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SUMMARY

A robust and well-organized rhythm is a key feature
of many neuronal networks, including those that reg-
ulate essential behaviors such as circadian rhythmo-
genesis, breathing, and locomotion. Here we show
that excitatory V3-derived neurons are necessary
for a robust and organized locomotor rhythm during
walking. When V3-mediated neurotransmission is
selectively blocked by the expression of the tetanus
toxin light chain subunit (TeNT), the regularity and
robustness of the locomotor rhythm is severely
perturbed. A similar degeneration in the locomotor
rhythm occurs when the excitability of V3-derived
neurons is reduced acutely by ligand-induced activa-
tion of the allatostatin receptor. The V3-derived neu-
rons additionally function to balance the locomotor
output between both halves of the spinal cord,
thereby ensuring a symmetrical pattern of locomotor
activity during walking. We propose that the V3 neu-
rons establish a regular and balanced motor rhythm
by distributing excitatory drive between both halves
of the spinal cord.

INTRODUCTION

The simple motor behaviors that underlie locomotion in verte-

brates are generated by rhythm-generating networks that are

embedded in the spinal cord. These networks can function au-

tonomously and are commonly referred to as locomotor central

pattern generators (CPGs) (Pearson, 1993; Grillner, 2003, 2006;

Kiehn and Kullander, 2004; Goulding and Pfaff, 2005). Lesion

and activity studies have mapped the core neuronal elements

of the locomotor CPG to the ventral half of the spinal cord (Kjaer-

ulff and Kiehn, 1996; Cowley and Schmidt, 1997), with excitatory

and inhibitory CPG interneurons being predominantly localized

to lamina VII and lamina VIII. Lamina VII is rich in interneurons

whose axons terminate in the ipsilateral ventral horn (Brown,

1981; Saueressig et al., 1999), while lamina VIII contains contral-

aterally projecting neurons that cross in the ventral commissure

and connect motor networks in both halves of the spinal cord
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(Stokke et al., 2002; Moran-Rivard et al., 2001; Pierani et al.,

2001; Lanuza et al., 2004; Kiehn, 2006).

Recent developmental studies have identified a number of

cardinal classes of interneurons in the embryonic spinal cord

that settle in the ventral spinal cord in laminae VII and VIII (Jessell,

2000; Goulding et al., 2002; Goulding and Pfaff, 2005). These

interneurons are putative constituents of the locomotor CPG,

and they are derived from five ventral embryonic interneuron

cell types: V0, V1, V2a, V2b, and V3 neurons. Recent genetic

studies have shed light on the roles that two of these interneuron

classes have in shaping motor outputs from the locomotor CPG.

V0 neurons, which are predominantly inhibitory commissural in-

terneurons, play an essential role in securing left-right alternation

(Lanuza et al., 2004). V1 inhibitory neurons appear to have an

evolutionarily conserved role in setting the speed of the locomo-

tor step cycle (Gosgnach et al., 2006). While these studies reveal

that inhibitory cell types have important roles in shaping the pat-

tern of motor activity during locomotion, inhibitory interneurons

are not essential for rhythm generation per se, because rhythmic

motor activity can occur in the absence of inhibitory neurotrans-

mission (Cowley and Schmidt, 1995; Bracci et al., 1996; Kremer

and Lev-Tov, 1997).

The excitatory cell types that make up the locomotor CPG in

walking vertebrates are thought to be derived primarily from

two classes of ventral embryonic interneurons: the ipsilaterally

projecting V2a neurons that selectively express Chx10 (Goulding

et al., 2002; Kimura et al., 2006; Al-Mosawie et al., 2007; Lund-

fald et al., 2007), and the Sim1-expressing V3 neurons that arise

from p3 progenitors (this study). Other less-well-characterized

glutamatergic neurons that contribute to motor circuits have

also been identified, including excitatory neurons in the cat lum-

bar cord that receive group I and group II afferent inputs (Edgley

and Jankowska, 1987) and, in rodents, the lumbar Hb9+ gluta-

matergic neurons (Hinckley et al., 2005; Wilson et al., 2005)

and cells that express EphA4 (Kullander et al., 2003; Butt et al.,

2005). Aside from evidence indicating that a subset of EphA4-

expressing neurons is derived from V2a interneurons (Lundfald

et al., 2007), the developmental provenance of these excitatory

cell types is not clear.

Studies in lamprey and frog tadpole have demonstrated a

requirement for glutamatergic transmission in rhythm generation

(Dale and Roberts, 1985; Roberts et al., 1998; Grillner, 2003).

Nonetheless, while it is generally accepted that excitatory
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Figure 1. Generation and Characterization of Sim1Cre and Sim1taulacZ Mice

(A) Schematic diagrams of wild-type Sim1 locus and the targeted Sim1 alleles. Gene cassettes encoding Cre recombinase and taulacZ were inserted into the first

exon of the Sim1 gene to generate the Sim1Cre and Sim1taulacZ alleles, respectively. The FRT-flanked neomycin cassette in the Sim1Cre allele was removed by

crossing Sim1Cre founder mice with an ACTB:Flpe transgenic line.

(B–D) Analysis of Sim1Cre-mediated recombination. Sim1Cre mice were crossed with R26floxstop-lacZ (R26lacZ) reporter mice (Soriano, 1999). (B) The distribution of

Sim1 transcripts at E11.5. (C) Immunohistochemistry showing that b-gal+ cells (red) arise from Nkx2.2-expressing p3 progenitors (green). (D) b-gal activity in V3

neurons (D) is comparable to Sim1 expression (B).

(E) Analysis of Sim1taulacZ E11.5 spinal cord showing that V3 neurons project axons across the ventral midline (arrow).

(F–H) In situ hybridization of markers for glutamatergic (vGlut2), inhibitory (vIAAT), and cholinergic (vAChT) neurons at E11.5 showing that vGlut2 is selectively

expressed in the V3 domain (arrow).
neurons have essential roles in locomotor rhythm generation

(Grillner, 2003, 2006; Kiehn, 2006; Brownstone and Wilson,

2008), the excitatory neurons that are responsible for rhythm

generation have not been identified, largely because it has not

been possible to identify and selectively manipulate different

glutamatergic cell types within the spinal cord. It is thought

that the excitatory cells that generate the locomotor rhythm pri-

marily innervate ipsilateral components of the CPG (Grillner,

2003; Kiehn, 2006; McCrea and Rybak, 2008; Brownstone and

Wilson, 2008); however, excitatory commissural neurons whose

function is not known have also been described in the lamprey

and mammalian spinal cord (Buchanan, 1982; Butt and Kiehn,

2003; Kiehn, 2006; this study).

