for a complete account on this subject. Let M denote
an n-dimensional Minkowski space with real vector space of translations V of dimen-
sion n and metric g determining a cone C of time-like vectors in V, § a real spinorial
representation of dimension s of the spin group Spin(V,g)and I" : $* ® §* — V a
symmetric morphism of representations of Spin(V, g), which is positive definite, i.e.
I(s*, s*) € C, for all s* € §*, and I'(s*, s*) = 0 only if s* = 0. Since any complex
vector bundle E of rank m over M is trivial, for M is contractible, every connection on
such bundle is given by a gl,,(C)-valued 1-form >_"_, A;dx", and the corresponding
covariant derivative is V; = 9; + A;, fori = 1, ..., n. We also recall that a dual spinor
field . with values in the Lie algebra gl,,, (C) is a morphism from M to $* ® gl,,(C), so
it can be decomposed in components A, from M to gl,,(C), fora=1,...,s. We may
thus see both sets of fields V; and A, as sections of the endomorphism bundle of the
complex super vector bundle E ®g A S* on M, where S is considered to be in degree
1, Viiseven, foralli = 1,...,n,and A*isodd, foralla = 1, ..., s. The associated set
of super Yang-Mills equations is the supersymmetric extension of the usual Yang-Mills
equations and it is given by

n N
.. 1 .
2 VLIV Inll = 5 D T plhas bl

Jj.l,m=1 a,b=1

ZZ i IV Al =0,

i=1 b=1

®)
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fori =1,...,nanda = 1,...,s, respectively (cf. [13], (6.23)). We remark that the
previous identities are considered in the super Lie algebra of endomorphisms of sections
of the complex super vector bundle £ ®g AR S*, so they give a representation of the

equivariant super Yang-Mills algebra ym(n, ).

The Lie ideal tym(n, )T = Flym(n, s)!" = [ym(n, s)T", ym(n, s)! 1+ym(n, s)I" of
the super Lie algebra ym(n, s)!" will be also important in the sequel. It is obvious to see
that it is also a graded Lie ideal of ym(zn, s)!", when considered as a graded Lie algebra.
Notice that tym(n, 0)° coincides with the ideal thm(n) of ym(n) = ym(n, 0)° consid-
ered in [20]. We remark that ym(n, s)’ /tym(n, s)!" ~ V (n)o is the abelian (super) Lie
algebra of super dimension (n, 0). Moreover, we shall deal with the universal envel-
oping algebra of the Lie ideal tym(n, s)”, which will be denoted TYM(n, 5)*", which
can be regarded either as a super algebra or as a graded algebra. We shall also con-
sider the bigger Lie ideal tym(n, s)”" = tym(n, s)”" @ @@!'_; k.x;, which satisfies that
ym(n, ) /tym(n, s)! =~ V(2)¢ is supercommutative, and its enveloping algebra

TYM(n, )T = U(tym(n, s)7). Occasionally, we will omit the indices (1, s) and I"
for the previously defined spaces (and also for those defined below) in order to simplify
the notation if it is clear from the context.

‘We would like to make a further comment on the relationship between different super
Yang-Mills algebras. One first notes that the canonical projection V (n, s) — V(n)q of
graded vector spaces induces a surjective morphism of graded algebras 7'V (n,s) —
TV (n)o, which sends the even super Yang-Mills relations rp; to the usual Yang-Mills
relations r; described in [20], and the odd super Yang-Mills relations r; , to zero. Hence,
we obtain a surjective morphism of graded algebras YM(n, s)I — YM(n), where we
recall that the Yang-Mills algebras are provided with the special grading. In an analogous
manner, we have a surjective morphism of graded Lie algebras ym(n, s)!” — ym(n),
which obviously maps tym(n, s)’ onto tym(n). We would like to point out however,
that we do not know of any a priori given morphism between different super Yang-Mills
algebras with s # 0 when the corresponding I"’s are arbitrary.

2.2. A superpotential formulation. We remark the well-known fact that relations (2)
can be obtained from the superpotential element given by the class of the homogeneous
element (resp., of degree 8 if ym(n, s)© is considered as a graded Lie algebra)

n

1 1 n s .
W=—2 2 loxjlle, 61+ 5 > >0 Ty pzalis 2 (6)

ij=1 i=1 a,b=1

in HHy(TV) =TV/[TV, T V], where we recall that we are considering the super (resp.
graded) commutator space [TV, T V] of the tensor algebra, i.e. the super (resp., graded)
vector space spanned by the elements uv — (—1)*/"lyy, for homogeneous elements
u,v € TV.In this case, the cyclic derivative with respect to a generator v € B, where
B is a basis of (homogeneous elements of) V, is the map from TV/[TV,TV]to TV
given by the k-linear extension of the following: for an element w = vy ...v,, where
eachv; € Bforalli =1, ..., r, we consider

ow e ety
3 = z (= 1) (il tlonDCorl+tvica Dy, oy p v,

i:0;=v
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It can be easily checked that in our case r ; is the cyclic derivative of W with respect to
xi, and rq 4 is the cyclic derivative of W with respect to z,,.

We have the following proposition, which we suppose should be well-known, since
it is only the algebraic analogous of the physical folkloric result that states that the
Euler-Lagrange equations associated to an action are invariant under a collection of
(super)symmetries if the action is invariant under such (super)symmetries.

Proposition 1. Let V be a graded vector space V, and let g be a graded Lie algebra
acting by homogeneous derivations on the corresponding tensor algebra TV . Regarding
TV as a graded Lie algebra, we immediately note that the action of g on TV induces an
action on (the abelianization) HHo(TV) = TV /[TV, TV]. If a homogeneous element
W e HHo(TV) belongs to the invariant space HHy(T V)%, then the two-sided ideal
generated by the cyclic derivatives of W (with respect to any basis of V) is preserved

by g.

Proof. It suffices to prove the statement for a unique homogeneous derivation d of TV
of degree |d|, and call d the induced map on H Hy(T V). Let B be a (homogeneous) basis
of V. Fix an element v of the basis B of V, and for each v’ € B, consider the monomial

elements rl’fv,, sl’f’v, € TV defined by d(v') = ZmeM/ i U,vsl . foralll € Ly, and

ad r v]+|s m
((v)) =3 3 - 1)"”"(|||”Dzu/ﬁv

meM, leL

v',m

hold, where M,y and L,y ,, are sets of indices. Set B’ = B\ {v}. We would like to explain
the notation, which could seem cumbersome at first glance. The element d (v') is a sum
of monomials M,, in TV, indexed by m € M,,, and each of these monomials can be
written as M, = r v,vsl ., forl € Ly ,,, which are all the different ways of writing
M,, such that the formula for the cyclic derivative can be applied to give

a(d(Mm)) AR \)

We claim that the following identity holds:

i P

veBmeMy leL,

v',m

where oy 1 = |rl UAAW T+ s [+ [v] = [v’|). First, note that it only suffices to prove

the previous equality for W a monomlal, since if we write W = > jes Wi where W;
are monomials (of the same degree as W) in 7'V, the sum of each of the identities (7)

for W; gives (7) for W. Then, we assume that W is a monomial of the form H,N: 1 Vis
for N € N, such that v € B.

Define d; ; to be Z{:i lvl, for 1 <i < j < N, and zero otherwise.
On the one hand, we have that

= D (=Dhidng H vJ><Hv/>

iwj=v j=i+l
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which implies that 4(dW /dv) is given by

N p—1 N i—1
Z (_1)d1,i—ldi,N( Z (_1)|d|df+1,p71( H v)d (vp)( H Uj)(l_[ vj)

ivj=v p=i+l j—i+] j—p+1 j=1
+ Z( )|d|(d1+1 N+ p— l)( H UJ)(H v)d (vp)( H Uj)) 8)
Jj=i+l j=1 Jj=p+l

On the other hand, from

d(W) = Z( Dl '(Hv,)d(v,»( H v))

Jj=p+l

—Z ST (-l I(anrlv vy’ ( H v)),

p=lmeM,, Jj=p+l1

we get that a(ﬁ(W))/E)v is equal to

N p—1 N i—1
Z(_l)ldldl.p—l( Z (_1)d1,1—1(|d|+di,N)( H v)d(vp)( H vj)(H vj)
p=l1

i<pwi=v Jj=i+l Jj=p+l Jj=1

N p—1 i—1
+ D> (IR CTT vy Topdep [T vp)

i>pwi=v j=i+l j=1 Jj=p+l
3 S (=g (H ,)(Hv,)rlv)
meM,, I€Ly, Jj=p+1

where B, = (d1, p—1 + |rlmvp D(v| + |Slmv],| +dp41,n). Itis obvious to see that the first

two terms of the second member of the previous identity coincide with (—1)/1l4! times
the two terms of the last member of (8). It is also clear that the third term of the equation
coincides with the second term of the second member of (7), which proves the claim.
The proposition now follows directly from the identity (7), since d(W) = 0. O

Remark 2. From the proof of the proposition we further see that the ideal I C TV gen-
erated by the cyclic derivatives of a homogeneous superpotential W e H Hy(T V) is
preserved by a homogeneous derivation d if and only if the cyclic derivatives of (W)
belong to 7.

For the rest of this subsection we assume that the Yang-Mills algebra ym(n, s)' is
equivariant and that V}* is an irreducible spin representation of so(Vp, g) (i.e., a so-called
minimal supersymmetry in physical theories). We have the following direct consequence
of the proposition. Let us consider the collection d! (¢ = 1,...,s) of homogeneous
derivations of 7'V of degree 1 induced by

d; (xi) = Z ! 2d:
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s

1 - ;
dl(zp) = EZ > A Ixi.xgl.

d=11i,j=I

As expected, they are analogous to the supersymmetry transformations that have been
considered in supersymmetric gauge theories (cf. [13], (6.8)). The following computa-
tion is parallel to one already known to physicists a long time ago, but we provide it just
for completeness (cf. [13], Thm. 6.4). Applying the derivation dg to the superpotential
w given in (6), we see that, on the one hand

n

dcl(—% Z[xi,xj][xi,xj]) = —Z Z Fc{b[xi,xj][xia 2]

i,j=1 b=1i,j=I

On the other hand, we have

n S
d! (% Z Z Fai,bZa[xi, Zb])

i=1 a,b=1
1 & s 1< S
i Fand ol i [
=5 2 2 Tapleir dxg o alxi sl = 5 >0 > Loyl gzalza. )
i,j,l=1a,b,d=1 i=1 a,b,d=1
1 & s o
,b,d 1
- Z Z Ly, 70Ty zalxis [xj, xi]]
i jd=1a,b.d=1
L s 1 & s
= > > F(ll’bfj’b’dré,c[xi,[xj,xl]]za_EZ D Tuwliazalza. ]
i.jl=1a,b,d=1 i=1 a,b,d=1
|2 s o
,b,d 1
+Z Z Z F;,b[‘] Fd’c[xiv[-xjsxl]za]v
i,j,l=1a,b,d=1

where we have used that [x;, x;1[x;, zq] = [x;, [x}, x1]1za] — [x;, [x}, X711z, in the first
term of the third member.

