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Abstract – The Taguchi method with fuzzy logic was applied for optimizing the hydrothermal
pretreatment of canola with multiple performance responses (oil extraction yield, free acidity and peroxide
index) using published data. The canola seeds had been subjected to hydrothermal pretreatments using
steam in an autoclave whose base was perforated, under different conditions of temperature (100, 120 and
130 °C), time (5, 15 and 30min) and granulometry (entire, broken and ground seeds), and the responses were
measured as performance characteristics of the process. The output value that represents the responses was
called multi-response performance index (MRPI), and the significance of the experimental factors was
analyzed by ANOVA. A confirmation test of the optimum parameters was carried out to verify the optimum
parameters, obtaining a predicted MRPI of 0.588, while the experimental value was of 0.849, and the MRPI
calculated using the predicted values from the literature was of 0.577.
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Résumé – Application d’une approche de logique floue de type Taguchi pour optimiser le
prétraitement hydrothermique des graines de canola en utilisant l’indice de performance multi-
réponse. La méthode de Taguchi à logique floue a été appliquée pour optimiser le prétraitement
hydrothermique du canola prenant en compte de multiples réponses de performance (rendement
d’extraction de l’huile, acidité libre et indice de peroxyde) en utilisant des données publiées. Les graines de
canola ont été soumises à des prétraitements hydrothermiques à la vapeur dans un autoclave dont la base
était perforée, sous différentes conditions de température (100, 120 et 130 °C), de durée (5, 15 et 30min) et
de granulométrie (graines entières, brisées et broyées), et les réponses ont été mesurées en tant que
caractéristiques de performance du procédé. La valeur de sortie qui représente les réponses a été appelée
indice de performance multi-réponse (MRPI), et l’importance des facteurs expérimentaux a été analysée par
ANOVA (analyse de variance). Un test de confirmation des paramètres optimaux a été effectué pour vérifier
les paramètres optimaux, obtenant un MRPI prédit de 0,588, alors que la valeur expérimentale était de
0,849 ; le MRPI calculé en utilisant les valeurs prédites de la littérature était de 0,577.

Mots clés : graine de canola / traitement / Taguchi / logique floue
1 Introduction

Canola oil, widely consumed, has a high content of
unsaturated fatty acids and vitamin E (780.2 ppm, Sánchez
et al., 2018a). In recent years, emerging technologies for the
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extraction of this oil have been studied, such as the application
of ultrasound, microwaves and the use of ethanol as a solvent,
among others (Carré et al., 2018; Sánchez et al., 2019a, 2019b;
Mohseni et al., 2020). The Taguchi method uses a special
experimental design called orthogonal array to study the entire
parameter space with a small number of experiments. This
method has been widely used to improve the manufacturing
processes of high-precision mechanical parts, and in recent
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Table 1. L9 orthogonal design.

[1,0]Experiment [0,2-4]Levels
B C D

E1 1 1 1
E2 2 2 2
E3 3 3 3
E4 1 1 3
E5 2 2 1
E6 3 3 2
E7 1 1 2
E8 2 2 3
E9 3 3 1

Table 2. Experimental factors and levels.

Factor Parameter Level 1 Level 2 Level 3

B Temperature (°C) 100 120 130

C Time (min) 5 15 30
D Granulometry Ground

seeds
Broken
seeds

Entire
seeds
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years, it has been applied to study processes involving
biological matrices, such as foods (Azin et al., 2007; Rao et al.,
2008; Fernández et al., 2014). Traditionally the Taguchi
method has been used for the optimization of a single
performance characteristic, and in several works, it has applied
to study oil extraction processes. Fernández et al. (2014) used
the method to optimize the hydrothermal pretreatment of
canola seeds, analyzing yield and quality responses individu-
ally, and selecting one of the responses for calculating the
optimal parameters. Rombaut et al. (2015) studied the
influence of different operating conditions on grape seed oil
extraction by cold pressing using Taguchi methodology.
Similarly to the case cited above, they optimized oil and
polyphenol extraction yields as individual responses.
Morakinyo andBamgboye (2017) used Taguchi’s methodology
to optimize the sterilization of palm oil from a novel vertical
sterilizer on a pilot scale, and response surface methodology
for the optimization of the experimental design. Artificial
Intelligence were begun to study for the prediction and
modeling of food processes. Sánchez et al. (2018b) applied an
artificial neural network to model the yields of canola oil
extraction with different pretreatments. In this context, fuzzy
logic is a mathematical theory of inexact reasoning that allows
modeling the human reasoning process in linguistic terms
(Ross, 2016). It is a form of many-valued logic that deals with
fluid or approximate reason rather than precise or exact
statements. In contrast to “crisp logic”, where binary sets are
“true or false”, the truth values of fuzzy logic variables range
between 0 and 1. Fuzzy logic has also been used to handle the
concept of partial truth by Kulekci et al. (2016), where the truth
value may range between completely true and completely
false.