In view of the proposed roles for glutamatergic neurons in

rhythm generation, we set out to comprehensively characterize

the V3 population of neurons and determine the functional con-

tribution these cells make to motor outputs from the lumbar spi-

nal cord. We were particularly interested in ascertaining whether

neurons derived from the V3 population are required for rhyth-

mogenesis, and/or if they control other aspects of the locomotor

rhythm. Here we show that a signature feature of locomotion in

animals, namely the production of a robust and balanced loco-

motor rhythm during walking, is disrupted in mice lacking V3
neuron functionality. We propose that V3-derived neurons en-

sure a normal walking gait by controlling two important aspects

of the locomotor rhythm. First, they are required for the coherent

robust rhythmic bursting of flexor- and extensor-related motor

neurons when fictive walking is induced in the isolated spinal

cord. Second, they ensure a proper walking gait by balancing

the rhythmic motor outputs that are produced by independent

oscillatory locomotor centers in the left and right halves of the

spinal cord.

RESULTS

Developmental Characterization of V3 Spinal Neurons
Newborn V3 neurons, which are derived from Nkx2.2/2.9-

expressing p3 spinal progenitors, are selectively marked by the

expression of the PAS-bHLH transcription factor Sim1 (Briscoe

et al., 1999; Goulding et al., 2002). To characterize these cells, se-

quences encoding Cre recombinase were inserted into the first

coding exon of the Sim1 gene using the strategy previously em-

ployed to generate the Sim1taulacZ knockin reporter mouse (Fig-

ure 1A; Marion et al., 2005). Both the Sim1Cre; R26floxstop-lacZ

and Sim1taulacZ reporter mice exhibited identical patterns of

reporter expression (Figures 1B–1E, data not shown). At E11.5,
Neuron 60, 84–96, October 9, 2008 ª2008 Elsevier Inc. 85
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Figure 2. V3-Derived Neurons Are Glutamatergic Neurons that Make Synaptic Contacts on Motor Neurons and Locomotor-Related Interneu-

rons

(A) Transverse upper lumbar spinal cord section in Sim1Cre; R26floxstop-GAP43-GFP mice at P0 reveals the presence of GFP-labeled V3-derived axons throughout the

ventral spinal cord.

(B) Transsynaptic labeling of spinal cord interneurons in Sim1Cre; R26floxstop-lacZ mice by PRV152. Injections of PRV152 into hindlimb muscles show that V3-de-

rived neurons synapse with contralateral motor neurons. Note the colocalization of b-gal (red) and GFP in V3 commissural neurons that are transsynaptically

labeled with PRV152 (arrowheads).

(C–N) In Sim1Cre; R26floxstop-GAP43-GFP mice, V3 axons (GFP, green) make glutamatergic contacts (red, arrowheads) onto Ia inhibitory interneurons (IaIN, [C–F]) that

express parvalbumin (PV, blue), onto vAChT-immunolabeled (blue) motor neurons (G–J), and onto calbindin+ Renshaw cells (K–N). Images (C)–(F) and (K)–(N) are

from P18 spinal cords whereas images (G)–(J) are from a P0 spinal cord. Scale bar in (J) = 5 mm.
the pattern of b-galactosidase (b-gal) reporter expression follow-

ing Sim1Cre-mediated recombination was indistinguishable from

endogenous Sim1 mRNA expression with the Sim1-derived

b-gal+ cells positioned immediately lateral to Nkx2.2+ V3 progen-

itors (Figure 1C).

At early developmental times, newborn V3 neurons begin to

settle ventrally close to the floor plate in a region where locomo-

tor commissural neurons are located (Stokke et al., 2002; Lanuza

et al., 2004). Although most of the neurons derived from the V3

population have primary axons that cross the ventral midline

(Figure 1E), a small subset of V3 neurons (<15%) possess an

ipsilaterally directed axon, including some cells that have axonal

processes in both halves of cord (E.G and M.G, unpublished

data). The V3 population may thus be unique in that V3-derived

cells located on one side of the cord can project axons to both

halves of the spinal cord. Although the V3-derived neurons

exhibit a variety of axon morphologies, newborn cells selectively
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express vGlut2, rather than markers of cholinergic or inhibitory

neurons, indicating they are exclusively glutamatergic (Figures

1F–1H). This observation is consistent with further analyses

showing that all of the identified V3-derived presynaptic contacts

in the postnatal cord are vGlut2+ (see Figure 2). These and other

findings show that the V3 population generates glutamatergic

neurons, most of which project axons to the contralateral half

of the cord.

V3 Neurons Form Glutamatergic Synaptic Contacts
with Ventral Locomotor Cell Types
To begin assessing whether the V3-derived neurons provide

excitation to other locomotor-related neurons in the lumbar

spinal cord, mice carrying a single Sim1Cre allele were crossed

with R26floxstop-GAP43-GFP reporter mice, thus allowing us to

visualize the axons of these cells. Examination of Sim1Cre;

R26floxstop-GAP43-GFP spinal cords at postnatal day 0 (P0)
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revealed few, if any, V3 axons within the dorsal horn. In contrast,

an extensive network of V3 axonal arbors was present through-

out the ventral half of the spinal cord, where premotor interneu-

rons and motor neurons are located (Figure 2A).

We then asked whether V3-derived neurons directly innervate

motor neurons that project to muscles that are active during

locomotion by injecting the transsynaptic viral tracer PRV152

(Smith et al., 2000; Kerman et al., 2003) into various hindlimb

muscles. GFP-labeled V3-derived neurons were observed on

both the contralateral and ipsilateral sides of the cord 38–40 hr

after making injections into the iliopsoas, a hip flexor, and the

gastrocnemius, an ankle extensor (Figure 2). This labeling repre-

sents monosynaptic connections from V3 neuronal cell types

onto motor neurons, because at earlier time points (30–32 hr

post injection), the only cells in the cord that showed PRV152-

derived GFP expression were motor neurons in the iliopsoas or

gastrocnemius motor pools (Figure S1 available online). More

than 80% of the V3 neurons transsynaptically labeled with

PRV152 were located on the contralateral side of the spinal

cord and are thus likely to be commissural neurons (iliopsoas:

88% ± 1.7%, n = 656 cells from four cords; gastrocnemius:

84% ± 0.3%, n = 197 cells from three cords). These findings in-

dicate that most of the excitatory input from V3-derived neurons

to motor neurons comes from the contralateral side of the cord.