‘We now consider the following collection of homogeneous element of TV (fora, ¢ =
1,...,s):

1 n N . .
Xae =7 D D Tapar i L, )]
i,jl=1b,d=1
1 n N
=5 Z Z F;)b['/’b’dl“j’c([xl, Lxjo xi 11+ [xj, [, x0D
i j=1b.d=1
1 & s .
=3 > D@ e ] P Dl g )
i,j,l=1b,d=1

1 S - . i pj.bd -l 1
=Xea+s Z DD 0TI 42 8 e [x. x]]
i,jl=1d=1 b=1
= Xc,a - Xa,c + Sa,c»
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where we have used (4) in the penultimate equality and we define

Sa.c = Z el i, x1).

i,l=1

This implies that 2X, . = X, 4 + S4.c. Using that S, . is symmetric for the interchange
of indices, a trivial computation implies that X, . is also so, which in turn implies that
Xa.c = Sa.c. As a consequence, we have that

a'(3 I I IR

i=1a,b=1
n N 1 n N
l .
== 2.2 Taclvibixllea =5 >0 X Tapliazalzar ]
i,/=1a=1 i=1a,b,d=1
1 n N
i j.b.d -l
t7 2 2 Taplhirg e L, xilzal
i,j,l=1la,b,d=1
= Z zfac[xl,m][xl,za - —z Z w5 e azalza, 2]
il=1a=1 i=1a,b,d=1
1 n N n S
i  pj.b,d -l l
t7 2 2 Taplhirg e e xlzal = 203 Tyl [, xi)zal.
i,j,l=1a,b,d=1 i,l=1a=1

The last two terms belong to H Ho(T'V), so we may discard them when considering
dcl, (W). In consequence, summing up, we obtain that dcl. (W) is the class of the element

1 < 5 ) )
_EZ Z Iy T gzalzas 2],

i=1ab,d=1

whose cyclic derivatives belong to the ideal generated by the cyclic derivatives of W if
and only if it vanishes. Therefore, using the Jacobi identity and Proposition 1 (or, more
precisely, Remark 2), the set of homogeneous derivations {a’c1 Je=1.....s preserve the ideal
(R(n,s)T) if and only if the quartic form Zf’:l(l“;’bl“c")d + Fa"’CF}f,d + F;ydflf)c) (i.e.
the one given by z* — g(I"(z*, z%), I'(z*, 2*)), for z* € V) vanishes. As explained in
[13], §6.1, this happens for n = 3, 4, 6, 10. This also gives a simpler proof in the pre-
print article Yang-Mills theories in dimensions 3,4,6,10 and Bar-duality of M. Movshev,
Prop. 20 (besides the other implication which was not stated there).

2.3. Another description of the super Yang-Mills algebra. Define h(n, s) to be the
super Lie algebra generated by the super vector space U (n, s) = U(n, s)o ® U(n, s)1,
where U(n, s)o = spang(q2,...,qn, P2...., pn) and U(n, s); is the vector space
spanned by z}, ..., z;, with the relation space given by R(n,s) = k.(Qi_,[qi, pil +
% >z 2D e b(n,s) = f(U(n,s))/(R(n,s)"). The (super) Lie algebra a = k.d,
with d even, acts by (even) derivations on h(n, s) as follows:

d(gi) = pi,
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d(pi) = Z[QJ’ qdij» qil] Z b[Za’Zb

j=2 a b=1
d(z) = ZZ pACINEAL
j=2b=1
foralli = 2,...,nand a = 1,...,s. Note that, for the previous action to be well-

defined, I" need not be nondegenerate. We now easily obtain a morphism of super Lie
algebras

v ym@n, ) — ax hn,s)
given by
xi—>d,  xiv> g, Za b 2,

foralli = 2,...,nanda = 1,...,s. The morphism is well-defined because of the
assumption that B} is orthonormal with respect to x| |y, o I". Moreover, it is bijective
with inverse given by the morphism of super Lie algebras

1,0‘1 tax hn,s) — ym(n, S)F,
defined as
de—x1, gqgi+xi, pir>xLxl, 2z,

foralli =2,...,nanda =1, ..., s. Therefore, we have that, under the assumption that
I' is nondegenerate, ym(n, s)!" >~ a x h(n, s), which further yields that YM(n, s)!" ~
U(a)#H (n, s), where H(n,s) = Uh(n,s)) (cf. [25], Prop. 11). In particular, we may
regard h(n, s) canonically included in ym(n, s)" (using the morphism v ~1). We would
also like to point out that all previous isomorphisms also hold if we consider ym(n, )"
as a graded Lie algebra with generators x; in degree 2 and generators z, in degree 3, a
as the free graded Lie algebra with generator d of degree 2, and h(n, s) as a graded Lie
algebra with generators g; of degree 2, p; of degree 4 and z/, of degree 3, with the given
relation (of degree 6).

3. Several Homological Computations

In this section we provide several homological results about the super Yang-Mills alge-
bras. In fact, the first part can be regarded as the generalization of the study done by
Connes and Dubois-Violette for the Yang-Mills algebra in [10]. In the last subsections,
we derive several consequences about the super Yang-Mills algebras, some of them that
will be useful for the study of the representation theory in the following section, while
others will be important for a further study of these super algebras.

3.1. A Koszul-like projective resolution. In this subsection we shall provide the minimal
projective resolution of the left YM(zn, s)” -module k, when YM(n, s)" is considered
as a graded algebra, where we suppose that (r, s) € (N x Ng) \ {(1, 0), (1, 1)}. We have
excluded the case (1, s) = (1, 0), because in this case the super Yang-Mills algebra is a
polynomial algebra in one (even) variable. Using ideas analogous to the case of Koszul
algebras, we shall construct from the previous resolution the minimal projective resolu-
tion of the YM(n, s)F -bimodule YM(n, s)F , and derive several consequences from the
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explicit shape of the previous resolutions. Although some of the results of the first part
of this subsection are mentioned in [25], our aim here is to give detailed proofs of all
these results, that we will need later. In any case we believe that the methods used are
standard.

Regarding YM(n, s)!" as a nonnegatively graded connected algebra with the grading
stated in Subsect. 2.1, and since k is a bounded below graded module over YM(n, s)r s
we know that there exists a minimal projective resolution of k over YM(n, s)!, which

is of the form K, = YM(n, DT @ TorZM("’S)F(k, k) (see La catégorie des modules
gradués sur une algebre graduée by R. Berger, Théo. 1.11, Prop. 2.3). In order to obtain
this minimal projective resolution, we shall proceed as follows. First, we will compute
the homology groups He(h(n, s), k) together with their action of a. From the Hochs-
child-Serre spectral sequence Elz,‘q = Hy(a, H;(h(n, s), k)) = Hp+q(nm(n,s)r, k),
we shall obtain the homology groups H, (hm(, s)”, k). These computations will in turn
give the minimal projective resolution of k over YM(n, s)!". We remark that all algebras
a, h(n, s) and ym(n, s)!" in these computations are considered as graded Lie algebras
with the grading explained at the end of Subsect. 2.3.

We first compute the homology groups H,(h(n, s), k) together with their action of
a. The minimal projective resolution of k as a module over H (n, s) = U(h(n, s)) is of
the form

;4 dy €h(n.s)
0— Hn,s)® R(n,s)’ > Hn,s)@U(n,s) > Hn,s) = k—0, ®

where we recall that @) is given by the restriction of the map H(n, s) ® U (n, $)®%
H(n, s)®U (n, s) ofthe form zQ (v®w) +— z.vQw,forz € H(n,s)andv, w € U(n, s),
and di is the restriction of the multiplication of H (n, s). Indeed, if H (n, s) is consid-
ered to be generated in degree one, i.e. U(n, s) is seen to be concentrated in degree
1, H(n, s) becomes a quadratic algebra with only one relation, and is therefore Koszul
(see [16], Thm. 3). Moreover, the minimal projective resolution of the H (n, s)-mod-
ule k is given by (9), because the map d is injective. To prove this last statement
we may note that, if n > 2 then U(ym(n, s)’') D U(ym(n)) is a free extension of
algebras with &/ (hym(n)) a domain, and if n = 1 and s > 2, it follows from a sim-
ple computation using an explicit basis of the algebra U (h(1, s)) given by the Dia-
mond Lemma (see [8]). Since the resolution (9) also holds for the special grading of
H(n,s), i.e. when deg(q;) = 2, deg(p;) = 4, and deg(z,) = 3, foralli =2,...,n
and a = 1,...,s, the claim follows. In particular we have canonical isomorphisms
Ho(b(n, s), k) >k, H(h(n,s), k) ~U(n,s), Hy(h(n,s), k) >~ R(n,s)" and the other
homology groups vanish.

In order to obtain the action of a on the homology groups we compare the previ-
ous resolution with the Chevalley-Eilenberg resolution of k over the graded Lie algebra
ym(n, s)!", seen as a resolution of k as h(n, s)-modules. We recall that, for a graded (or
super) Lie algebra g, the Chevalley-Eilenberg resolution of the trivial g-module k is of
the form (U (g) ® A°g, d?E), where we recall that the exterior tensor products are taken
in the graded (or super) sense, and the differential is given by

n
dr(EE(Z QYA A yn)ZZ(—I)U’iI(l,Vl\+'"+|yi—1|)+(i—1)zyi @ YIA AP A Ay,

i=1

+ D D@y YAV A AT A AP A A Y,

1<i<j<n
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where y; j = [yil(|y1l + -+ [yi—i ) + |y [(Ayil + -+ [yj—1D) + [yilly;| + (@ + j), and
where yi, ...y, are homogeneous elements in g and z € U(g) (cf. [29], Sect. 1).

We have the following comparison morphism of resolutions of projective H (n, s)-
modules of k:

/ ’
d d] eh

2
0 HQR —HQU H k 0
i \Lcan inc inc
JCE JCE JCE JCE .
4 3 3 ) 2 1 nm
> YM@ATym —> YM® A nm4>YM®nm YM k 0

where we have omitted the indices (n, s) and I" for simplicity,

can(z ® (Z 4, pil Z[za, =28 (sz Alxr, xil+ 5 Zza A Za).

i=2

and we remark that the exterior power and the wedge product here are in the supersym-
metric sense.

Applying the functor (—)y,,s) to both resolutions, we see that, under the previous
comparison morphisms,

(G 1 e (YM(n, S)F)h(n,s) corresponds to 1 € k >~ Hy(h(n, s)),
() 1®x, ..., 1 Qx,, 1 @ [x1,x2], ..., 1 ®[x1,x,], 1 ® 21, ..., 1 & zg inthe coin-
variant space given by (YM(n, HT' e pm(n, $))h(n,s) correspond to the elements
G2 s lns P2s ooy PnsZys oo, 250U (0, s) = Hi(h(n, s), k),
(iii) the element 1® Q7 ,x;i Alx1, xi1+(1/2) >0 _1za Azq) in (YM(n, HT ®
Aznm(n,s))h(n,s) corresponds to the relation given by >7 ,[gi, pil + (1/2)
> _lzh. 2] € R(n, s) =~ Ha(h(n, s)).

