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Abstract

Motivation: Experimental testing and manual curation are the most precise ways for assigning Gene Ontology (GO)
terms describing protein functions. However, they are expensive, time-consuming and cannot cope with the expo-
nential growth of data generated by high-throughput sequencing methods. Hence, researchers need reliable compu-
tational systems to help fill the gap with automatic function prediction. The results of the last Critical Assessment of
Function Annotation challenge revealed that GO-terms prediction remains a very challenging task. Recent develop-
ments on deep learning are significantly breaking out the frontiers leading to new knowledge in protein research
thanks to the integration of data from multiple sources. However, deep models hitherto developed for functional pre-
diction are mainly focused on sequence data and have not achieved breakthrough performances yet.

Results: We propose DeeProtGO, a novel deep-learning model for predicting GO annotations by integrating protein
knowledge. DeeProtGO was trained for solving 18 different prediction problems, defined by the three GO sub-
ontologies, the type of proteins, and the taxonomic kingdom. Our experiments reported higher prediction quality
when more protein knowledge is integrated. We also benchmarked DeeProtGO against state-of-the-art methods on
public datasets, and showed it can effectively improve the prediction of GO annotations.

Availability and implementation: DeeProtGO and a case of use are available at https://github.com/gamerino/
DeeProtGO.

Contact: gmerino@ebi.ac.uk or gmerino@sinc.unl.edu.ar

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Proteins are involved in almost all biological processes (BPs) in the
cell. Therefore, elucidating their functions, the processes they are
involved in, as well as the cellular location where those processes are
being done, is key for understanding how a biological system operates
not only in normal conditions but also in a disease context (Li et al.,
2018). High-throughput sequencing efforts are driving increased
coverage of the proteomes of thousands of organisms. However, pro-
viding high-quality information on the function of individual proteins
requires experimental and manual techniques that are time-consuming
and expensive. For instance, <600 thousands of the 215 millions of
protein records in the UniProt Knowledgebase (UniProtKB, release
January, 2021) have been reviewed by expert biocurators and depos-
ited in the UniProtKB/Swiss-Prot repository (UniProt Consortium,

©The Author(s) 2022. Published by Oxford University Press.

2019). Moreover, only about 0.1% of proteins in UniProtKB have at
least one manually curated or experimental annotation. As the num-
ber of sequenced genomes rapidly grows, the overwhelming amount
of newly discovered proteins can only be annotated initially by com-
putational methods, which must provide a reasonable trade-off be-
tween precision and recall. Thus, automatic function prediction (AFP)
tools become essential to reduce the gap between sequenced proteins
and experimental annotations (Jiang et al., 2016).

The most comprehensive and widely used database for protein
functions annotations is the Gene Ontology (GOj; http://geneontol
ogy.org). The GO knowledgebase is structured using a formal ontol-
ogy involving classes of gene functions (GO terms) (The Gene
Ontology Consortium, 2019). Each GO term represents a unique
functional attribute and all terms are associated with each other in a
directed acyclic graph (DAG) structure based on inheritance
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relationships. GO is organized in three DAGs, or sub-ontologies:
molecular function (MF), BP and cellular component (CC). AFP
methods deal with the computational assignment of GO terms to
proteins of unknown or incomplete function from proteins whose
function has already been manually curated and/or determined ex-
perimentally. Many approaches have been proposed for solving the
AFP problem (Cruz et al., 2017; Friedberg, 2006; Zhou et al.,
2019). These different strategies can be grouped into three catego-
ries: transfer based on sequence/homology, structure-based and sys-
tems biology-based (Cruz et al., 2017). Sequence- and structure-
based methods assume that proteins similar in sequence/structure
have similar functionality, thus they search for sequence domains,
structural features or multi-sequence alignments to infer functions.
In this scope, sequence-based methods are more popular since it is
experimentally more challenging to identify protein structures than
sequences. Since proteins do not act individually, the third category
of AFP methods is based on co-expression networks and protein—
protein interactions (PPIs), which have shown to be good predictors
for complex BPs (Cruz et al., 2017; Rost et al., 2003). Thus, inte-
grating protein knowledge available through databases and litera-
ture could improve the AFP quality since they contain implicit and
explicit descriptions of proteins and their functions (You et al.,
2019; Zhou et al., 2019). Therefore, computational methods that
accurately predict protein functions, considering not only sequence
but also all related protein knowledge, and being applicable to
proteins that have not been previously studied, and also to
those whose annotations must be completed are needed.