Confocal microscopy was then used to identify putative syn-

aptic contacts between V3 axon arbors and known locomotor

cell types. In sections from P0 Sim1Cre; R26floxstop-GAP43-GFP spi-

nal cords, large numbers of V3-derived glutamatergic contacts

were detected on known locomotor-related cell types, including

motor neurons (Figures 2C–2F), parvalbumin (PV)-expressing Ia

inhibitory interneurons (Figures 2G–2J), Renshaw cells (Figures

2K–2N), Lim3-derived V2 neurons, and lamina VIII commissural

neurons (data not shown). In optical slices (approximately

1 mm), we found that approximately 22% of the vGlut2+ contacts

onto the soma and proximal dendrites of motor neurons (n = 14

cells) are derived from V3 neurons, while 24% and 27% of the

vGlut2+ contacts onto PV+ Ia inhibitory interneurons (n = 9 cells)

and Renshaw cells (n = 34 cells), respectively, are from V3 axons.

These data demonstrate that V3-derived neurons are likely to be

a major source of excitatory input to motor neurons and other

locomotor-related interneuron cell types.

Cellular Properties of V3-Derived Neurons
Current models for the locomotor CPG predict that a group of ex-

citatory neurons in the ventral cord functions as a rhythmogenic

center for the locomotor CPG (Kiehn, 2006; Brownstone and

Wilson, 2008). Since these cells have not been identified, we

asked whether the V3-derived neurons in lamina VII/VIII exhibit

any of the cellular properties that have been associated with

rhythm generation in other CPG circuits (Marder and Bucher,

2001). Whole-cell recordings and neurobiotin fills were per-

formed on GFP-labeled V3 cells in the lumbar spinal cord (n =

26 cells, Figures 3A and 3B). Of particular interest were the V3

neurons in lamina VII/VIII that are synaptically coupled to motor

neurons. All the V3 cells in laminae VII/VIII (n = 14 cells) displayed

low cellular capacitances (30–40 pF) and high input resistances

(range 420–500 MU). Furthermore, when injected with a series

of prolonged current pulses (30–210 pA, 2 s), these cells typically
responded in a linear manner (Figures 3C–3F). They exhibited

spike frequencies of up to 40 Hz with low levels of spike

frequency adaptation (Figures 3D and 3E), with their average

initial spike frequency being 15.2 ± 4.8 Hz at 120 pA. The fre-

quency-current response curves for these ‘‘ventral’’ V3 neurons

(Figure 3E) were largely linear, with moderate levels of spike

frequency adaptation (Figure 3F). These properties suggest

that the ventral V3 neurons can generate trains of action poten-

tials that closely follow a range of input currents, a property that

would be well suited for neurons with a role in distributing

excitation within the locomotor CPG.

Previous studies have shown that neurons participating in

rhythm generation often exhibit pronounced sag voltages and

postinhibitory rebound (PIR) in their membrane potential when

injected with a hyperpolarizing current (Harris-Warrick and

Marder, 1991; Marder and Bucher, 2001). We therefore exam-

ined these properties in V3 neurons. The sag voltages for the

ventral V3 neurons were small even when the cells were strongly

hyperpolarized (15.2 ± 4.9 mV at �120 mV). Moreover, few, if

any, V3-derived neurons produced an action potential in re-

sponse to a depolarizing rebound at hyperpolarizing membrane

potentials of less than �100 mV (see example in Figures 3G and

3H). The potential for V3-derived neurons to function as pace-

maker cells was further tested by assessing whether neuromo-

dulators that generate fictive locomotor outputs are capable of

inducing rhythmic oscillations in membrane potential, as has

been shown for a population of Hb9 interneurons (Wilson et al.,

2005). None of the V3 neurons in lamina VII/VIII, when synapti-

cally isolated, showed any underlying oscillatory changes in their

membrane potential, when either serotonin (10–20 mM) alone or

serotonin (10–20 mM) and dopamine (50–100 mM) were bath ap-

plied (data not shown). Furthermore, addition of N-methyl-D-

aspartic acid (NMDA) and serotonin at concentrations typically

used to induce locomotion (5 and 20 mm, respectively) also failed

to induce any change in membrane potential (Figure 3I). None-

theless, some cells (n = 5/18) did show rhythmic changes in

membrane potential at high concentrations of NMDA (20 mm).

It is unclear whether these cells function as pacemakers, since

the NMDA levels that produce these membrane oscillations far

exceed those required for fictive locomotion in vitro.

Selectively Blocking V3-Dependent Synaptic
Transmission Disrupts the Locomotor Rhythm
To address the function of the V3 population in shaping

motor outputs from the locomotor CPG, we generated the

R26floxstop-TeNT strain of mice in which synaptic transmission

can be attenuated by the selective expression of the tetanus

toxin light chain subunit (TeNT). These mice conditionally

express a GFP-TeNT fusion protein following Cre-mediated

recombination. Initially we tested the R26floxstop-TeNT line with

NestinCre deletor mice, which efficiently recombines loxP target

sites throughout the developing spinal cord (Tronche et al.,

1999). NestinCre induced widespread recombination, and ex-

pression of the GFP-TeNT fusion protein in the P0 spinal cord

(Figure S2A). This was accompanied by a greater than 100-fold

reduction in VAMP2/synaptobrevin levels (Figure S2B). The re-

sulting blockade of spinal reflex and locomotor activity (Figures

S2C and S2D) is consistent with other studies showing that
Neuron 60, 84–96, October 9, 2008 ª2008 Elsevier Inc. 87
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Figure 3. Cellular Properties of V3-Derived Neurons in Lamina VIII

(A) Vibratome slice from P0 Sim1Cre; ZnG spinal cord showing V3-derived neurons expressing GFP.

(B) An example of a whole-cell patch-clamp recorded V3 neuron labeled with neurobiotin.

(C and D) Representative response of a ventral V3-derived neuron to a series of 2 s depolarizing currents (C). A linear relationship was found in the initial spike

frequency as a function of the increasing input currents (D).

(E) The relationship of the average spike frequency as a function of the input current was fitted by a nonlinear regression function (Y = a*x/(1 + x/b)).

(F) A moderate but linear increase in the spike frequency adaptation was found along the increasing spike frequency (n = 14 cells). The level of spike adaptation

was determined by the average of the last three spike frequencies divided by the average of the first three spike frequencies for varying 2 s current steps. Current

steps of 30–210 pA were applied to each cell.

(G and H) Small to moderate sag voltages and postinhibitory rebound potentials were produced by a series of 1 s hyperpolarizing currents in lamina VII/VIII V3

neurons. The amplitude of the sag voltage was strongly voltage dependent (H).