The action of a = k.d on the homology groups is induced by the action of x; on the tensor
component YM(n, s)!" of the modules YM(n, s)”” ® A®ym(n, s)! of the Chevalley-Ei-
lenberg resolution. This immediately implies that the action of x1 on Hy(h(n, s), k) ~ k
is trivial, for x| = d]CE(l ® x1) is a boundary.

Concerning the action of a on Hy(h(n, s), k), we have the identity x1.q; = p;, for
alli =2,...,n,since

X1 ®x = 1®[x, x]+x @ x1 +dS E(1® (x1 A X)),

and x; ® x| € (YM(n, 5)"" @ ym(n, )" )p,s) vanishes. Moreover, the action of x| on
both p; and z, is zero, fori =2,...,nandfora =1, ..., s, respectively. To prove the
first half of this statement, note that x; & [x1, x;] is equal to

[x1, %] @ x1 +1® [x1, [x1, %11 +dS E(1 @ (x1 A [x1, 1))

=[x, 5] ® x| — Zl@[x,,[x,,xlm Zrlble@[za,zb]
j=2 ab 1

CEA® (x1 A [x1, %i1)
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n n
=[x, %] ®x +d2CE(Zl ®xj Alxj, x;]) —Z(Xj ® [xj, xi] — [xj, xi] ® xj)
=2 =2

1 K ‘ s '
— ZCE(E Z rl,1®z /\Zb) + Z Il pza ®2p+d§ 5 (1@ (x1 A [x1, x1),
a,b=1 a,b=1

and the elements [x1, x;]1 ® x1, x; ® [xj, xi] — [x;, %] ® x; andz, ® zp, of (YM(n, )"
® ym(n, )7 ) (.5 vanish.
The second half of the statement follows from

X1 ®20 =1 ®[x1, 24l + 24 @ x1 +d5 E(1 ® (x1 A 24))

and the fact that z, ® x; € (YM(n, 5)"" @ ym(n, )" )pn,s) vanishes.
Finally, the action of x; on Ha(h(n, s), k) >~ R(n, s) is trivial, which can be proved
as follows. First, note that

n s
1
X1 ® (;xi /\[xlaxi]"'zazlza /\Za)

n
=d§F(1® (1 Axi Alx, xiD) + D (6 @ x1 A Lxn, 6] — [x1, 6] @ x1 A xi)
i=2

n n s
— 21®X1 A [xi, [Xl,xi]]+zl®xi A [x1, [Xl,xi]]+Zza ® X1 A Zq
i=2 i=2 a=1

1 N N 1 s
+d3CE(§ZI®x1 A Za /\za)+21 Q [x1,zal AN zg — 521®x1 Alza, zal,
a=1 a=1 a=l1
which can be further rewritten as

n
d§E (1@ (e Axi Alxn, i) + D (6 @ x1 A Lxr, xi] = [x1, 6] ® xp A x;)
i=2

n N N
1
+§ 1Q®x; Alxr, [x1, xi11+ E za®x1/\za+d3CE(§ E 1®x1/\za/\za)

i=2 a=1 a=1

s
+zl®[-xls Zal A Za,

a=1

where we have used the first relation rg ; of (2).

Since x; ® x1 A [x1, x;] — [x1, X1 @ x1 Ax; and z; @ x| Az of (YM(n,s)! ®
Azt)m(n, s )h(n,s) vanish, it suffices to prove that the element of (YM®, s)I' ®
A?ym(n, s)7)p, 5) induced by

n N
Do 1@x Alxr, v, xill+ D 1@ [x1, 2a] A 2

i=2 a=1
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also vanish, which follows from

n N
21 ® xi A [xy, [x1, xi]] +Z 1 ® [x1,24] A 24
=2 a=1
n

n A
1 .
=- Z 1®x; /\[x]‘,[xj,xi]]+§z Z 1 ®xi Alza, 2p]

i,j=2 i=2 a,b=1
s N
- Z Zl“a”bl ® [xi, 2] A 2a
a,b=1i=2
1 n n N
=3 gE( Z I ®xi Axj A[xi,Xj]+Z Z Iyl ®xi /\szza)
i,j=2 i=2 a,b=1
1 s n
_EZ Z I (i @25 A za — 225 @ Xi A Za) — Z Xi ® Xj A [xi, x;]
i=2a,b=1 ij=2

1 &
_E Z[xi,xj]®xi ANXj.
ij=2

We now proceed to compute the homology groups He(a, He(h(n, s), k)). In this case,
the Chevalley-Eilenberg resolution is of the form

0— U) @kd — U@ = k — 0,

where the first nonzero morphism is given by the restriction of the multiplication
map of U(a). In particular, Ho(a, k) >~ k, Hi(a,k) >~ k[-2], Hyo(a, R(n,s)") =~
k[—6], Hi(a, R(n,s)") =~ k[—8], and zero otherwise. Moreover, the previous resolution
tells us that

Ho(a, U(n, 5)) 2 span(qa, ..., gn. Zys -+ Zg),
H] (aa U(n’ S)) = Spank<p27 cevy Pns Z/]a L] Z/y)[_z]v

and the other homology groups vanish.
Now, since the Hochschild-Serre spectral sequence

E} , = Hy(a, Hy(h(n. ). k) = Hprg(omn, s)", k)
is concentrated in columns p = 0, 1, it follows that
Hn(Um(n, S)F7 k) o Ho(a7 Hn(b(n’ S)a k)) @ H] (a7 Hl’l*] (h(}’l, S)’ k))v

for all n € Ny (see [28], Cor. 10.29). Hence,

k, ife =0,
Vn,s), ife=1,

Ho(ym(n, )T k) =~ { R(n, s)", ife=2, (10)
k.w, ife =3,

0, otherwise,
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where w = X' xi @ roi + 2124 ® ri,q € (TV)g. Note that k.o >~ k[—8] and
R(n,s)I" >~ V(n, s)*[—8] in the category of graded so(n)-modules provided with mor-
phisms of degree zero. Also note that w € (V ® R) N (R ® V), because of the identity

n N
> Ixiroil+ D [zai 1l =0
i=1 a=1

in the tensor algebra T'V.
Moreover, we have the following:

Proposition 2. Let (n, s) € (N x Ny) different from (1, 0) and from (1, 1). The minimal
projective resolution (K, (ym(n, Y, b.) of the YM(n, ) -module k is given by
v, v, b, b,
0—> YM[-8] > YM®R—>YM®V - YM — k — 0, (11)
where we have omitted the indices (n, s) and I' for simplicity. The differential is defined

as

S
WX ®roi+ 2, 224 ®ria,  biE®x) =z2x;, b(z®z4) = 224,
1 a=1

by(z) =

1

n K .
by(z®roi) = X (2x7 @ xi — 22xx% @ X +2xix; @ X)) — > I 224 ® 2, (12)
j=1 a,b=1

= |
by(z®@ria) = 2 2poy Ly (2% ® 26 — 226 @ Xi),  by(2) = €ymen )7 (2)-
i=1

n

Proof. As stated above, the YM(n, s)! -modules K L(ym(n, $)I', k) giving the mini-
r
mal projective resolution of k are of the form YM(n, s) & Tora %" (k, k). Since

H.(ym(n, )7, k) ~ Tora M9 F(k, k), the previous homological computations tell us
that the modules involved in (11) are correct and we only need to prove that the claimed
differential provides a resolution of k. It is obvious to see that this gives a complex, i.e.
b;obl,, =0,fori =0,1,2.

A similar argument to the one given after Lemma 2.3 in [5] shows that

b, b b
YM(#, )T @ R(n, s) = YM, )" ® V(n,s) = YM(n, ) = k — 0,

is exact. Indeed, let A = TV /(R) be a connected graded algebra, where V = &®;cnV;
and R = @;eN.,Ri S TV = By V®! are nonnegatively graded vector spaces and we
further suppose RN((T*V)R(TV)+(TV)R(T*V)) = 0, in order to avoid ambiguities.
In this case, we consider the complex

by by by
AQR—>AQV - A—>k— 0,

where b6 is the augmentation of A, b’l is the restriction of the multiplication of A, and
b), is the A-linear extension of the morphism R — TV ® V — A ® V, given by the
composition of the inclusion of R in T*V ~ TV ® V with the canonical surjection.
Since the zeroth degree component of b is zero, whereas the m™" degree component
(m > 1) is the surjective map

3 TVei 8V: | TV
(Rlu—iVi (R

)

ieN
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where (R),, is the component of degree m of the ideal generated by R in TV, it follows
that Ker(bf)) = Im(b/l). Moreover, taking into account that the mth degree component
of b}, is the map

2N T V)m—iR;i N 2 eNTV)m—jV;
2.ien (R) i Ri ZjeN (R)m—j Vi

3

then

SeNTVIm—iRi + 3 e (R) Vi
ZjeN (R)m—j Vj

Im(b5)m =

which coincides with

(R)
Ker(b))y = =——— 2 .
Gom ZjeN (R m—jVj

It is still left to show that b} is injective and that Im(b}) = Ker(b)). Let z €
YM(n, s)r such that b’3(z) =0, ie suchthatzx; =0and zz, =0foralli =1,...,n
anda = 1,...,s. Since YM(n, s)! is a free right module over the integral domain
Umm(n, s)g), we conclude that z = 0, so bg is injective.

In oder to prove that Im(b}) = Ker(b}), we proceed as follows. Since the third com-
ponent of the minimal projective resolution of k is YM(n, s)!” ® k[—8], the kernel of b,
should be of the form i : YM(n, s)T ® k[—8] — YM(n, s)I’ ® R(n, s)!". Hence, we
have the commutative diagram

YM®, s)T @ k[—8]
|

K
/

|

| b

17 YM@n, )T ® R(n, s) —= YM(n,s)" @ V(n,s).
|

|

Y
YM(n, s)"" @ k[—8]

Since bg is injective, i is also so, which in turn implies that it is an isomorphism, for
it is an injective endomorphism (of degree zero) of a locally finite dimensional graded
vector space. Hence, Im (b)) = Ker(b}), as was to be proved. 0O

Remark 3. Note that for (n, s) = (1, 1) the previous complex does not yield a resolution
of k, since Hy(h(1, 1), k) =~ k, for e € Np.