The optimization of multiple performance characteristics
of a process can be transformed into the optimization of a
single performance index through fuzzy logic. Thus, the
integration of fuzzy logic with the Taguchi method can be used
to solve the optimization of multiple performance characteris-
tics. This approach has been applied by several authors to
improve the characteristics of welding processes and the
milling of machine parts Tarng et al. (2000); Mahesh and
Rajesh (2014); Kulekci et al. (2016). However, it has not yet
been studied for technological processes that involve biologi-
cal matrices such as oilseeds.

The purpose of this paper was to evaluate the use of fuzzy
logic and the Taguchi method for the optimization of the
hydrothermal pretreatment of canola seeds with multiple
performance characteristics (oil extraction yield and quality
indices). This work describes the application of the fuzzy logic
analysis combinedwith theTaguchimethod tooptimizemultiple
performance characteristics that were previously subjected to a
decision-making process. In this sense, the novel contribution of
this work is the application of this technique to the hydrothermal
pretreatment and extraction of canola oil, allowing to evaluate
different and complex responses such as oil yield and quality
index and facilitating its industrial application.

2 Materials and methods
Data reported by Fernández et al. (2014) who worked with

the experimental design presented in Table 1 (L9 orthogonal
array), were used in the present study (Tab. 1).
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Samples of canola seeds of the Barrel variety were
subjected to hydrothermal pretreatments using steam in an
autoclave whose base was perforated, under the conditions of
temperature, time and granulometry presented in Table 2. The
responses were measured as performance characteristics for oil
yield ratio (ratio of the oil yield of pretreated samples to that of
untreated samples), acidity value (AV) and peroxide index
(PV). (Tab. 2).
2.1 Signal-to-noise ratio

The Taguchi method uses the signal-to-noise ratio (SN) to
analyze the sources of variation, representing a relationship or
comparison between the desirable value (mean) for the output
characteristic and the “noise” or the undesirable value for the
output characteristic. The SN ratio, often expressed in decibels,
is a measure of the variation between experiments when noise
factors are present (Zhou et al., 2010).

In order to maximize the oil yield ratio, the SN value was
obtained by equation (1):

SN ¼ �10:log

"Xn

k¼1
1=x2

k

n

#
: ð1Þ

In the case of the quality indices (AV and PV), where
minimum values are desired, the SN ratio was calculated using
equation (2):

SN ¼ �10:log

Xn

k¼1
x2k

n

" #
; ð2Þ
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Fig. 1. Signal-to-noise ratios for the responses: (A) oil yield, (B) acidity, and (C) peroxide index.

Fig. 2. Structure of the fuzzy logic unit. X1: S/N ratio for the oil yield,
x2: S/N ratio for the acidity value (AV), x3: S/N ratio for the peroxide
index (PV), and y: multi-response performance index (MRPI).
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where xk is the response obtained experimentally, n is the
number of experiments, and k is the number of repetitions.
Figure 1 presents the SN values calculated by Fernández et al.
(2014) for the studied responses (Fig. 1):

2.2 Fuzzy logic analysis

The multiple performance characteristics were obtained
using the fuzzy logic analysis. A fuzzy logic unit consists of a
fuzzifier, a fuzzy knowledge base, an inference engine and a
defuzzifier. First, the fuzzifier converts the SN values into
fuzzy inputs using membership functions. Then the inference
engine applies compositional rules of inference using the
implications of the knowledge base to generate fuzzy outputs.
Finally, the defuzzifier converts the fuzzy values into a crisp
output (Tzeng and Chen, 2007). The final structure of the fuzzy
unit was the one presented in Figure 2.

In our case, the fuzzy logic unit took 3 inputs (x1, x2 and x3)
and produced 1 output (y0). Each input refers to SN for oil yield
ratio, acidity value and peroxide value, respectively. The
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output y is called multi-response performance index (MRPI)
(Tarng et al., 2000; Tzeng and Chen, 2007; Mahesh and
Rajesh, 2014).

The knowledge base consisted of 27 rules designed as “if-
then” instructions. Such rules evaluate the values of the inputs
over the fuzzy subsets to provide a suitable output. Each fuzzy
subset was defined by the corresponding membership function
(m).

In this work, 3 fuzzy subsets Ei, Fi and Gi were assigned
for each input i (Figs. 3–5). For example, in the case of x, the
fuzzy subsets were defined as follows:

The fuzzy logic unit used 7 fuzzy subsets assigned to the
output y (Fig. 6). In this case, each subset depicts the degrees of
membership of the MRPI value to a subset H designed
according the following categories: extremely low (EL), very
low (VL), low (L), medium (M), high (H), very high (VH) and
extremely high (EH).