(I) Some V3-derived neurons display slow oscillations in membrane potential in the presence of 20 mM NMDA/20 mM 5-HT, but not 5 mM NMDA/20 mM 5-HT.
expression of TeNT effectively blocks neurotransmission in a

cell-specific manner (Baines et al., 1999, 2001; Yamamoto

et al., 2003; Yu et al., 2004). TeNT was then selectively expressed

in V3 neurons by crossing mice carrying the R26floxstop-TeNT

allele with Sim1Cre mice (Figures 4A and 4B). In Sim1Cre;

R26floxstop-GAP43-GFP; R26floxstop-TeNT mice, we observed the

selective loss of VAMP2 in GFP+ axon varicosities in the ventral

horn, indicating that VAMP2 is specifically reduced in the axons

and axon terminals of V3-derived neurons (Figure S3). The wide-

spread loss of VAMP2 from V3 axonal processes argues that

TeNT is expressed in the majority of V3-derived neurons.

A comparison of ventral root electroneurogram (ENG) traces

from wild-type and Sim1Cre; R26floxstop-TeNT cords revealed a

marked reduction in the regularity of the locomotor rhythm in

many of the Sim1Cre; R26floxstop-TeNT cords (Figures 4C–4E).

This degeneration in the regularity of the locomotor rhythm

was observed in both the flexor-related traces that were re-
88 Neuron 60, 84–96, October 9, 2008 ª2008 Elsevier Inc.
corded from the L2 ventral roots and extensor-related activity

measured from the L5 ventral root. The locomotor outputs of

Sim1Cre; R26floxstop-TeNT cords showed increased variability in

the duration of individual motor bursts and in the length of the

step cycle period. In many instances this was coupled with

a marked asymmetry in the duration of flexor bursts between

the left and right halves of the spinal cord (Figure 4C). Further

analysis of the motor pattern revealed increased variability in

the step cycle period, burst duration, and interburst period

when V3 neurotransmission was blocked (Figures 4D–4F), with

the coefficient of variation for both the burst width and the step

cycle period of ventral root ENG activity being significantly

greater (p < 0.05) in Sim1Cre; R26floxstop-TeNT cords (gray bar;

n = 10 cords) as compared with control cords (white bar; n = 7

cords). When flexor- (L2) and extensor- (L5) related activity

from these recordings was pooled and analyzed, the coefficients

of variation for the burst width and step cycle period were
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Figure 4. Suppression of the Synaptic Transmission of V3-Derived Neurons Disrupts the Locomotor Rhythm

(A and B) Comparison of b-gal staining in Sim1taulacZ E12.5 spinal cord (A) and GFP expression in Sim1Cre; R26floxstop-TeNT embryos (B) showing selective expres-

sion of the GFP-tetanus toxin light chain subunit fusion protein (GFP-TeNT) in V3-derived neurons.

(C) Extracellular recordings from L2, contralateral L2 (cL2), and the cL5 ventral roots of wild-type (left) and Sim1Cre; R26floxstop-TeNT (right) P0 animals.

(D and E) Recordings from the L2 ventral root in wild-type control cords exhibit a narrow peak for the power spectrum distribution of oscillatory frequency ([D], left).

Spinal cords from Sim1Cre; R26floxstop-TeNT animals exhibit a broad frequency band ([E], left). Autocorrelation coefficient analysis on L2 ventral root recordings

shows that the oscillatory outputs from Sim1Cre; R26floxstop-TeNT spinal cords exhibit a strong reduction in coherency ([E], right) compared with those of wild-

type animals ([D], right). The average time constant decay for the autocorrelation plot was �0.067 ± 0.001 s and �0.117 ± 0.004 s for wild-type and Sim1Cre;

R26floxstop-TeNT animals, respectively (p < 0.05). Note that the autocorrelation is equal to 1 at time 0 (not shown).

(F and G) Sim1Cre; R26floxstop-TeNT cords show increased variability in burst duration, interburst period, and step cycle period compared with cords isolated from

control animals. Error bars indicate SD. The coefficients of variation of the burst width (left) and the oscillation period (right) of ventral root ENGs (E and F) were

significantly greater (p < 0.05) in Sim1Cre; R26floxstop-TeNT animals (gray) as compared with wild-types (white). Asterisk indicates significant difference from the

control.
0.115 ± 0.002 and 0.183 ± 0.003 for wild-type cords, and 0.248 ±

0.006 and 0.277 ± 0.009 for Sim1Cre; R26floxstop-TeNT cords

(Figure 4G).

A large fraction of the spinal cords from P0 Sim1Cre;

R26floxstop-TeNT mice also displayed marked differences in their

ability to generate any locomotor-like oscillatory activity, either

following bath application of NMDA and 5-hydroxytryptamine

(5-HT) (Figure 5A) or after electrical stimulation of sensory affer-

ents (Figure 5B). Whereas high concentrations of 5-HT (10 mM)

are typically effective in inducing fictive locomotion in wild-type

spinal cords (n = 24/24), a significant fraction of the Sim1Cre;

R26floxstop-TeNT animals (n = 6/20) failed to show any rhythmic

motor activity in the presence of 5 mM NMDA and 10 mM 5-HT.

At lower concentrations of 5-HT, the inability of NMDA and

5-HT to induce fictive locomotion in Sim1Cre; R26floxstop-TeNT

cords was even more pronounced, with only 7 of 28 cords show-

ing any organized oscillatory activity when perfused with 5 mM

NMDA/5 mM 5-HT (Figure 5A). A similar disruption of the locomo-
tor rhythm was observed in P0 Sim1Cre; R26floxstop-TeNT cords

when stimulation of the sensory afferents was used to induce lo-

comotor-like activity (Figure 5B). Interestingly, in those Sim1Cre;

R26floxstop-TeNT cords that exhibited some motor bursting, the

activity in the contralateral L2 ventral root was largely out of

phase (Figure 5B). These data demonstrate a significantly

reduced ability to produce a stable locomotor rhythm when V3

transmission is blocked.