There is an analogous free resolution of right YM(n, $)T -modules of the trivial mod-
ule k, for (n, s) # (1, 0), (1, 1), which is of the form

v " "

b/
0> YM[-8] 3 RYM = V®YM— YM = k — 0, (13)
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where we have also omitted the indices (n, s) and I", with differential given by bg =
€ym(n,s)” and

n N

b{R) =D r0i ®Xiz— D ra®az  b{(xi ®2) =xiz, b (2a ®2) = 242,
i=1 a=1
n N
b’z’(roya ® z):Z(xi ® szz—2xj @ XiXjz+x; @ XjX;z7)— Z Féybza ® zpz, (14)
j=1 a,b=1

n

N
by(ria ®2) = szj,b(xz' ® b2 — 2p ® X;2).
i=1b=1

We shall denote this resolution by (K. (ym(n, s)"), b)).

We now recall that a nonnegatively graded connected algebra A is called (left) AS-reg-
ular of dimensiond and of Gorenstein parameterl if it has finite (left) global dimension
d and it satisfies that

i k[l], ifi =d,
Extly(k, A) ~ .
Xa( ) {O, otherwise.
We point out that no noetherianity assumption on A is required (see [24], Def. 1.1).
Since we shall be dealing with graded Hopf algebras, both left and right definitions of
AS-regular coincide in this case, so we will omit the reference to the side.
Using the fact that Homyyy, r (YM(n, 5)" [i], =) ~ (—)[—i], that

YM(n, ) @ V(n,s) ~ (YM(n, )" [=2] ® (YM(n, s)7)*[-3],
YM(n, )" ® R(n, s)" ~ (YM(n, )")"[-6] ® (YM(n, s)")*[-5],

and an elementary computation, one sees that the functor Homyyy, ¢r (—, YM(n, )
sends the resolution (K. (ym(n, s)7), b,) of left YM(n, s)" -modules of k to the shift
(K (ym(n, s)T), b/)[8]. We remark that we are always using Koszul’s sign rule, and,
in particular, X ~ X**, viathemapx — (f — (=DFIMh f(x); X®Y ~ Y ® X, via
r @y (—DPIMy @ x,and ¥ @ X* ~ Homi(X,Y),viay ® f — (x = yf(x)),
for (finite dimensional) graded (resp. super) vector spaces X and Y, and homogeneous
elements x € X, y € Y and f € X*. This tells us that YM(n, T s AS-regular with
Gorenstein parameter 8, in the sense of [24], for (n, s) # (1,0), (1, 1).

As a corollary of the previous description of the left and right YM(n, s)” -module
resolutions of k, we obtain the minimal projective resolution of the YM(zn, s)! -bimodule
YM(n, s)I", for (n, s) # (1,0), (1, 1). Consider first the free graded YM(n, s)" -bimod-
ule K,(ym(n, $)7) = YM(n, )" ® H,(hym(n, s)', k) ® YM(n, s)!", for ¢ > 0, given
with the obvious action, where H, (hm(n, )1 k) is identified to a subspace of TV (n, s)
following (10). Then, we define on it the differential given by by = b} ® lyp.5)r —

1YM(I1,S)F ® b/l/’ b3 = bé ® lYM(n,S)F — lYM(n,S)r ® bg, and

.
by(y @ Y1y ®Y) =D ¥y Yic1 ® ¥i ® yist - ¥,

i=1

where y, y’ € YM(n,s)r, Vi...yr € R(n,s)r, fory; € V(n,s),i = 1,...,r. Set
be = 0, for e > 4.1tis easily proved to be acomplex. If we define by : Ko(ym(n, s)r) —
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YM(n, s)!" given by the multiplication, we obtain an augmented complex. Moreover,
by the isomorphism (K4 (hm(n, $)1), be) @ypmpu.r k = (K, (ym(n, )T, b)) of com-
plexes of left YM(n, s)r -modules, [6], Prop. 4.1, tells us that the bimodule complex
(Ko(ym(n, s)7), by) is in fact a resolution of YM(n, s)" .

Let us recall that a locally finite dimensional nonnegatively graded and connected
algebra A is called (left) graded Calabi-Yau of dimensiond and of parameterl if it has
a finite resolution composed of finitely generated projective bimodules, finite global
dimension d, and satisfies that (cf. [7], Def. 4.2)

; e o Al ifi =d,
Exthe (A, A% ~ [0’ clse.
in the category of (right) A°-modules. Again, taking into account that we shall be dealing
with graded Hopf algebras, both left and right definitions of Calabi-Yau coincide, and
we will thus omit the reference to the side.

We claim that the image of the complex (K, (hym(n, s)), by) under Hom (YM(n,5)T)e
(—, (YM(n, 5)7)¢) is isomorphic in the category of graded YM(n, s)! -bimodules to its
shift (Ko (ym(n, s)7), (—1)*b,)[8], which follows easily as before from the fact that

Hom ymon.syrye (YM(n, )7 @ X @ YM(n, s), (YM(n, 5)")%)
~ Homi(X, YM(n, s)')°) ~ YM(n, s)! @ X* @ YM(n, s)",

where X is a finite dimensional graded vector space, and an elementary computation
with the differential. We remark that, if X = ®;.7X;, then X* = ®;.7(X™);, where
(X*); = (X—;)*. This in turn implies that the super Yang-Mills algebra is graded Ca-
labi-Yau of dimension 3 and of parameter 8, for (n, s) # (1,0), (1, 1).

Hence, we have obtained the following:

Proposition 3. Let (n, s) € (N x Ng) \ {(1, 0), (1, 1)}. The graded algebra YM(n, s)*
is AS-regular of global dimension 3 and of Gorenstein parameter 8. Moreover, it is also
graded Calabi-Yau of the same dimension and of the same parameter.

3.2. Some Consequences.

3.2.1. The Hilbert series of the super Yang-Mills algebra. We shall compute the Hilbert
series of both the graded algebra YM(n, s)! and the graded Lie algebra ym(z, s)!". In
order to do so, we first recall that the Hilbert series is an Euler-Poincaré map in the
category of graded vector spaces (see [22], Chap. III, §8) and that the Euler-Poincaré
characteristic of a complex of graded vector spaces, with respect to the Euler-Poincaré
map given by taking Hilbert series, coincides with that of its homology (see [22], Chap.
XX, §3, Thm. 3.1).

Proposition 4. The Hilbert series of the graded algebra YM(n, s)! provided with the
grading explained in Subsect. 2.1, i.e. such that x; has degree 2, for alli = 1,...,n,
and z, has degree 3, foralla =1, ..., s, is given by

1
—nt?2 —st3 +515 + 110 — 18’

YM(n, )T (1) = ;
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Proof. Since the complex (11) of graded vector spaces is exact, its Euler-Poincaré char-
acteristic, with respect to the Euler-Poincaré map given by taking Hilbert series, coincides
with that of its homology. Hence, omitting the indices (7, s) and I,

1 — YM() + (nt? +5s2)YM(1) — (nt® +52)YM(1) + t*YM(1) = 0,
from which the proposition follows. O

We state the following result, which we believe is well-known, but we give its proof
because we do not know any specific reference.

Proposition 5. Let V be a positively graded vector space with Hilbert series given by
2 jen vjt!. Then,

1
b= ) — > (- 1>dadu( ),

VT

forall j € N, where w is the Mobius function and the coefficients aq are obtained from
the formal series

aq 4
log(S(V)(¥)) = —1°.
0g(SV)(1) = —
deN
Equivalently, if S(V)(t)~" is a polynomial of degree m with roots A;, i =1, ..., m,

m

TEDI

i=1

Proof. First note that the Hilbert series of the symmetric algebra (in the super sense) of
a graded vector space V satisfying V() = > jeNV ;! is given by

[Ticon_ 1 (1 +19)" i in—(—=1)i;
SV = - = 1 — (=D Vi,
WO ==~ Ha=evn

In consequence, using that log(1 — 1) = — > .y t' /i, we obtain that
log(S(V)(1)) = — D (=1)v; log(1 — (1)t
ieN
)
i,jeN leN il

which means that
ag = (=) > (=D vi.
ild
By the Mobius inversion formula we have thus
[V
vj = e 1)"adu( ),
Uy

as was to be shown.
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To prove the last statement, note that, if S(V') (" Llisa polynomial of the form
- t
st =[la-—
(V)(0) H( P
i=1
then
“ IR
log(S(V)0) =2 > ~(5) -
i=1 jeNJ M
and the proposition is proved. O

As a consequence of the two previous propositions and the PBW theorem for graded
Lie algebras we obtain

Corollary 1. Let ZjeN v(n, s)jtj be the Hilbert series of the graded Lie algebra

pm(n, ) provided with the grading explained in Subsect. 2.1. We shall sometimes
write v; instead of v(n, s) j. Then,

—1)/ i
b= J.) > =D anc.
dlj

forall j € N, where the coefficients aq are obtained from the formal series

ad
log(1 — nt? —st3 +st> +nt® — tg) = — Z 4,
deN
or equivalently, if L1, . .., Ag are the roots of 1 — nt? —st3+st° +nt® — 18, we have that

8 8
ag= > 1= (=1
i=1 i=1

3.2.2. Some explicit computations of basis elements of a super Yang-Mills algebra. As
a corollary of the previous computation of the Hilbert series of the super Yang-Mills
algebra, we will present in this paragraph some simple calculations of the basis elements
of ym(3, 1)!" for low degree homogeneous components. Note that ym(3, 1)/ cannot be
equivariant.

We remark that in this case, under the assumptions explained in Subsect. 2.1, the
space of relations can be taken to be of the form

1
ro,1 = [x2, [x2, x11] + [x3, [x3, x1]] — E[Zl, 2], ri=1Ix1, 21,
ro2 = [x1, [x1, x211 + [x3, [x3, X211,  ro,3 = [x1, [x1, x311 + [x2, [x2, x3]].

We shall first consider the super Yang-Mills algebra nm(3, 1) as a graded Lie
algebra, and consider the descending sequence of ideals {F*ym(3, 1)’ JecN,» Where
F/ym(3, 1)!" is the graded vector subspace of ym(3, 1)’ given by the elements of de-
gree greater than or equal to j + 2. Our aim is to give explicit bases for the quotients
pm@3, DT /Fiym@3, DI forj=1,...,7.
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Using Corollary 1 for ym(3, DT, the sequence of dimensions v(3,1); (j € N) is
given by

0,3,1,3,2,6,6, 12, 15,33,42,77, 114, 213, 314, 555, 876, 1540, 2460, 4242, . ...

An ordered basis for the quotient algebra ym(3, 1)7' /Fym(3, 1)” of the super Yang-
Mills algebra, which is concentrated in degree 2, is given by 51 = {x1, x2, x3}, whereas
abasis of pm(3, )7 /F2pm(3, 1)7 may be defined as B> = {x1, x2, x3, z1}. Notice that
pm(3, D' /C2(ym3, D) = ym3, HT/Fym@G, D'

For the quotient ym(3, 1)’/ F3ym(3, 1)1, a possible ordered basis is

B3 = {x1, x2, X3, 21, X12, X13, X23},

where x;; = [x;, x;], (i, j = 1,2, 3). To prove that it is indeed a basis we must only
show that it generates ym(3, 1)F/F3tjm(3, )" (since #(B3) = 7), which is obtained
using that x;; = —xj;.