Many new computational methods for AFP are published every
year, which are mainly based on machine learning (ML) and meth-
ods for similarity search (Bonetta and Valentino, 2020). In order to
provide a fair and equitative framework for their comparison, sys-
tematic benchmarking efforts have been developed by the commu-
nity. The Critical Assessment of Function Annotation (CAFA)
challenge tries to solve this problem by providing a real blind test
and identifying the most effective methods for the AFP problem.
The last challenge results [CAFA3 (Zhou et al., 2019)] indicate that
ML and sequence alignment remain the most used approaches for
AFP in the three GO sub-ontologies. In addition, results revealed
that top performing tools are mainly ensemble methods. For in-
stance, GOLabeler (You et al., 2018b) consistently outperformed
the methods from all past CAFA challenges in the major categories.
This method combines k-nearest neighbors using the popular Basic
Local Alignment Search Tool (BLAST) (Altschul ez al., 1990) with
logistic regression and a Naive computation of GO-term frequencies
to solve the problem of learning to rank. For this, GOLabeler uses
different features, such as: GO-term frequency, sequence alignment,
amino acid trigram, domains, motifs and biophysical properties.
Although method performances have shown an increase between
CAFA2 and CAFA3, they are still a matter of improvement, even
more for proteins without prior experimental annotation referred to
as no-knowledge (NK) proteins. Indeed, the best tools achieved a
CAFA F1 score that barely exceeded 0.4 in BP, and 0.6 in both MF
and CC sub-ontologies for NK proteins (Zhou et al., 2019). These
numbers show that the problem of AFP is a long way from being
solved and new approaches are still required (Makrodimitris et al.,
2020).

The emergence of deep-learning (DL) to model complex patterns
of multi-level data has revealed its potential to address many chal-
lenges in different research fields. In particular, recent works have
reported DL as a powerful tool for mining protein big data to obtain
valuable knowledge (Liu ez al., 2021; Shi et al., 2021). DL has also
been proposed for solving the AFP problem in the last years
(Kulmanov and Hoehndorf, 2020; Littmann et al., 2021; Rifaioglu
et al., 2019; You et al., 2018a). Furthermore, novel tools based on
the cutting-edge DL architectures, such as transformers and graph
neural networks, were presented very recently (Cao and Shen, 2021;
You et al., 2021). However, there are still limitations that need to be
addressed. In this sense, hitherto developed DL methods have not
been focused on integrating the heterogeneous available protein
knowledge, but mainly designed for predicting GO terms using only
protein sequences. For instance, DeepGOPlus (Kulmanov and

Hoehndorf, 2020) uses the raw protein sequence as inputs of a deep
convolutional neural network being this enough for improving the
performance of state-of-the-art tools, such as DeepText2GO, based
on text semantic representation (You ef al., 2018a). Similarly,
DEEPred (Rifaioglu et al., 2019), a stack of multi-task feed-forward
networks, predicts GO terms from features calculated from the pro-
tein sequence. Meanwhile, goPredSim (Littmann et al., 2021) is a
method for annotation transfer based on similarity of protein-
sequence embeddings (Embs) obtained from DL models.
Furthermore, most of these models do not have full coverage of the
ontology since they have been restricted to predict only those GO
terms which have already been assigned to a minimum amount of
proteins. It should be mentioned the importance of method compari-
sons on the same exact and standard test set. Usually, some reported
scores are higher than those reached by CAFA3 winners but are
based on their own datasets instead of standard data provided by
CAFA community. Evenmore, sometimes the reported results refer
to the whole CAFA3 benchmark set, masking the hardest challenge
of NK proteins function prediction.

Here, we propose DeeProtGO, a DL model for predicting GO
terms integrating protein data from multiple sources. To address the
problem of the diversity in the type and amount of knowledge cur-
rently available for proteins, our approach considers different inputs
ranging from only the sequence to incorporating co-occurrence of
GO annotations, previously known GO annotations and sequence
similarity. We show how the combination of more than one type of
protein information could improve the prediction quality. Unlike
other approaches, our method is easily adaptable for predicting
terms from any of the GO sub-ontologies, without restrictions on
the number of terms and providing high coverage. We evaluated our
models using the CAFA3 challenge training and benchmark data-
sets, achieving scores that indicate DeeProtGO outperforms several
CAFA3 top methods and state-of-the-art DL algorithms.