Sim1Cre; R26floxstop-TeNT Spinal Cords Exhibit
Asymmetric Motor Outputs from Each Half of the Cord
A further feature of the altered motor output in Sim1Cre;

R26floxstop-TeNT spinal cords was the prevalence of marked differ-

ences in the duration of flexor-related motor bursts between the

left and right L2 ventral roots. In wild-type cords, the locomotor

output from both sides of the spinal cord is invariably symmetri-

cal, with the average duration of left and right flexor-related

bursts being approximately equivalent. In contrast, cords from
Neuron 60, 84–96, October 9, 2008 ª2008 Elsevier Inc. 89
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Sim1Cre; R26floxstop-TeNT animals often exhibited episodes in

which the duration of motor bursts in one L2 ventral root was pro-

longed compared with those from the other (see Figures 6A and

6B for an example). When comparing cords from control (n = 8)

and Sim1Cre; R26floxstop-TeNT (n = 9) animals, we observed a sig-

nificant difference in the coefficients of variation of burst ratio be-

tween the left and right halves of the cord (0.132 ± 0.003 and

0.317 ± 0.020, respectively, p < 0.01). This finding suggests

that V3-derived neurons, or a subset thereof, have an important

role in matching the motor outputs produced in both halves of

the cord during tasks that require a symmetrical motor output,

such as walking.

Inhibitory commissural neurons have essential functions in co-

ordinating locomotor activity in both halves of the spinal cord,

and are necessary for left-right alternating activity during walking

in mice (Lanuza et al., 2004; Kiehn, 2006). The contribution that

excitatory commissural neurons make to left-right alternation is

less clear, leading us to ask whether the Sim1+ V3-derived cells,

many of which are excitatory commissural interneurons, might

play a role in coordinating motor activity between both halves

of the spinal cord. When circular plot statistics (Zar, 1974) were

used to compare the phasing of left-right activity in Sim1Cre;

R26floxstop-TeNT spinal cords (n = 9) with that of control cords

(n = 8), a relatively normal pattern of left-right alternating activity

was observed (Figures 6C and 6D). These data argue that the V3

population contributes very little to securing left-right alternation

during fictive walking.

Acute Silencing of V3 Neurons Results in Changes
in the Locomotor Gait
The decreased organization of the locomotor outputs that

occurs in the Sim1Cre; R26floxstop-TeNT spinal cord led us to ask

whether these abnormalities in the motor rhythm might be due

to the reconfiguration of the locomotor CPG following the

chronic blockade of neurotransmission in the V3 neuron popula-

tion. To address this issue we asked whether similar changes in

the locomotor output are elicited when V3 neuronal activity is

reduced using the allatostatin receptor (AlstR) system (Gosg-

nach et al., 2006; Tan et al., 2006). Spinal cords from Sim1Cre;

AlstR192 animals exhibit a normal pattern of motor activity in

the absence of the allatostatin ligand (Figure 7A). However,

upon addition of allatostatin to these, but not wild-type cords

(data not shown), there was a marked degradation of the loco-

motor output (Figure 7B). The change in the locomotor rhythm

was marked by increased variance in the duration of flexor-

related bursts between the left and right halves of the spinal

cord, which is similar to what is seen when neurotransmission

in V3-derived neurons is chronically blocked by TeNT (c.f. Fig-

ures 4 and 6). This was coupled with higher variability in the

step cycle period, in which the coefficient of variation was signif-

icantly greater (p < 0.05, n = 5 cords) after applying allatostatin

(0.26 ± 0.10) over that before ligand application (0.14 ± 0.07).

These observed defects in rhythmicity were largely reversed

upon washout of the allatostatin peptide (Figure 7C).

A further assessment of the role of V3-derived neurons in walk-

ing behaviors was undertaken in awake, behaving adult mice. In

these experiments, V3-derived neurons in the lumbar cord were

‘‘silenced’’ by directly applying allatostatin to the L2–L4 seg-

ments (Akay et al., 2008). Kinematic analysis of walking was

analyzed in eight Sim1Cre; AlstR192 animals, five of which

showed a profound change in their gait, while three of which

showed either mild or no changes in their gait when allatostatin

was applied to the spinal cord. The incomplete penetrance of

the phenotype may be due to a number of factors, including dif-

ferences in ligand accessibility, variability in Sim1Cre-mediated

receptor expression within the V3 population (Figure S4), and

compensatory mechanisms such as sensory feedback compen-

sation. More importantly, a normal gait was always observed

when Sim1Cre; AlstR192 cords were treated with saline alone

(see Figure 8A), or when allatostatin (up to 1000 mM in saline)

was applied to the cords of mice lacking AlstR (data not shown).

Application of allatostatin to the cord of Sim1Cre; AlstR192

mice (Figure 8B) resulted in a marked increase in the variability

of the timing and duration of both the stance and swing phases

when these animals walked. In contrast, these same mice dis-

played a very regular pattern of stepping movements when

treated with saline alone (c.f. Figures 8A and 8B). Many of the

Sim1Cre; AlstR192 mice walked with a meandering trajectory

after allatostatin induced ‘‘silencing.’’ This behavior recapitulates

the phenotype observed in the in vitro spinal cord preparation,

where there is increased variability in the duration of individual

phases of the step cycle during fictive walking. Taken together,

Figure 5. Attenuation of Neurotransmission in V3-

Derived Neurons Impairs Fictive Locomotion

(A) Sim1Cre; R26floxstop-TeNT spinal cords (gray bars) show

impaired production of locomotor-like oscillations following

the application of NMDA and 5-HT (5 mM/5 mM [left] and

5 mM/10 mM [right], respectively) when compared with

wild-type animals (white bars).

(B) Recordings of flexor-related L2 motor activity reveal a

decrease in locomotor-like oscillatory outputs following

electrical stimulation of L5 sensory roots in the Sim1Cre;

R26floxstop-TeNT cord (lower traces) when compared with the

wild-type cord (upper traces). Most Sim1Cre; R26floxstop-TeNT

cords displayed a highly degraded pattern of flexor motor

activity.
90 Neuron 60, 84–96, October 9, 2008 ª2008 Elsevier Inc.
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these data provide further evidence that the V3 neurons, or a sub-

set thereof, are required for the production of a regular walking

rhythm.

DISCUSSION

This study provides a framework for understanding the contribu-

tion V3-derived neurons make to the motor circuitry in the spinal

cord by characterizing their morphology, neurotransmitter phe-

notype, and cellular properties, and by beginning to define their

function during locomotion in mice. Our results demonstrate that

V3-derived neurons are necessary for the establishment of a

robust, coherent, and balanced motor rhythm during walking.