The quotient ym(3, 1)’/ F*ym(3, 1)" is a little more interesting, and a possible
ordered basis for it is of the form

Bs = {x1, x2, X3, 21, X12, X13, X23, Y2, Y3},

where we denote y; = [x;,z1] (0 = 1,2, 3). Again, it suffices to see that it generates
pm(3, DT/ Frym(3, )7, for #(B4) = 9. This follows from y; = [x1,z1] = r1,; = 0.
Note that ym(3, D) /C3(ym(3, D) = ym(3, 1)’ /F*ym(3, 1)7", because the vanishing
of rp,1 implies that [z1, z1] = 0.

We claim that the following set is a basis of ym(3, l)F/FSl)m(Z%, DI

Bs = {x1, x2, X3, 21, X12, X13, X23, Y2, ¥3, X112, X221, X113, X123, X312, [21, 211}

where x;j; = [x;, [x;, x¢]]. Indeed, as before, we only have to prove that it is a system
of generators of ym(3, l)F/FSt)m(3, )", because #(Bs) = 15. This is direct, and can
be seen from the Yang-Mills relations

1
X332 = —X112, X331 = —X221 + E[ZI»ZI], X223 = —X113,

and the relations given by antisymmetry and the Jacobi identity, i.e. x;jx = —xk;, and
X213 = X123 + X312.
Now, a basis of ym(3, 1)’/ Féym(3, 1)!" can be given by
Be = {x1, x2, X3, 21, X12, X13, X23, Y2, V3,
X112, X221, X113, X123, X312, [21, 211, Y125 Y135 Y225 Y23, Y325 V331,
where we write y;; = [x;, [x}, z1]]. That this is a basis is immediate, since its cardinality
is 21 and it is a set of generators of ym(3, l)r/FGUm(B’, DY, for [z1, xij] = yji — yij-

The case of ym(3, )T /F7ym(3, 1)7 is a little more complicated. We shall prove
that

B = {x1, x2, X3, 21, X12, X13, X23, Y2, ¥3, X112, X221, X113, X123, X312, [21, 211,
V12, Y135 Y22, Y235 ¥32, ¥33, X1112, X1221, X11135 X1123, X2221, X2113;
X2312, X3112, X3221, X3312, [X2, [21, 2111, [x3, [z1, 111},

is an ordered basis, where x;jx; = [x;, [x}, [xk, x/]]].



806 E. Herscovich

In order to prove that By is a basis it suffices again to verify that it is a system of
generators of the super vector space ym(3, 1)’ /F7ym(3, 1)’". On the one hand, taking
into account that

[[xi, x5 [k, 01 = [[xi, 51, xe ], x0] + [, [xi, x50, %11
=[xz, [xk, [eiy x5 100+ Dxwes [, [, 2010 = X + X jis

that [z1, [x;, z1]] = [xi, [z1, z111/2, and that [[[x;, x; 1, xk], x1] =[x, [xg, [, x50 =
Xikij, we see that the set Be U {xjjxs @ i, j, k, I = 1,2,3} U{[x2, [z1, z1]], [x3, [z1, 2111}
is a system of generators. We shall prove that it is generated by B7. In fact, we only need
to prove that the latter generates the set

{xi112, X221, X113, Xi123, Xi312 - i = 1,2, 3},

because {x112, X221, X113, X123, X312} are generators of the homogeneous elements of
degree 6. This last statement is direct:

X3113 = X1221,  X2112 = —X1221,  X2123 = X3221 + X2312 — X113,
X3112 + X2113 — X1123 Xi112 + x2221 — x3312 [x2, [21, 21]]
X1312 = > , X3123 = > — 2 .

3.2.3. The ideal tym(n, s)" and some algebraic properties of the super Yang-Mills alge-
bra. In this paragraph we shall obtain an important result which will be useful in the
sequel: the graded Lie algebra tym(zn, s)! is free. We will also compute the Hilbert series
of its space of generators. In order to do so, we shall prove that the homology groups
of degree greater than one of the graded Lie algebra thym(n, s)!" with coefficients in k
vanish. At the end, we shall derive several algebraic properties of the super Yang-Mills
algebras.

First, we need a subsidiary result, for which we recall that the quotient ym(n, s)''/
tt)Am(n, T~ V() tells us that V(2)g, and hence S(V(2)o), is a module over
YM@n, s)T.

Proposition 6. Let us suppose that n > 2. The homology groups He(ym(n,s)',
S(V(2)o)) of the graded Lie algebra Um(n,s)r with coefficients in the module
U(ym(n, S)F/tt)Am(n, )T ~ S(V(2)o), which is obviously a graded right YM(n, s)" -
module, are given by

k, if e=0,
H.(ym(n, )T, S(V(2)o)) = 1 W, )", if e=1,
0, else,

where W (n, s)! is the graded vector space with Hilbert series

W, )" () = (n=2)1* + 2n = 3)e* + > @n — 9 + D" st
k>3 k>1

Proof. We shall make the computation of the homology groups using the minimal projec-
tive resolution in Proposition 2. It is direct to see that the complex (S(V (2)¢) YM@,5)"
K.(ym(n, ), 1® b.) is the direct sum of two complexes (K., b.") and (K", b)),
which we now describe. The latter is given by K;™ = S(V(2)) ® V(s)][-8], K" =
S(V(2)o) ® V(s)1 and zero otherwise, with differential
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b
S(V(2)0) ® V(s){[=8] = S(V(2)0) ® V(5)1 (15)
of the form
n N .
by (y®ria) =D, > Th,yxi ® 2,
i=1 b=1
where we recall that the action of x; on y is zero fori = 3, ..., n, but we prefer to write

the complete sum for convenience. The complex (K, b,") is similar to the one analyzed
in [20], Prop. 3.5, (3.3). It is obvious that Hy(K_, ) = k, and further H3(K_.") = 0, for
the map b3 is injective. Indeed, b3 (y) = 0, for y € §(V(2)2), means that yx; = 0, for
i = 1, 2, which implies that y vanishes, for S(V (2)o) is a domain.

Moreover, we shall also show that H>(K_") = 0. Consider y = Z?:l yi®ro; € Ky
in the kernel of b5", which is equivalent to the vanishing of

bz(zy1®701)— Zyzx @ Xxi — YiXjXi @ xj = Z(YZx _y]xzxj)®xz

i,j=1 i,j=1
This means that Z?:l (yisz. vjxixj) =0,foralli =1,...,n. Since the action of x;
on S(V(2)g)iszerofori =3, ..., n, we getthat y; (Zj 1 J) =0, foralli = 3,.
which in turn implies that y; vamshes fori = 3, ..., n. Hence, the cycle y has in fact

the form Ziz:l yi ® ro,i, and satisfies that Z?:l (yisz. —yjxixj) =0, fori =1, 2. So,
y can be regarded as a cycle of the complex analyzed in [20], Prop. 3.5, (3.3), forn = 2,
whose second homology group vanishes (a direct proof in the case n = 2 is also direct).
By the definition of the differential of this latter complex, we conclude that there exists
x € S(V(2)o) such that y; = xx;, fori = 1, 2, which tells us that b3"(x) = y.

We shall further prove that H,(K,.") also vanishes for ¢ = 2, and so for ¢ > 2.
Otherwise stated, we will prove that b3" is injective. Since by" is a morphism be-
tween two finitely generated free modules (of the same rank) over the commutative
domain S(V2), b5 is injective if and only if its determinant det(b;") does not van-
ish. Since the matrix representation of by in the respective bases {ri,4}q=1,...s and
{zala=1...s is given by (x184p + F ",X2)a,b» its determinant has a term of the form xi,
and hence 1t does not vanish. As a consequence, H,(K,") vanishes for ¢ = 2, and thus
H,(hm(n, )", S(V(2)o)) = 0, for e > 2.

It remains to prove that the Hilbert series of W(n )T = Hi(ym(n, s)7', S(V(2)0))
is the stated above. By the previous remarks, we know that H (ym(n, s)'", S(V (2)0)) =~
Hi(K.]) @ Hi(K."). This follows from the fact that the Euler-Poincaré characteristic
of the complex (S(V(2)o) YM@m,5)" Ko(hm(n, HM,1® b)) of graded vector spaces,
with respect to the Euler-Poincaré map given by taking Hilbert series, coincides with

that of its homology, i.e.
2 st +nt® + 587 — 18

(1—12)2

L= W) = =™

The Hilbert series of W (n, s)! stated at the beginning follows easily from the previous
identity, and the proposition is thus proved. O

Remark 4. If the super Yang-Mills is equivariant, the injectivity of 3" can also be proved
as follows. Consider the map
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SV ® Vs) 5 S(V(n)o) ® V(s)i[-8].

n N
Q24 ZZ b @y,
i=1 b=1
where we write again all the variables in the previous sum for convenience, even though
the action of x; on S(V(2)¢) vanishes for i = 3,...,n. Condition (4) tells us that
(b)) ob ) (z®r1,4) = Z-(Z7=1 xiz) ® 11,4, which in turn implies that b5 is injective,
for z.(Z?Zl xiz) = z.(zd.zz1 xiz) and S(V (2)¢) is a domain. This idea is implicit in [25],
where it seems to be assumed that the super Yang-Mills algebra is equivariant.

As a consequence of the previous proposition we obtain the following.

Theorem 2. Let n > 2. The graded Lie algebra tt)Am(n, ) is free with the space of
generators isomorphic to W(n, s)*.

Proof. Since U (ym(n, s)7") ®u(tﬁm(n,s)1") k >~ S(V(2)o), Schapiro’s Lemma for graded
Lie algebras (which is proved in the same way as for Lie algebras or group algebras, cf.
[30], Lem. 6.3.2) implies that H, (nm(n, s)7", S(V (2)0)) =~ H.(tym(n, s)!, k). The pre-

~ Y% r
vious computation yields that Hq (thm(n, s)F k) >~ TorTYM("’S) (k,k) =0, fore > 2,
so the minimal projective resolution of the TYM(n, s)! -module k, which is of the form

(TorTYM("’S)F (k, k), d,), has only two nonvanishing components, for ¢ = 0, 1. Hence
H, (tUAm(n, ), M) = 0, for ¢ > 2 and for any tt)Am(n, $)! -module M, which implies
that tym(n, s)' is a free graded Lie algebra (this is proved in the same way as for Lie
algebras, cf. [30], Ex. 7.6.3). Moreover, Shapiro’s Lemma tells us that ttfm(n, Hl =
f(W(n, s)T), for

Wn, )" = tymn, )' /ltym(n, ), tym(n, 5)']
~ Hy(tym(n, s)|, k) =~ H (ym(n, s)", S(V(2)0)),

and the theorem follows. 0O

Remark 5. Since the Lie ideal tym(n, s)” is a subalgebra of the free graded Lie algebra
tym(n, s)7, it is also a free graded Lie algebra, by Shapiro’s Lemma. As in the proof
of the theorem, taking into account the isomorphism U (ym(n, s)'") Ru(tymin,s)7) k =
S(V (n)o), Shapiro’s Lemma tells us that Hy (ym(n, s), S(V (n)0)) =~ He(tym(n, s)', k).
Since tym(n, s)! is free, the latter homology group should vanish for e > 2,
Ho(tym(n, s)T' k) ~ k, and Hi(tym(n,s)' k) ~ Hi(ym@m,s)', S(V(n))) =~
Wn,s)', where W(n, s)! is the graded vector space of generators of tym(n, D
Its Hilbert series can be computed using again the fact that the Euler-Poincaré character-
istic of a complex of graded vector spaces, with respect to the Euler-Poincaré map given
by taking Hilbert series, coincides with that of its homology, applied to the complex
(S(V(1)0) ®ymen.syr Ke(ym(n, $)7), 1@ b]). We get that

(1= —1+nt®+st3 —st> —nt® +13

r _
Win,s)" (t) = a =2y

Note that the graded vector space given by the even part of W (n, s)!" is isomorphic
to the graded vector space W (n) considered in [21], Sect. 3, provided with the special
grading.