2 DeeProtGO model

2.1 Prediction tasks

According to the CAFA rules, the AFP challenge involves a timeline
with three time-points that are considered to build the sets of pro-
teins used as training and benchmark datasets. For CAFA3, ¢t_; is
when the challenge was released providing training and target pro-
teins to the participants (September, 2016); #y, the deadline for par-
ticipants submissions of the predictions for the target proteins
(February, 2017); and #, is when benchmark proteins were collected
for assessment (November, 2017) (Zhou et al., 2019). Thus, the
CAFA3 benchmark is composed of those target proteins that have,
at least, one new functional annotation added during the growth
period between #, and #;. This dataset involves two classes of pro-
teins. On the one hand, the NK proteins are those that do not have
experimental annotations in any of the GO sub-ontologies at #y, but
have accumulated at least one GO term with an experimental
evidence code during the growth period. On the other hand, the lim-
ited-knowledge (LK) proteins are those which already had one or
more GO terms experimentally annotated in at least one of the three
sub-ontologies at #y (Jiang et al., 2016).

In order to fit models able to learn new annotations gained dur-
ing a time gap, we defined a growth period between ¢_; and #, spe-
cific for training. Thus, models presented here were trained using
the protein knowledge available at #_; as input, to predict GO anno-
tation at y. Moreover, specific training and benchmark sets for each
sub-ontology were generated, as it is shown in Figure 1. For this,
proteins were classified based on their experimental annotations as
follows:

* LK-S: Proteins having at least one GO term in a particular
sub-ontology at the reference time (¢_; for training, #o for bench-
mark), and that have gained new annotations in this sub-
ontology during the growth period.

* LK-NK: Proteins without annotations in a particular GO sub-
ontology at the reference time, but that have been annotated in
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Fig. 1. Schematic representation of protein classification for BP. Proteins are firstly
grouped according to whether they had, or not, GORef #,_; (7=0 for training and
n=1 for benchmark). The proteins having GO terms are defined as LK, and pro-
teins whose annotation did not change between #,_1 and ¢,, are named No Change
(NC). Meanwhile, unannotated proteins are called NK. Focusing on the aimed sub-
ontology, the LK/NC set is splitted into two groups: LK/NC for GO BP and LK-NK.
From the first group, proteins that had BP terms at ¢,-1 and that gained BP terms
during the growth period (new annotations at #,,) define the LK-S subset. Similarly,
LK-NK proteins without BP terms at ¢,_; but gaining at least one BP annotation at
t, are LK-NK for BP. Complementary, NK proteins are filtered to identify which of
them were annotated with BP terms between ¢, and ¢, referred as NK for GO BP

this sub-ontology during the growth period (i.e. the same as
CAFA3 LK proteins).

* NK: CAFA3 NK proteins, i.e. without GO annotations at the
reference time (GORef), but that have been annotated during the
growth period.

* Negatives: Proteins without annotations in a particular GO sub-
ontology at the reference time and that do not have gained anno-
tations during the growth period.

* No Change: Proteins do not change their annotations during the
growth period for a particular GO sub-ontology.

Taking into account this classification, three prediction problems
for each GO sub-ontology were considered: (i) providing annota-
tions for NK proteins, from which only the sequence and the taxon
is the current information; (ii) predicting annotations for LK-NK
proteins, from which only the sequence and the annotations in other
GO sub-ontologies are the current information; and (iii) adding
annotations for LK-S proteins, from which the sequence, the anno-
tations in the other GO sub-ontologies, and the GO terms at the ref-
erence time in the sub-ontology to predict are the available
information. In addition, in order to reduce the complexity of mod-
els, prokaryotic and eukaryotic proteins were modeled separately.
Therefore, for each of the three prediction problems, we have devel-
oped two separate models (prokaryotic and eukaryotic) for each of
the three GO sub-ontologies: BP, CC and MF. That makes a total of
18 AFP models.

2.2 Protein-knowledge representation

Protein information contained in amino acid sequences, organism
taxa, InterPro annotations and GO annotations, were used here as a
source of knowledge for AFP (Table 1). For NK models, sequence
information was represented by means of two strategies. On the one
hand, the SeqVec model (Heinzinger et al., 2019) was used for
obtaining sequence Emb of length 1024. On the other hand, se-
quence similarity between proteins of interest and the set of anno-
tated proteins for each GO sub-ontology, was computed as the
complement of the pairwise sequence edit distance (PSD)
(Levenshtein, 1966; Raad et al., 2020). In addition, organism taxa
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Fig. 2. DeeProtGO schematic representation. Several possible types of inputs are
shown at the left, with their corresponding encoding sub-network. The middle part
shows the classification model architecture, including the hierarchical layer architec-
ture to model the outputs. The hierarchical structure of outputs are depicted at the
right, indicated with different colors

Table 1. Types of input data used for training DeeProtGO for the
three types of proteins, NK, LK-NK and LK-S

PSD Emb Taxon InterPro GORef GOCol GOCo2

NK v v v v — — —
LK-NK v/ v — — — v 4
LK-S v v — — 4 v 4

and InterPro annotations were represented using one-hot-encoding
vectors. For all prediction tasks, GO annotations gained during the
growth period, i.e. the prediction targets, were represented by using
one-hot-encoding vectors.