V3 Neurons Contribute to the Coordination of Left-Right
Locomotor Activity
Motor behaviors such as walking and running in limbed verte-

brates require a high degree of bilateral coordination between

rhythmic networks in each half of the spinal cord (Grillner,

2003, 2006; Kiehn, 2006; Brownstone and Wilson, 2008). There

are two essential features of interlimb coordination that underlie

these highly symmetrical and repetitive patterns of motor activ-

ity. First, the phasing of extensor and flexor motor activity

between all four limbs needs to be tightly coordinated. Second,

the motor drive to the limb musculature on either side of the

animal needs to be balanced with respect to the amplitude and

duration of each motor burst. Our findings provide evidence

Figure 6. Sim1Cre; R26floxstop-TeNT Animals Display

Asymmetrical Patterns of Left-Right Activity during

Drug-Induced Locomotion

(A and B) Example of ENG recordings made from left and right

L2 ventral roots over a prolonged period (>10 min) of stable

locomotor activity induced by NMDA (5 mM) and 5-HT

(10 mM). Control wild-type cords (A, lower panels) typically

exhibit a stable pattern of locomotor activity marked by low

variance in the cycle-to-cycle burst duration for each L2 ven-

tral root. Sim1Cre; R26floxstop-TeNT spinal cords show an asym-

metrical pattern of flexor-related motor activity between both

halves of the spinal cord, together with the high cycle-to-cycle

variability in the burst duration period (B, lower panels). While

the duration of flexor-related burst activity in the left and right

halves of spinal cords is closely matched, the cL2 bursts in this

Sim1Cre; R26floxstop-TeNT cord were prolonged compared with

the other L2 ventral root. The lower panels show the burst du-

ration for the flexor-related recording shown above over a 5

min period. Note the increased variability and asymmetry in

the step cycle period in the Sim1Cre; R26floxstop-TeNT cord

(L2: 2.70 ± 0.67 s, range 1.62–4.30 s; cL2: 1.72 ± 0.27 s, range

1.37–2.67 s) as compared with the control cord (L2: 1.59 ±

0.10 s, range 1.24–1.92 s; cL2: 1.53 ± 0.14 s, range 1.27–

1.90 s). (C and D) Circular plots (Zar, 1974) showing the phase

coupling between right L2 (cL2) and left L5 (iL5) ventral roots

with respect to left L2 over a 5 min period of stable locomo-

tor-like activity. Each point represents the calculated vector

point for a single spinal cord. Points located near 0.5 represent

alternation, while those near 1 represent coactivation. Note

left-right alternation (cL2) is normal in the majority of the

Sim1Cre; R26floxstop-TeNT cords.

Figure 7. Acute Suppression of the V3

Neuronal Activity Disturbed the Locomotion

Activity

(A–C) Extracellular ventral root recordings from left

and right L2 ventral roots of a P1 Sim1Cre;

AlstR192 mouse before (A), during (B), and after

([C], washout) application of 2 mM allatostatin

peptide. Activation of the allatostatin receptor in

V3-derived neurons leads to a decrease in the

rhythmicity of locomotor-like outputs during

NMDA- and 5-HT-induced bouts of fictive loco-

motion. Power spectrum distributions of L2 ventral

root oscillatory frequency before, during, and after

application of the synthetic ligand (lower panels)

show increased variance in the step cycle period

when allatostatin is present.
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Figure 8. Allatostatin-Induced Attenuation of V3 Neuronal Activity in Adult Sim1Cre; AlstR192 Mice

Kinematic analysis of Sim1Cre; AlstR192 mice before and after application of allatostatin ligand to the lumbar spinal cord. ACSF alone (A) and 1 mM allatostatin in

ACSF (B) were applied to the exposed spinal cord (L2–L4 segments) of a Sim1Cre; AlstR192 mouse. (Upper panels) Stick diagrams illustrating the stance and

swing movements of the left hindlimb. Allatostatin application causes a disordered gait as illustrated by the increased variability in timing and phasing of stepping

movements. (Middle panels) Foot placement analysis during the same walking sequence, which shows increased variability in the positioning of the hind paw

following application of allatostatin. Note the meandering trajectory following application of allatostatin. (Lower panels) Stance phase (solid bars) and swing phase

(empty bars) for the left (black) and right (gray) hindlimbs during the same bout of locomotion. Application of allatostatin causes a marked disruption in the duration

and timing of the stance and swing phases. Periods of substantial overlap between the stance (extensor) phase of the left and right hindlimbs are indicated by

a wavy line. Skipping movements involving overlapping swing (flexor) phases for the left and right hindlimbs are indicated by an asterisk.
that V3 excitatory commissural connections play a prominent

role in the latter, because they are needed for balancing the mo-

tor outputs produced in each half of the spinal cord. Our results

also provide further support for the idea that inhibitory commis-

sural connections are primarily responsible for coordinating the

left-right phasing of the limbs when an animal walks (Cowley

and Schmidt, 1995; Lanuza et al., 2004; Kiehn, 2006).

We propose that the V3 class of neurons establishes a balance

between the motor outputs in both halves of the cord by acting

on contralateral excitatory and inhibitory locomotor-related neu-

rons in the ventral cord. Many V3-derived neurons are commis-

sural neurons that synapse directly with hindlimb lateral motor

column motor neurons on the opposite side of the spinal cord

(Figure 2; E.G and M.G, unpublished data). These cells directly

excite motor neurons on the contralateral side of the spinal

cord, thus coupling the motor drive produced by both halves

of the spinal cord. Given the extensive arborization of V3 axons

within the ventral horn (Figure 2), the V3 neurons are also likely

to modulate locomotor activity in both halves of the cord by

providing glutamatergic drive to other excitatory premotor inter-

neurons such as the V2a neurons. In principle, these excitatory

pathways would provide a mechanism by which the rhythmic

excitatory drive produced in one half of the spinal cord, rather

than being localized to that side, would be distributed to locomo-

tor-related neurons in the other half of the cord.

Synaptic inputs from V3-derived neurons onto inhibitory loco-

motor cell types such as Renshaw cells and putative Ia inhibitory

interneurons (see Figure 2) may also contribute to the balancing

of motor outputs during fictive locomotion by helping terminate

motor bursts. In the adult cat spinal cord, Renshaw cells and Ia

inhibitory interneurons are active during fictive locomotion,

where they are active in phase with the motor neurons that

they innervate (Pratt and Jordan, 1987). This suggests that

both of these inhibitory cell types contribute to the in-phase inhi-

bition that shapes each motor burst during fictive stepping rather

than the midcycle inhibition that controls left-right alternation.

The finding that the V3 cells make little or no contribution to
92 Neuron 60, 84–96, October 9, 2008 ª2008 Elsevier Inc.
securing left-right alternation (Figure 6) also fits with our previous

observation that V1 neurons, of which Renshaw cells and Ia

inhibitory neurons are two subclasses (Alvarez et al., 2005),

regulate the speed of stepping movements without affecting

left-right alternation (Gosgnach et al., 2006).