Representations of Super Yang-Mills Algebras 809

For completeness, we shall also analyze the case of super Yang-Mills algebras
pm(n, s)’ when n = 1. In the case s = 0, the super Yang-Mills algebra nm(1, 0)°
is just the one-dimensional super Lie algebra concentrated in degree zero. We shall now
restrict ourselves to the case s # 0. As noted before, the nondegeneracy of I" implies
that ym(1, s)"" = k.x; x h(1, 5), where h(1,5) = f(z1, - - ., 25)/ (X1 [2a> Zal)-

The cases ym(1, 1) and ym(1, 2) are nilpotent and finite dimensional, and its rep-
resentation theory can be analyzed using the below recalled Kirillov orbit method. In
particular, ym(1, 1)’ is a supercommutative super Lie algebra of super dimension (1, 1).
The super Lie algebra ym(1, )" has super dimension (2, 2), with basis x1, z1, z2 and
[z2, z2], where [z1, z1] = —[z2, z2], and all other brackets vanish. As a consequence,
since the enveloping algebra of a finite dimensional super Lie algebra is noetherian, we
get that YM(1, 1) and YM(1, 2)”" are noetherian.

We shall now suppose that s > 3. In this case, it is easy to prove that the Lie ideal
E(1,n) of h(1,s) given by (z3, ...,z [z1, 22]) + F7h(1, n), where F7h(1,n) is the
super vector space formed of elements of h(1,s) of degree greater than or equal to
9. It is also an ideal when regarded inside ym(1, $)I". Note that UM, n)/t(1, n)) ~
k{z1, Zz)/(Z% +z%, [z1, z2]), where the [z, z2] is the supercommutator of z; and z5.

Using the Diamond Lemma, it is easy to see that a (homogeneous) basis of it is given

by z‘l"zg , where o € {0, 1}, and B8 € Np, and the multiplication is determined by

Bad = DPuf*”

/
,
and

iz = DL
The following proposition is a direct consequence of the expression of the complex
(9) and the previous description of U (h(1, n)/E(1, n)).

Proposition 7. Let us assume that s > 3. The homology groups He(h(l,s),
U1, n)/e(1,s))) of the graded Lie algebra h(1, s) with coefficients in the module
UM (1, n)/e(1, n)), which is obviously a graded right H(1, s)-module, are given by

k, ife=0,
Ho(h(1,5), UL, 5)/8(1,5)) = 1 W(l,s), ife=1,
0, otherwise,

where W (1, s) is the graded vector space with Hilbert series
W(l,5)(1) = (s =206 + 25 = 3)°+ D (25 — 4"
k>3
The arguments used in Theorem 2 also yield

Theorem 3. Let s > 3. The subalgebra ¥(1, s) of the graded Lie algebra H(1, n), and
also of wm(1, s)T", is free with the space of generators isomorphic to W(1, s).

As a corollary of the previous theorems we obtain the following result.

Corollary 2. Letn > 2 orn = 1l and s > 3. In either case the super algebra YM(n, s)F
is not (left nor right) noetherian.
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Proof. Let us denote by b a free super Lie algebra inside ym(n, s)!" such that the dimen-
sion of (the underlying vector space of) b is greater than 1, which exists by the previous
theorems. The proposition is now proved by an analogous argument as the one presented
in the three paragraphs of [20] before Remark 3.14. Since the extension U/ (hm(n, s)7) 2
U) is free (i.e. U(ym(n, $)1) is a free (left) module over U()), any (left) ideal I C
U (h) satisfies that U (hym(n, $HH.IN U(h) = I. The fact that the super algebra U/ (h) is
not noetherian (because it is free with more than one generator) implies in turn that the
super algebra U/ (ym(n, s)') is not noetherian. O

Even though the previous algebras are not noetherian, we will prove that they are
(left and right) coherent. We recall that a (say left) finitely generated module M over
graded algebra A is called coherent if all its finitely generated submodules are finitely
presented. It is easy to prove that the category of coherent modules over a graded ring
is an abelian subcategory of the category of all modules 4 Mod over the graded algebra
A. Moreover, the graded algebra A is called left (resp. right) coherent if the category
of finitely presented left (resp. right) modules coincides with the category of coherent
modules, or otherwise stated if the former is abelian. We stress that all modules here are
graded. Also note that the previous condition can be easily seen to be equivalent to either
of the following statements: any finitely generated submodule of a finitely presented left
(resp. right) module is finitely presented, or any finitely generated left (resp. graded)
ideal is finitely presented. We shall denote by 4mod the category of coherent (graded)
modules over the graded algebra A.

Note that the super Yang-Mills algebras are (graded) Hopf algebras, for which the
notions of left and right noetherianity coincide, and the same applies to coherency. So,
we shall just refer to these algebras as noetherian, or coherent.

We first recall the following result due to D. Piontkovski.

Proposition 8. Let A be a graded algebra and J a two-sided ideal of A (different from
A), which is free as a left module. Then, if the quotient graded algebra A/J is right
noetherian, A is right coherent.

Proof. See [27], Prop.3.2. O
We have the following immediate consequence.

Corollary 3. Let g be a N-graded Lie algebra and Yy a Lie ideal of g (h # g). Then, the
U(g)-module U(g)h is free if and only if Yy is a free graded Lie algebra. As a consequence,
assuming that the quotient graded algebra U(g/b) is noetherian and Y is a free graded
Lie algebra, U(g) is coherent.

Proof. Note firstthatl/(g)h = hld(g) is atwo-sided ideal, and U (g/h) >~ U(g)/ (U (g)h),
so the second statement follows directly from the first one and Proposition 8. In con-
sequence, we only have to prove that U (g)h is a free U/ (g)-module if and only if b

is a free graded Lie algebra. The former is equivalent to show that Tor%{(g) (k,U(g)h)
vanishes for e > 1, since U(g)h is a bounded below graded U/ (g)-module, and the
latter is equivalent to the vanishing of Torzfl(b) (k, k) ~ Torz./{(g) (k,U(g/h)), for ¢ >
2, since U(h) is a graded connected algebra, as explained in Theorem 2. The previ-
ous isomorphism follows from Schapiro’s Lemma, since Torz.’{(h) (k, k) >~ Hqo(h, k) ~
H,(g,U(g/h)) =~ Torz./{(g) (k,U(g/h)). It thus suffices to prove that both homology
groups Torz.”(g) (k,U(g)h) and Toru(g) (k,U(g/h)) are isomorphic, for ¢ > 1.

o+1
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Consider the short exact sequence of U/ (g)-modules
0— U(gh — U(g) — U(g/h) — 0,

which induces a long exact sequence on torsion groups

coo = Toth® (k, U (g/h)) — Tort' @ (k, U (g)h) — Tor' @ (k, U(g)) —

i+1
— Tor'® (k, U(g/h)) — Tor" (k, U(g)h) — Tort' Pk, U(g)) — ....

The vanishing of Torz.’{(g)(k,Z/I(g)) for ¢ > 1 (because U(g) is free) implies that
Tor® (k,U(g/h)) ~ Torz./{(g) (k,U(g)h)) for ¢ > 1, which proves the corollary. O

o+l
Theorems 2 and 3 together with the previous corollary now yield the result:

Corollary 4. Let n > 2, orn = 1 and s > 3. Then the super Yang-Mills algebra
YM(n, s)! is (left and right) coherent.

Remark 6. Note that ym(0, 5)° is a free graded algebra on the generators zp, . . ., z;, and
hence it is obviously seen to be coherent (applying Corollary 3 for h = f(z2, ..., z5)).
For the other values of the parameters (n = 1 and s = 1 or s = 2), the super Yang-Mills
algebra is noetherian, so a fortiori coherent. As a consequence, we see that the super
Yang-Mills algebras are coherent for all values of the parameters n and s.

Since YM(n, s)© is AS-regular with Gorenstein parameter 8, we may consider the
(finite dimensional) Beilinson algebra VYM(n, s)!" associated to it, i.e.

YM(n, ) YM@n, ) ... YM(@n,s)f
I r

VYM(n’ S)F — O YM(}’Z, S)O PP YM(n’ S)f) ’
0 0 oo YM(n, )}

with the obvious matrix multiplication. Equivalently, it can also be easily defined by a
quiver algebra with relations.

We now recall for a connected Np-graded algebra A the definition of the (abelian)
quotient categories Tails(A) = 4Mod/ 4 Tors and tails(A) = g4mod/ 4tors, where 4 Tors
is the category of torsion (graded) modules over A, i.e. the modules M that satisfy that
forany m € M, thereisi € Nsuch that A-;.m = 0, and 4tors is the category of torsion
coherent modules over A (cf. [2], Sect. 1).

Then, using [24], Thm. 4.12 and 4.14, we obtain

Proposition 9. Let n > 2, orn = 1 and s > 3. Then, there exist equivalences of
triangulated categories

D(Tails(YM(n, s)1)) ~ D(yymn.syrMod),
DP(tails(YM(n, 5)")) = D" (yypn.yr mod).
As a further consequence of the freeness of the subalgebra tym(n, s)!, we obtain the
following result.

Proposition 10. Let n > 2. Then, the super Yang-Mills algebra YM(n, s)* is a semi-
primitive domain, i.e., it has vanishing Jacobson radical and does not have zero divisors.
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Proof. We first prove that the super Yang-Mills algebra is a domain. In order to do so,
note that, since all odd elements of the super Yang-Mills algebra ym(n, s)!" are in fact
included in the free super Lie algebra tlem(n, s)r , we have that [y, y] # 0, for all its
odd elements y. Then, [1], Thm. 2.7, implies that YM(n, s)F is a domain.