For LK-NK and LK-S problems, in addition to PSD and Emb se-
quence information, the GO knowledge relating each annotated
protein with the other ones was represented by means of normalized
co-occurrence vectors. For example, when predicting protein anno-
tations for BP, there are two possible vectors of co-occurrence
(GOCo1 and GOCo2) with respect to other proteins in MF and CC.
These vectors indicate the number of terms in common between pro-
teins at the reference time. In addition, the GORef of LK-S proteins
were represented by a one-hot-encoding vector.

2.3 Architecture and training

DeeProtGO is based on a feed-forward deep neural network that
predicts the set of terms of a GO sub-ontology, by integrating sev-
eral information sources with features built from the sequence and
functional annotations of a protein (Fig. 2). Depending on the spe-
cific prediction task, NK, LK-NK, or LK-S, different numbers and
types of inputs are considered. Thus, for providing the ability to
learn specific features from each input, the model has several encod-
ing sub-networks, one for each data type. Each of these sub-
networks receives its corresponding input data and encodes them
into a learned feature space. Each encoding sub-network has two
fully connected layers with exponential linear units (ELU) as activa-
tion functions (Clevert et al., 2015), batch normalization and drop-
out for model regularization. The output here is the set of learned
features for the particular protein-knowledge input. These features
are then concatenated into a single vector used as input for the clas-
sification sub-network.

The classification sub-network has six fully connected layers
aimed to predict the full set of new GO terms for the protein under
analysis. To take into account the ontology hierarchy, the last four
layers are combined with sigmoid activation functions for modeling
the output vector, being actually the deepest GO terms represented
by the last output layer. That is, given the full set of output GO
terms to be predicted, they are ranked according to the number of
parents each term has. Then, the quartiles of this ranking are used to
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split the full set of GO terms into four hierarchically related vectors,
used for training the last four layers. This configuration is shown in
Figure 2 where the top-level predictions are colored in orange, the
intermediate GO terms are indicated with pink and purple and the
deepest GO terms, that come out from the last output layer of the
model, are shown in blue. All the hidden layers of the classification
sub-network also involve ELU activation functions, batch normal-
ization and dropout.

DeeProtGO is trained in an end-to-end fashion using a cost func-
tion that is the sum of the loss of each layer representing the GO
terms. To reduce the complexity of the hyperparameters optimiza-
tion process, the optimizers and the loss functions were evaluated in
first place only on a single model. The Adam optimizer (Kingma and
Ba, 2014) is used and the loss at each layer is measured by using the
binary cross-entropy classification loss,

1N
Ipce = N;[Yi logx; + (1 — y;) log(1 — x;)], (1)

where y; is the target label and x; is the predicted score for the i-th
term in the output set of the N GO annotations.

3 Data and experimental setup

3.1 Data sources and datasets analysis

Data used for building and evaluating our models were obtained
from different knowledge databases for the proteins of the CAFA3
challenge (https://www.biofunctionprediction.org/cafa/). Namely, a
total of 66841 proteins compose the training set, from which
58717 belong to eukaryotic organisms and 8124 to prokaryotic spe-
cies; a total of 3328 proteins compose the benchmark set, 2398
from 11 eukaryotic organisms and 345 belonging to 9 prokaryotic
species. Sequence and organism data were downloaded from
UniProtKB/SwissProt (version 2016_08). GO annotations at the
three time-points defined in CAFA3 (Zhou et al., 2019) were
obtained from UniProt-GOA (version 158, 162 and 172 for t_q, t,
and ¢y, respectively). Since manual curation or experimental valid-
ation are usually considered as highly reliable (Cruz ez al., 2017),
only annotations with evidence codes EXP, IDA, IPI, IMP, IGI, IEP,
TAS and IC were kept. These annotations were then propagated
from the deepest terms to the top of the corresponding sub-ontology
with GOATools (Klopfenstein et al., 2018).

Since CAFA3 training set only provides proteins that have ex-
perimental annotations at #_; in order to obtain NK proteins for
training, GO annotations at ¢y and #_; for all UniProtKB/SwissProt
proteins were compared. Thus, those proteins that did not have ex-
perimental annotations in any of the GO sub-ontologies at ¢_1, but
have accumulated at least one GO term with experimental evidence
at ty, were also considered for training. In addition, proteins that
had not changed their annotation in any sub-ontology were
removed. As a result, the training set was composed of 49 875 eu-
karyotic and 7028 prokaryotic proteins with all their experimental
GO annotations.