Commissural monosynaptic excitatory and disynaptic excit-

atory-inhibitory commissural inputs to hindlimb motor neurons

have been described in rodents (Butt and Kiehn, 2003; Quinlan

and Kiehn, 2007), thus raising the possibility that excitatory

commissural neurons could contribute to left-right coordination.

Nevertheless, commissural connections that depend on glyci-

nergic transmission appear to be the major pathway controlling

left-right alternation during walking and swimming (Grillner and

Wallén, 1980; Cohen and Harris-Warrick, 1984; Soffe et al.,

1984, 2001; Jankowska and Noga, 1990; Lanuza et al., 2004;

Kiehn, 2006). We would therefore like to suggest that two parallel

systems may shape left-right locomotor activity in the spinal

cord: an ‘‘inhibitory’’ commissural pathway that coordinates

the phasing of left and right locomotor networks, and a ‘‘V3-ex-

citatory’’ commissural pathway that balances the locomotor

output across the spinal cord. It is possible that other as yet

unidentified excitatory commissural neuron subtypes contribute

to left-right alternation, although the V0V commissural neurons,

many of which are excitatory (G.L., unpublished data), appear

not to serve this function (Lanuza et al., 2004).

V3-Derived Neurons and Their Role
in Rhythm Generation
The question arises as to whether V3 neurons or a subset thereof

are core neuronal components of rhythm-generating centers in

the spinal cord or whether they function as conditionally rhythmic

cells. Our findings argue that the V3-derived neurons are not

absolutely required for oscillatory motor outputs. Only a few of

the V3 neurons that we have recorded from exhibit any of the

intrinsic cellular properties that are often associated with

rhythm-generating pacemaker neurons, namely plateau poten-

tials, conditional bursting properties, strong PIR, and high levels
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of spike frequency adaptation (Figure 3). Moreover, the connec-

tivity of the ventral V3 neurons differs from what has been

proposed for rhythm-generating interneurons, namely cells that

receive strong sensory innervation from Ia afferents as well as

descending serotonergic input from reticulospinal Raphe neu-

rons that are not last-order premotor interneurons (McCrea

and Rybak, 2008; Brownstone and Wilson, 2008). Nonetheless,

a subset of the V3 cells that we recorded from did show under-

lying oscillations in membrane potential in the presence of high

concentrations of NMDA, which is consistent with a role in

rhythm generation. This finding, together with other studies

that reveal differences in the intrinsic properties of the more dor-

sally located V3 neurons, is consistent with the idea that there are

multiple V3 neuronal subtypes. The roles that each of these

subtypes subserve within the locomotor network and their

contribution to rhythm generation remains to be determined.

Notwithstanding the many unresolved details of V3 subtype

diversity, connectivity, and activity during locomotion, we would

like to propose a model in which V3-derived neurons distribute

excitatory drive from locomotor rhythm-generating centers to

other components of the spinal motor network, thereby stabiliz-

ing and balancing the locomotor rhythm during behaviors such

as walking. V3 neurons in lamina VII and VIII possess high-input

resistances and respond linearly to current injection over a wide

range of firing frequencies (Figure 3), suggesting that they may

be ideally suited to distributing phasic excitation from rhythm-

generating cells to other locomotor-related neurons in the ventral

cord. The observation that a subset of the V3-derived neurons

project axons on both sides of the spinal cord is consistent

with such a role and is further evidence that V3 cells couple

the locomotor networks in both halves of the spinal cord.

Analyses of other rhythmic systems, including those that

produce circadian rhythms, demonstrate the important role

that neuronal coupling within an oscillatory network plays in

the generation of robust rhythmic outputs. This has been shown

for both slow photoperiodic oscillators (Aton and Herzog, 2005;

Liu et al., 2007) and oscillatory networks that generate fast motor

rhythms (Harris-Warrick and Marder, 1991; Orlovsky et al., 1999;

Marder and Bucher, 2001; Ramirez et al., 2004; Brownstone and

Wilson, 2008). Our data suggests that the coupling of bilaterally

segregated oscillatory networks in the spinal cord through V3

commissural connections may confer robustness and fidelity

on the locomotor CPG. Interestingly, two coupled oscillatory

centers have been identified in the medulla that control respira-

tion (Mellen et al., 2003; Onimaru and Homma, 2003), and it has

been hypothesized that coupling between these oscillators in-

creases the robustness of respiratory behaviors. Such coupling

between dispersed oscillatory centers may represent a common

mechanism for establishing the stable patterns of motor activity

that underlie repetitive behaviors such as walking or breathing.

EXPERIMENTAL PROCEDURES

Generation of Sim1Cre; R26floxstop-TeNT Mice and ZnG Mice

Mice expressing Cre recombinase under the control of Sim1 regulatory

sequences were generated by ESC gene targeting. Sequences encoding

Cre were inserted into the first exon of Sim1 followed by a PGKneo selection

cassette flanked with FRT sites (Figure 1A). Following transmission of the

Sim1Cre allele through the germline, the FRT-flanked PGKneo cassette was re-
moved. Sim1Cre mice were genotyped using primers specific for Cre recombi-

nase (Gosgnach et al., 2006).

R26floxstop-TeNT mice were generated by replacing the lacZ sequences

downstream of a floxed PGKneo-tpA cassette in the R26 locus (Soriano,

1999) with an open reading frame that encodes a GFP-TeNT fusion protein

(Yamamoto et al., 2003).

ZnG reporter mice were generated using the method previously described

by Novak et al. (2000). The GFP coding region in the Z/EG transgene was mod-

ified by the inclusion of a nuclear localization signal (nls) at the N terminus of the

GFP protein. The ZnG mouse line was derived from a single founder that

showed widespread expression of lacZ.

Animals

The generation and genotyping of mice carrying the R26floxstop-lacZ,

R26floxstop-GAP43-GFP, Sim1taulacZ, AlstR192, NestinCre, and ACTB:Flpe alleles

has been described previously (Sapir et al., 2004; Marion et al., 2005; Lanuza

et al., 2004; Gosgnach et al., 2006; Rodrı́guez et al., 2000). Embryos and

postnatal animals obtained from timed matings were genotyped by PCR.

R26floxstop-TeNT mice were genotyped using primers specific for the GFP-

TeNT allele. Genotyping of ZnG mice was performed by tail b-gal staining

and PCR using primers specific for lacZ and GFP. All animal experiments

were conducted according to the protocols approved by IACUC of the Salk

Institute for Biological Studies and NIH guidelines for animal use.