We shall now prove that the super Yang-Mills algebra is semiprimitive, i.e. the Jac-
obson radical of YM(n, s)! vanishes. We recall that the Jacobson radical of a super
algebra and of its underlying algebra coincide (see [9], Thm. 4.4, (3)). Also note that
the Jacobson radical of a free algebra is zero, since for any nonzero element w of a free
algebra, 1 — uw cannot be invertible for all elements « in the free algebra (take u to be
nonzero and noninvertible).

Let n > 2. Then the collection of one-codimensional inclusions of Lie ide-
als tt)Am(n, HT S bhn,s) € ymn,s)" gives us the isomorphism U(h(n,s)) =~
u (tlfm(n, $)1)[x2, 821, where 8, is the derivation on U (tt)Am(n, $)T) induced by ad(x7),
and U (ym(n, T ~ UM(n, s))[x1, 811, where &1 is the derivation on U(h(n, s)) in-
duced by ad(x1). As a consequence, the super Yang-Mills algebra I/ (ym(n, s)7) is a
sequence of Ore extensions with derivations of a free algebra, for n > 2.

Also, note that, ii A € B, is an Ore extension, then it is free, and in particular, by
the proof of Corollary 2, for any left ideal / of A, we have that B./ N A = [. This in
turn implies that J(B) N A € J(A). Indeed, consider the collection S of maximal left
ideals J of B such that they contain B.I, for some / a maximal left ideal of A. Note
that B.I # B, since B.I N A = I. Moreover, if J € S, and J D B.I, for I a maximal
ideal of A,then / = BINACJNA # A,and hence J N A = I, for [ is maximal.
We remark that J N A # A, because 14 = 1p ¢ J. Let S’ denote the collection of all
maximal left ideals of A. Since J(B) is the intersection of all maximal left ideals of B,
then

J(B)NAC ﬂ JNA= ﬂ I = J(A).
JeS 1eS’

The proposition now follows from [15], Thm. 3.2. O

4. The Main Result on Representations of Super Yang-Mills Algebra

The aim of this last section is to prove that (most of) the Clifford-Weyl super algebras
Cliff ; (k) ® A (k) are epimorphic images of all super Yang-Mills algebras YM(n, T,
under certain assumptions. This will rely on our previous study of the Lie ideal
tym(n, s)”. As a consequence, the representations of such Clifford-Weyl super algebras
Cliff; (k) ® A, (k) are also representations of YM(n, $)T", which is the analogous result
to the one proved in [20].

On the one hand, since the super algebra Cliff, (k) >~ M>q (k) is Morita equivalent to
the super algebra k, we easily conclude that the Clifford-Weyl super algebra Cliff>, (k) ®
Ap (k) is Morita equivalent to the super algebra A (k), and Cliffz441(k) ® A (k) is
Morita equivalent to Cliff (k) ® A, (k). Furthermore, the category of representations of
the super algebra Cliff; (k) ® A, (k) is equivalent to the category of representations of
the Weyl algebra A, (k). In both cases we see that the representations we obtain can be
understood as induced by those of the Weyl algebra (see Remark 9).

4.1. Some prerequisites. We shall now briefly recall a version of the Kirillov orbit
method and the Dixmier map for nilpotent super Lie algebras, which we will employ. We
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shall use the conventions of [19], to which we refer for the details and the bibliography
therein. We recall that a bilateral ideal 7 < A of a super algebra A is called primitive if it
is the annihilating ideal of a simple A-module, and it is called maximal if I # A and if
it is maximal in the lattice of bilateral ideals of A, ordered by inclusion. Every maximal
ideal is clearly primitive.

We have the following proposition.

Proposition 11. Ler I <U(g) be a bilateral ideal of the universal enveloping algebra of
a nilpotent super Lie algebra g of finite dimension. The following are equivalent:

(i) I is primitive.

(ii) I is maximal.

(iii) There exist p,q € No such that U(g)/1 ~= Cliff ;(k) ® A (k), where Cliff, (k) is
the Clifford (super) algebra over k and A, (k) is the p'" Weyl algebra, which is
concentrated in degree zero.

(iv) I is the kernel of a simple representation of U(g).

Proof. See [23], Prop. 3.3, and [19], Prop. 4.13. O

We remark that the Clifford-Weyl super algebra Cliff, (k) ® A, (k) in the previous
theorem has the Z/27Z-grading induced by the usual grading of the Clifford (super) alge-
bra Cliff,; (k) and by considering the Weyl algebra A, (k) to be concentrated in degree
Zero.

If I <U(g) is a bilateral ideal satisfying either of the previous equivalent condi-
tions, the pair of nonnegative integers (p, ¢) (uniquely determined) such thati/(g)/I =~
Cliff; (k) ® A (k) is called the weight of the ideal 1.

Let us suppose that g is a nilpotent super Lie algebra of finite dimension. Given
f € g, a polarization of g at f is a subalgebra h C g such that it is subordinated to
f.ie f([h,h]) = 0, and it is in fact a maximal subspace of the super vector space
underlying g with respect to the property that the bilinear form f([—, —]) vanishes on it.
It is easily verified that the super dimensions of all polarizations of g at f coincide and,
furthermore, that hy is a polarization of g at f if and only if h is a subalgebra subordinated
to f whose super dimension coincides with the one of a polarization of g at f (see [19],
Subsect. 3.4).

We shall now explain the connection between primitive ideals and even linear func-
tionals for a nilpotent super Lie algebra. If f € g is a linear functional and b, a
polarization at f, we may define a representation of by on the vector space k.vy of
dimension 1 by means of x.vy = f(x)vy, for x € hr. Therefore, we can consider the
induced U (g)-module V¢ = U(g) Quy B k.vy. If we denote the corresponding action
by p : U(g) — Endi(Vy), I(f) = Ker(p) is a bilateral ideal of the enveloping algebra
U(g). In the previous notation we have omitted the polarization in 7(f), due to the
following proposition, which states even more.

Proposition 12. Let g be a nilpotent super Lie algebra of finite dimension, let f € g;
and let by and h/f be two polarizations of f. If we denote p : U(g) — Endy(Vy) and

o U — Endk(V}) the corresponding representations constructed following the

previous method, then Ker(p) = Ker(p'). This ideal is primitive.
On the other hand, if I is a primitive ideal of U(g), then there exists f € g5 such that

I =1(f).
Proof. See [19], Thm. 4.5, Thm. 4.7 and Thm. 4.9. O
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The weight of a primitive ideal 7 ( f) is given by (dim(go/g({)/2, dim(gl/g{)), where

g/ = (gg, g{ ) is the kernel of the superantisymmetric bilinear form f([—, —]) deter-
mined by f on g (see [19], Prop. 4.13).

The group Aut(go) is an algebraic group whose associated Lie algebra is Der(gg).
Since the super Lie algebra g is nilpotent, the Lie algebra given by its even part g is
also so, and Lie algebra given by the ideal of inner derivations InnDer(gq) in Der(gg)
is algebraic. The irreducible algebraic group Adj associated to InnDer(gp) is called the
adjoint (algebraic) group of gy. It is a subgroup of Aut(gg). As a consequence, the group
Ady acts on the Lie algebra g, so it also acts on gg with the dual action, which is called
coadjoint.

Proposition 13. Let g be a nilpotent super Lie algebra of finite dimension and let f and
f' betwo even linear formson g, i.e. f, f" € gi. If I (f) and 1 (f") are the corresponding
bilateral ideals of U(g), then I(f) = I(f') if and only if there is g € Ady such that

f=gf.
Proof. See [19], Prop. 4.12. O

The previous results imply that, for a nilpotent super Lie algebra of finite dimension
there exists an explicit bijection

I : g5/ Ady — Prim(U(g))

between the set of equivalence classes of even linear forms on g under the coadjoint
action and the set of primitive ideals of the super algebra U(g).

We also recall that, if g is a finite dimensional nilpotent super Lie algebra and h) a
Lie ideal, given I <U/(h) < U(g) a two sided ideal in the enveloping algebra of ), one
defines the stabilizer of the ideal I in g to be

st(l,g) ={xeg:[x,I]C I}

Let us further suppose that there exists f € g such that I = I(f/,). By [19], Prop.
4.16,if g’ = {x € g: f([x, h]) = 0}, then

st(l,g) 2 g +bh.

4.2. Main Theorem. We have first the following result:

Proposition 14. Let n, s, p € N be positive integers, satisfying that n > 3. There exists
a surjective homomorphism of super algebras

Umm(n, s)T) — A (k).

Furthermore, there exists | € N such that we can choose this homomorphism satisfying
that it factors through the quotient U(ym(n, s)* /Flym(n, s)7)

Um(n, )") Ap(k) .

\

Umm(n, )T /Flym(n, 5)7)
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Proof. This is a direct consequence of the surjective morphism of graded algebras given
by YM(n, $)I" — YM(n) described at the end of Subsect. 2.1 and [20], Cor. 4.5. O

On the other hand, we also have:

Theorem 4. Let n, s, p, g € N be positive integers, satisfying thatn > 3 and s > 1. We
suppose further that either p > 3, or p = 2 and q > 2. Then, there exists a surjective
homomorphism of super algebras

Um(n, s)7) — Cliff, (k) @ A (k).

Furthermore, there exists | € N such that we can choose this morphism in such a way
that it factors through the quotient U(ym(n, s)F/Fl(l)m(n, ),

Umm(n, s)T) Cliff, (k) ® Ap(k) .

\ /

Umm(n, )T /Flym(n, 5)1)

Proof. We know that ym(n, ' = V(2)0 ® ttjm(n ) as graded vector spaces. As we
have proved in Theorem 2, the Lie ideal tym(n, s)”", considered as a graded Lie algebra,
is a free graded Lie algebra generated by a graded vector space W (n, s)!, that is,

tym(n, )T >~ §(Wn, s)1).

We also point out that, by the computation of the Hilbert series of W(n, s)!, this space
has an infinite number of linearly independent even and odd elements (for n > 3 and
s € N).

We introduce the following notation, that we will need in the proof. Given a super vec-
tor space X with a nondegenerate (even) superantisymmetric bilinear form £2, consider
the super vector space heis(X) = X @ k.z. It is a super Lie algebra provided with the
bracket given by declaring that z is central and [x, x'] = §2(x, x")z, and it is called the
Heisenberg super Lie algebra defined by (X, £2). It is uniquely determined by the super
dimension (d, d’) of X, so it will also be denoted by heis, ;. More concretely, if the super
dimension of X is (2r, 2t"), beis,, 5, is the super Lie algebra with basis given by even ele-
ments g1, ..., qr, P1,---, Pr, zandoddones ay, ..., ay, by, ..., by, such that z is cen-
tral, [g;, pj] = 6;,jz, lai, bj] = §; jz and the other brackets vanish. If the super dimen-
sion of X is (2r,2t" + 1), beisy, 5,4y is the super Lie algebra with basis given by even
elements q1, ..., 4r, p1,--., Pr, 2z and odd ones ay, ..., ay, by, ..., by, c, such that z
is central, [g;, p;]1 = &; jz, [a;, bj] = §;, jz, [c, c] = z and all other brackets vanish. It
is easy to see that (z — 1) C U(beis,, ;) is primitive, and in fact U (heisy, ) /(z — 1) =~
Cliff; (k) ® A, (k) (see [4], 0.2, (a) and (b)). Denote the projection induced by the previ-
ous quotient by ITg,is, ,. Hence, it suffices to prove the theorem for U/ (heis; ), ,) instead
of Cliff, (k) ® A, (k).