Thus 27 fuzzy rules were designed considering that the
performance characteristics increase with increasing SN ratios.
The basic structure of these rules is an “if-then” definition that
uses the 3 inputs and a single output as follows:

Rule #number: If x1 is E1, x2 is F2 and x3 is G3 then y is H
where E, F, G and H are fuzzy subsets defined over each

variable by the corresponding membership functions (e.g.
mE1, mF2, mG3 and mH).

Table 3 presents the full set of rules applied in the present
work. For example, rule number 6 specifies that if Yield is Low
(L), AV is Medium (M) and PV is High (H) then MRPI is
Medium (M). It is important to point out that the set of fuzzy
rules was applied following a switch composition (cascade
operation). That is, if rule number N is not satisfiable, then rule
number Nþ1 will be tested.

The fuzzy reasoning of the output obtained from these rules
generates a fuzzy output. The membership function of the
fuzzy output was designed adopting the “max-min” composi-
tional operation over the membership functions detailed per
each input. That is:

mH0
yð Þ ¼ mE1 x1ð Þ∧mF1 x2ð Þ∧mG1

x3ð Þ∧mH1
yð Þ� �

∨ . . .

mEn x1ð Þ∧mFn x2ð Þ∧mGn x3ð Þ∧mHn yð Þ� �
; ð3Þ

where ˄ is the “minimum” operation, and ˅ is the “maximum”
operation (Tarng et al., 2000).
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Fig. 3. Membership functions for oil yield.

Fig. 5. Membership functions for peroxide index (PV).

Fig. 4. Membership functions for acidity value (AV).
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Fig. 6. Membership functions for the multi-response performance index (MRPI).

Table 3. Table of fuzzy rules.

Rule Yield AV PV MRPI

1 Low Low Low EL

2 Low Low Medium VL
3 Low Low High L
4 Low Medium Low VL
5 Low Medium Medium L
6 Low Medium High M
7 Low High Low L
8 Low High Medium M
9 Low High High H
10 Medium Low Low VL
11 Medium Low Medium L
12 Medium Low High M
13 Medium Medium Low L
14 Medium Medium Medium M
15 Medium Medium High H
16 Medium High Low M
17 Medium High Medium H
18 Medium High High VH
19 High Low Low L
20 High Low Medium M
21 High Low High H
22 High Medium Low M
23 High Medium Medium H
24 High Medium High VH
25 High High Low H
26 High High Medium VH
27 High High High EH

EL: extremely low; VL: very low; L: Low; M: medium; H: high; VH: very high; EH: extremely high.
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Finally, the center of gravity method was adopted as the
defuzzification method to transform the fuzzy output mH0

yð Þ
into a crisp value y0, given by equation (4):

y0 ¼
P

ymH0
yð ÞP

mH0
yð Þ : ð4Þ

The software MATLAB was used for all the calculations.
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3 Results and discussion

3.1 Multi-response performance index

Table 4 presents the experimental results for MRPI
obtained using the experimental design described above.

Assuming the no interaction model proposed by Taguchi,
the mean responses for each level were calculated (Fernández
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Table 4. Multi-response performance index (MRPI) obtained for
each experiment.

Experiment MRPI

E1 0.316
E2 0.578
E3 0.434
E4 0.642
E5 0.360
E6 0.512
E7 0.585
E8 0.611
E9 0.340

Table 5. Mean responses for each level of the parameters for the
analysis of the MRPI.

[0,2-4]Mean MRPI
Control factor Level 1 Level 2 Level 3

B 0.514 0.516 0.429
C 0.480 0.520 0.460
D 0.339 0.558 0.562

Fig. 7. Effect of the control factors on the multi-response
performance index (MRPI).
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et al., 2014), in this case for the MRPI, which are presented in
Table 5 and graphically in Figure 7.

The highest MRPI value corresponds to the lowest
variance of the responses around the desired values. However,
it is necessary to evaluate the relative effect of the analyzed
parameters on the studied responses in order to determine the
optimal conditions more accurately.
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3.2 Analysis of variance

ANOVA was used to study the significance of the
experimental factors (Fernández et al., 2014). The ANOVA
results are shown in Table 6.

The results of the analysis of variance showed a larger
contribution of parameters B (temperature) and D (granulo-
metry) on the process, with the latter being the most important,
whereas the contribution of parameter C (time), due its low
value, was treated as error using the pooling technique
(Özdemir et al., 2004; Fernández et al., 2014) These results are
in agreement with those obtained by analyzing the responses of
yield, acidity and peroxide index individually (Fernández
et al., 2014).