In Situ Hybridization, b-gal Histochemistry, Immunohistochemistry,

and Transsynaptic Tracing

In situ hybridization, b-gal activity detection, and immunostainings were

performed as described previously (Lanuza et al., 2004; Gosgnach et al.,

2006; Sapir et al., 2004).

V3 neuron presynaptic terminals onto identified neurons were mapped in

Sim1Cre; R26floxstop-GAP43-GFP mice. Images were captured using a Zeiss

LSM510 confocal microscope and z-stack reconstructions of the soma and

proximal dendrites made from three overlapping 0.5 mm thick optical sections

using a 63 3 oil objective (N.A. 1.25). Points of possible synaptic contact were

defined as axon terminations that showed no gap or a slight overlap between

the cytoplasmic markers (ChAT, calbindin, and PV) and GFP immunolabeling.

Glutamatergic presynaptic terminals marked by vGlut2 were counted using

the same criteria as for GFP-labeled axons. Colocalization of vGlut2 and

GFP was a positive indication of a presynaptic terminal, and most GFP+ termi-

nals (>95%) contained vGlut2 immunolabeling. Counts of GFP+/vGlut2+

versus vGlut2+ only terminals were used to generate a ratio of V3 interneuron

excitatory synaptic contacts onto motor neurons, Renshaw cells, and Ia inhib-

itory interneurons.

Transsynaptic tracing from hindlimb motor neurons with PRV152 pseudora-

bies virus was undertaken using the protocol described in Lanuza et al. (2004).

Spinal cords were analyzed 38–40 hr after PRV injection, a time previously

determined to selectively identify monosynaptic connections to motor neurons

(Lanuza et al., 2004).

Electrophysiology

Electrophysiological experiments were performed on spinal cords from

P0–P3 mice as described previously (Lanuza et al., 2004; Gosgnach et al.,

2006).

Acute Spinal Cord Slice Recordings

For slice recordings, spinal cord slices 250–300 mm thick were cut using a Leica

VY1000E vibrating microtome. Following recovery, slices were transferred to

a recording chamber mounted on an Olympus BX51W1 microscope and per-

fused with oxygenated room temperature Ringer’s solution. GFP+ V3 neurons

were visualized using a DAGE-MTI IR-1000 CCD camera and patched visually

using a Sutter MPC-325 micromanipulator. Recordings were made in a cur-

rent-clamp mode using a MultiClamp 700B amplifier (Axon Instruments).

Patch-clamp recording pipettes of 6–7 MU were filled with a solution contain-

ing 138 mM K-gluconate, 10 mM KCl, 0.0001 mM CaCl2, 10 mM HEPES,

0.1 mM EGTA, 5 mM Mg-ATP, and 0.3 mM GTP-Li (pH 7.4). For each recording

1 mg/ml neurobiotin was added to the pipette solution to aid the unambiguous

identification of the GFP+ V3 neurons. V3 neurons were isolated synaptically by
Neuron 60, 84–96, October 9, 2008 ª2008 Elsevier Inc. 93
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blocking fast synaptic transmission with TTX (0.1 mM) or a combination of AP-5

(30 mM), CNQX (20 mM), picrotoxin (5 mM), and strychnine (10 mM).

Isolated Whole-Cord Recordings

ENG recordings were made in Ringer’s solution at room temperature (20�C) by

placing bipolar suction electrodes on three of the second and fifth lumbar ven-

tral roots. ENG signals were amplified, band-pass filtered (100 Hz to 1 kHz),

digitized, and collected using the Axoscope software (Axon Instruments).

Rhythmic locomotor activity was induced by adding NMDA (5 mM) and 5-hy-

droxytryptamine (5-HT, 5–20 mM) to the Ringer’s solution. The effect of allatos-

tatin-induced V3 silencing was examined by adding the peptide (1–5 mM) to the

perfusion solution (Gosgnach et al., 2006; Tan et al., 2006).

In Vivo Kinematic Analysis

Adult kinematic analyses were performed as described by Akay et al. (2008).

Eight adult Sim1Cre; Alstr192 mice (3–6 months old) were anesthetized with

isofluorane and given the analgesic buprenorphine (0.1 mg/kg). An incision

was made in the area of the T11–T13 thoracic vertebrae and the spinal cord

was exposed via a dorsal laminectomy. The dorsal dura mater was removed

and a perfusion bath was created using Vaseline. For control experiments,

physiological saline was applied to the bath for a period of 20 min. The Vaseline

chamber was then removed and the skin above the application site closed

using a suture clip. Reflective markers were attached to the iliac crest, hip,

knee, ankle, and toe for later kinematic analysis. Isofluorane was then removed

and the mouse was placed in a horizontal Plexiglas walkway (80 3 5 cm).

During locomotor activity, high-speed video recordings were made (Photron

FASTCAM) for 30 min to monitor leg movements. After recording bouts of

locomotion under control conditions, the mouse was anesthetized, the suture

clip was removed to expose the spinal cord, and allatostatin (500 mM to 1 mM

in saline) was applied to the spinal cord for a period of 20 min. After full recov-

ery from anesthesia, the mouse was then returned to the walkway and locomo-

tor activity was further videotaped for a period of 30 min. High concentrations

of allatostatin were used due to the steep concentration gradient that occurs

when drugs are applied subdurally (Brumley et al., 2007; Akay et al., 2008).

Control animals treated with similar concentrations of allatostatin showed

no changes in their locomotor gait. Stick figures of leg movements were

constructed using the Peak Motus system.

Data Analysis and Statistics

We created an open-source package of Octave/Matlab scripts for analyzing

the ENG recordings from different ventral roots. This program is available at

http://neurodata.sourceforge.net. To characterize the oscillatory behavior of

the spinal cord circuits, we calculated power spectrum distributions for recti-

fied and filtered ventral root recordings using the Octave function ‘‘pwelch’’

with a Fourier transform window of 100 s. Autocorrelation functions were

calculated for the same data using the Octave function ‘‘xcov’’ with ‘‘coeff’’

style normalization (‘‘coeff’’ normalizes the value at lag 0 to 1). To calculate

the burst duration, the program was used to determine the length of time

between the increase in ventral root discharge rate to half-maximum and the

following decrease to half-maximum. Circular statistics (Zar, 1974) were

used to determine the coupling strength between ventral roots.

Student’s t tests were performed for each data set. Results were considered

statistically significant at p < 0.05. All data are expressed as mean ± SD.

SUPPLEMENTAL DATA

The Supplemental Data for this article contain four figures and can be found

online at http://www.neuron.org/supplemental/S0896-6273(08)00806-4.
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