A morphism of super Lie algebras from tym(zn, s)! to heis,,. , induces a respective
morphism of super algebras from U (tym(n, s)') to U (beisy,. ). Since tym(n, s)7 is
free with space of generators W (n,s)", the former is equivalent to give a morphism of
super vector spaces from W, s)! to heis,, ;. The morphism of super algebras will be
surjective if the image of the corresponding morphlsm of super vector spaces is also so.
Since heisy, , has finite super dimension, but W (n, s)” has an infinite number of even
and odd generators, this can be easily done.
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From now on, we shall exclusively work in the super case (for algebras). However,
we will also keep track of the N-grading of the super Yang-Mills algebra ym(n, s)', its
ideal tt)Am(n, s)'" and the generator space W(n, .

We shall now suppose that either > 1, or r = 0 and r > 2, and show that under any
of these assumptions, there exists a k-linear homogeneous morphism (of super vector
spaces) of degree 0,

¢ W(n,s)r — beisy, s

such that there exists a set of linearly independent homogeneous elements of Wn, s)"
which are mapped onto a set of homogeneous generators of the Heisenberg super Lie
algebra, respecting the degree.

If r > 1, we set ¢ such that ¢(x3) = 0, ¢(x13) = p1 and ¢ (x23) = g1. We also
assume that for the set of other basis elements of even parity of the Heisenberg super Lie
algebra z, p; and g;, for2 <i < r, there exist a linearly independent set of even homo-
geneous elements of degree greater than or equal to 6, w; € W(n,s)!" whose image
under ¢ give the previous elements. Let d; be the degree of w;, for each (2 < i < r).
Let j be the maximum between 4 and the degrees d;. We moreover assume that there
also exist linearly independent even (resp. odd) homogeneous elements of Wn, s)T of
degree greater than j mapped onto a set of even (resp. odd) generators of the super Lie
algebra heis,, ,. Let us call the maximum of these degrees by d'. These conditions are
easily verified, taking into account that W (n, s)”" has infinite dimensional even and odd
components.

On the other hand, if » = 0 and ¢ > 2, consider that ¢(z1) = 0, ¢([x1,21]) = a1
and ¢ ([x2, z1]) = b1, where ay, by € beisy, , are two linearly independent elements.
We also assume that for the set of other basis elements of the Heisenberg super Lie
algebra there exist a linearly independent set of even homogeneous elements of degree
greater than or equal to 6, w; € W(n, s)r , such that each of the basis elements of
the Heisenberg super Lie algebra is the image under ¢ of a respective element w; of the
same degree. Let d; be the degree of w;, and let j be the maximum between 4 and the
degrees d;. Again, these conditions are easily verified, taking into account that Wn, s)"
has infinite dimensional even and odd components.

Note that in either case there are a lot of choices for this morphism ¢. Set [ to be
2d’ + 1.

The map ¢ induces a unique surjective homomorphism @ : U(tym(n, s)’) —
U (Heisy,. ), equivalent to the homomorphism of super Lie algebras

tym(n, s)! — heisy, ;.
Since feis,,, is nilpotent, the last morphism may be factorized in the following way:
tom(n, ) — tym(n, )" /Flom(n, )" — bheis,, .

where the first morphism is the canonical projection. Hence, the map @ may be factorized
as

Ultym(n, s)7) — Utym(n, )T /Flym(n, )T — U(beis,,.,).
We have thus obtained a surjective homomorphism of super algebras

W Uym(n, )T/ Flymn, 5)7) — U(beisy,.,),
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where the super Lie algebra tym(n, s) /Flym(n, s)!" is obviously nilpotent and fi-
nite dimensional. Moreover, it is a Lie ideal of the nilpotent super Lie algebra
ym(n, s)r/Flt)m(n, s)r. We have, as graded vector spaces,

pm(n, )"/ Flom(n, ) = V(2)o ® tym(n, )"/ Flym(n, )"

Let I be the kernel of Ipis, , © ¥ in L{(tt)Am(n, S)F/Flt)m(n, s)T). Taking into
account that the quotient of U (tym(n, s)” / F'ym(n, s)!") by I is a Clifford-Weyl super
algebra which is simple, 7 is a maximal two-sided ideal, and then, there exists an even
linear functional f € (tym(n, s)F/Fll)m(n, $)H* s_uch that I = I(f). We fix a polar-
ization b7 of tym(n, )T /Flym(n, )T at f. Let f € (ym(n, s)" /Flym(n, s)7)* be
any (even) extension of f.

Since tym(n, s)”/F'ym(n,s)!" is an ideal of the nilpotent super Lie algebra
Um(n,s)r/Fltjm(n,s)F, by [19], Prop. 4.16, we have that the stabilizer st(/(f),
ym(n, s)* /Flym(n, s)7) includes

tym(n, )T/ Flom@n, )T + (ym(n, )" /Flym(n, )",
and we recall that (hym(n, s)r/Flt)m(n, Y is given by
(x e ym@n, )T JFloymn, )T f(lx, tym(n, )7 /Flym(n, )71 = 0}.

If » > 1, we get immediately that x3 € I, but x13 and x23 do not belong to I, since
¥ (x13) and ¥ (x»3) do not vanish (they are in fact linearly independent). Analogously, if
r=0andr > 2, 71 € I, but [x1, z1] and [x2, z1] do not belong to I, since ¥ ([X1, Z1])
and ¥ ([x7, z1]) are linearly independent.

Let x € ym(n, s)!"/Flym(n, s)', then x = x” + y, where

2
x = Zcii,- e V2o,

i=1

andy € tym(n, s)' /Flom(n, s)7.Since [y, I ()] € I(f), x € st(I(f), ym(n, s)! /F!
ym(n, s)7) if and only if [x, I (f)] € I(f). In particular, if r > 1,

2
[, 53] =D cil%, %],

i=1
If [x/, x3] € I, then ¥ ([x/, x3]) = 0, or,

2

zcl'll’(iw) =0,

i=1

but since ¥ (x13) and ¥ (x»3) are linearly independent, we get thatc; = 0, foralli = 1, 2,
which gives x’ = 0. In a similar way, if » = 0 and 7 > 2,

2
¥, 21l = D el 21,
i=1



818 E. Herscovich

so the assumption that [x’, Z;] € I, implies that

2
> v (E. 21l =0,

i=1

but since ¥ ([x1, z1]) and ¥ ([x2, Z1]) are linearly independent, we get that ¢; = 0, for
alli = 1, 2, which again tells us that x’ = 0. So, we get that st( (f), ym(n, )T/ F!
nm(n, HH = tt)m(n s)F/Flljm(n s)T". Hence, (ym(n, s)F/Flt)m(n $TY is in-
cluded in the quotient tym(n, s)’ /F'ym(n, s), and, by definition, b fis also a polar—
ization of ym(n, s)T /Flym(n, s)" at f. In particular, the weight of the ideal I (f) can
be computed easily using [19], Prop. 4.13, previously mentioned, which gives (r +2, ).
Therefore, the quotient of YM(n, s)!" by the inverse image of I (f) under the projection
Ummn, )T — Umm(n, s)I /Flym(n, s)T) is isomorphic to Cliff, (k) ® A, (k) and
the theorem follows. 0O

Remark 7. We may also study the simplest cases ym(1, 1)7" and ym(1, 2)!", which are
nilpotent and finite dimensional, as explained in Paragraph 3.2.3. Their representation
theory can be thus directly analyzed using the Kirillov orbit method. In particular, since
pm(1, 1)’ is a supercommutative, the only irreducible representations are one-dimen-
sional. Concerning the super Lie algebra ym(1,2)!", it is easy to check that for any
even functional f € (ym(1,2)))*, we have that (hym(1,2)")/ = ym(1,2)7 if f =0,
and (ym(1,2)")/ = ym(1,2)}’, otherwise. This implies that the simple quotients of
YM(1, 2)!" are isomorphic to either k or Cliff (k).

Remark 8. Using a similar proof to the one given before, one can also show that, ifn = 1
and s > 3, or n = 2, then there exists an infinite set of indices (p, ¢) such that

Umm(n, s)7) — Cliff, (k) ® A, (k),

where p > 2andg > 4,forn = lands > 3;and p > 4and g > 3, forn > 2.
Furthermore, there exists / € N such that we can select this morphism in such a way
that it factors through the quotient U (ym(n, T /F ! (ym(n, $)1)). The previous set can
be chosen in such a way that if (p, ¢) is not in it, then either (p, g + 1) or (p, g — 1) is.

Remark 9. We would like to make some comments on the (abelian) category of rep-
resentations of the Clifford-Weyl super algebras. We remark that the category of rep-
resentations of a super algebra A is provided with homogeneous A-linear morphisms
of degree zero. Note that, even if a super algebra A is concentrated in degree zero, its
category of representations, as a super algebra, does not coincide with the category of
representations of the underlying algebra of A. Indeed, we remark that a representation
of a super algebra A concentrated in degree zero is given by a direct sum Mo @ M of two
modules Mg and M over the underlying algebra of A, and a morphism from My @ M to
No @ Nj is given by a pair ( fo, f1), where f; : M; — N; is amorphism of modules over
the underlying algebra of A, for all i € Z/27Z. Two super algebras A and B are called
Morita equivalent if there is an equivalence between the categories of representations of
the super algebra A and the super algebra B, which commutes with the shift. We remark
that if two super algebras are Morita equivalent, then the underlying algebras are also
Morita equivalent (cf. [17], Sect. 5, where the authors work with graded algebras, but
the statements are analogous, in particular: Lem. 5.1, Cor. 5.2, Prop. 5.3 and Thm. 5.4).

We now note that the super algebra Cliff, (k) > Maq (k) is Morita equivalent to the
super algebra k. This implies that the Clifford-Weyl super algebra Cliff>, (k) ® A, (k)
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is Morita equivalent to the Weyl algebra A, (k), which is regarded as a super algebra
concentrated in degree zero, and the super algebras Cliff,+1 (k) ® A, (k) and Cliff (k) ®
A (k) are also Morita equivalent. Moreover, a direct inspection tells us that the category
of representations of the super algebra Cliff; (k) ® A, (k) is equivalent to the category of
representations of the algebra A, (k). We see thus that in either case the representations
that we obtain can be understood as induced by those of the Weyl algebras. We would
also like to point out that several families of representations of the Weyl algebras have
been previously studied by Bavula and Bekkert in [3], and, by the theorem, they can
also be also used to induce representations of the super Yang-Mills algebras.

Acknowledgements. We would like to thank Michel Dubois-Violette for several comments.
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