The analysis of Figure 7 and Table 6 shows that in the case
of temperature (B), the levels 1 and 2 (100 and 120 °C,
respectively) are the levels with the highest MRPI value. A
large contribution of granulometry (D) can also be observed,
with levels 2 and 3 (broken and entire seeds, respectively)
having the highest MRPI. When these values are compared to
the results obtained for each response individually, the
influence of the 3 responses on the MRPI values can be
observed. For example, in the case of factor D, the oil yield
obtained at level 2 was significantly higher than that obtained
at level 3, but the quality indices showed the opposite
behaviour, whereas MRPI maintained a constant value for
these levels, showing a compensation of the effect of the
responses.

Taking the above into account, it was possible to determine
the following optimum parameters: temperature 100 and
120 °C (levels 1 and 2 of factor B), 5minute pretreatments,
corresponding to the lowest level of factor C (since the
contribution of this factor was attributed to error), and broken
and entire seeds (levels 2 and 3 of factor D). In order to
evaluate and compare the obtained results with the experi-
mental values and the predicted values reported in the
literature, a temperature of 120 °C, 5minutes and broken seeds
were selected, which are the same conditions selected by
Fernández et al. (2014).

3.3 Confirmation test

The predicted response for the additional experiment
proposed by Fernández et al. (2014) for the optimum factor
levels is calculated by equation (5):

SNpr ¼ SN þ MB2� SNð Þ þ MC1� SNð Þ
þ MD2� SNð Þ þ error; ð5Þ

where SN is the mean response of all the proposed experiments
for the experimental design, and MB2, MC1 and MD2
correspond to the selected levels of factor B, C and D,
respectively. Since the contribution of factor C can be treated
as error due to its low mean square value in ANOVA
(calculated as the ratio of the sum of square value to the
degrees of freedom, Table 6), the terms of this factor can be
simplified. The predicted MRPI value calculated by equation
(5), the MRPI corresponding to the values predicted by
Fernández et al. (2014) and the experimental MRPI are
presented in Table 7. Since no experimental PV value was
of 8



Table 6. Analysis of Variance (ANOVA).

Sources of variation Sum of squares Degrees of freedom Mean square Pure sum of squares Percentage contribution (%)

B 0.02 2 0.01 0.02 15.38

C 0.01 2 – – –
D 0.1 2 0.05 0.1 76.92
Error 0.01 2 – – –
“Pooled” error 0.02 4 0.005 0.01 7.69
Total variation 0.13 8 – – 100.00

Table 7. Comparison between the predicted and experimental MRPI values.

[0,2-4]Optimum parameters
Predicted Predicted values* Experimental

Level B2C1D2 B2C1D2 B2C1D2

Oil yield (%) – 120.2 120.2±2.0
Acidity value (% oleic) – 0.62 0.68±0.06
Peroxide index – 3.7 ND
MRPI 0.588 0.577 0.842

*Fernández et al., 2014
ND: not detected
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detected for E10, the PV value predicted by the Fernández
et al. (2014) model was adopted for the calculation of MRPI.

The predictedMRPI value obtained by applying fuzzy logic
to the Taguchimethodwas similar to that obtained byFernández
et al. (2014), indicating the correlation of the proposed approach
with the conventional Taguchi method. It is worth noting that
using a multi-response index allows to explore all the studied
responses (yield, acidity value and peroxide index) to obtain the
optimumparameters, thus representingan improvement over the
traditional method, by which the optimum parameters are
obtained by considering a single response.

4 Conclusions

In this paper, the use of Taguchi-based fuzzy logic for the
optimization of the hydrothermal pretreatment of canola seeds
allowed to successfully analyze yield and quality responses
simultaneously by means of a multi-response performance
index (MRPI). The predicted MRPI values were compared to
experimental MRPI values and to predicted values reported in
the literature, observing an agreement between the results.
However, the use of MRPI from the application of the fuzzy
logic tool allowed to take into account all the studied responses
to obtain the optimal conditions, in contrast to other works
where from different responses it was necessary to select the
main one for the decision making. The approach proposed in
this work is an efficient method for the optimization of
manufacturing systems by considering multiple performance
characteristics of both process and product. Its application in
industrial processes with multiple objectives is promising.
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Nomenclature

E
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Experiment

AV
 Acidity value

PV
 Peroxide index

SN
 Signal-to-noise ratio

xi
 Input of fuzzy engine

yi
 Output of fuzzy engine

Ei, Fi, Gi , Hi
 Fuzzy subsets

mji
 Membership function

˄
 Minimum operation

V
 Maximum operation

EL
 Fuzzy rule. Extremely low

VL
 Fuzzy rule. Very low

L
 Fuzzy rule. Low

M
 Fuzzy rule. Medium

H
 Fuzzy rule. High

VH
 Fuzzy rule. Very high

EH
 Fuzzy rule. Extremely high

MRPI
 Multi-response performance index

MB2, MC1, MD2
 Selected levels of factor B, C and D,

respectively
Subscripts
i: 0,1,2,....,n
 series terms
j: E, F, G, H.
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