In order to define the training and benchmark datasets for each
particular prediction task, the annotations for both train and bench-
mark CAFA3 proteins were analyzed. The Figure 3 shows, for each
taxonomic kingdom and each GO sub-ontology (from left to right,
BP, CC and MF, respectively), the percentage of LK-S, LK-NK and
NK proteins, as well as of those No Change proteins, and those
remaining as unannotated (Negative proteins). As it can be
observed, splitting the prediction problem into the three sub-
ontologies reveals the high percentage of No Change proteins (pink
bars). Moreover, for all sub-ontologies in both prokarya and
eukarya, the distribution of the different types of proteins highly dif-
fers between train and benchmark sets. This imbalance can affect
not only the training process, but also the generalization capability
of the learned model, when the distributions are very different be-
tween the two datasets.
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Fig. 3. Detailed analysis of the CAFA3 challenge datasets for training and testing
the DeeProtGO models. The training set involved 49 875 and 7028 proteins from
eukaryotic and prokaryotic organisms, respectively; the amount of proteins in the
CAFA3 benchmark dataset is 2983 (eukarya) and 345 (prokarya). The relative pro-
portion of each type of protein (in percentage) in these datasets is shown along the
y-axis

3.2 Data augmentation and model tuning

Since DeeProtGO is aimed to predict new annotations acquired dur-
ing a time gap, only those proteins gaining GO terms during the
growth period represent Positive cases, while those that remain
unannotated for a particular sub-ontology are those called
Negatives. With this nomenclature, a protein could be for instance a
Positive for the NK task in BP but a Negative for the NK task in
CC. In addition, No Change proteins do not provide useful informa-
tion for the model in terms of gaining new annotations. However,
they can be strategically used for increasing the number of Positive
proteins for some particular prediction cases, as a data augmenta-
tion strategy aimed to reduce the imbalance differences between
train and benchmark sets. In the case of the NK model for a given
sub-ontology, training proteins marked as No Change for that sub-
ontology, and Negatives for the other two sub-ontologies, were used
as NK. That is, these No Change proteins were considered unanno-
tated at ¢_; while their annotations were supposed to be assigned
during the growth period for model training [t_; — #] for the sub-
ontology of interest.

For each LK-NK model, Positive cases were augmented consid-
ering those proteins that are No Change not only for the target GO
sub-ontology but also for, at least, one of the two other sub-
ontologies. This criterion was established for ensuring the obtention
of non-negative co-occurrences vectors that will be then used as
inputs for these models. Thus, and like for NK augmented data,
annotations of these No Change proteins used as Positives were
ignored at ¢_; and assumed to be assigned during the growth period
for model training [t_1 — #o].

Although these strategies helped to increase the Positive cases,
the percentage of Negative proteins was still higher in training than
in benchmark for most prediction tasks. Thus, subsampling of
Negative cases was also performed. The number of proteins finally
kept as Positives and Negatives for each model is listed in
Supplementary Table S1, as well as the number of GO terms to pre-
dict for each prediction task. It is worth to highlight these annota-
tions cover all the GO terms available for the set of proteins of each
prediction task, without any restriction related to term depth and/or
representativity in the training sets.

DeeProtGO is implemented in PyTorch, in a user-friendly way to
allow considering from one to six different inputs (code available at
https://github.com/gamerino/DeeProtGO). The size of each input
vector as well as of the output vector can be easily adapted for con-
sidering different data sources and modeling the different prediction
tasks. Moreover, the implementation allows for optimizing hyper-
parameters, such as the number of neurons in hidden layers, dropout
probability, batch size and learning rate, contributing to both the
model scalability and the tuning process.

For each of the 18 prediction tasks, several alternatives using dif-
ferent sources of inputs were considered. Given the resulting size of
the hyperparameter search space and since prokarya models are
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simpler than the eukaryotic ones, an extensive search for the number
of neurons in hidden layers, dropout and batch size was performed
for these models. Then, a smaller grid of these hyperparameters and
only for the best combination of inputs were evaluated for eukarya
models.

To standardize the setting of the units in the two hidden layers of
the encoding sub-networks, proportions (ratios) with respect to the
size of the input layer were used. Similar procedure was done for the
first two hidden layers of the classification sub-network. For these
hyperparameters, proportions ranging from 0.25 to 1.2 were eval-
uated. For each model and in combination with the proportions pre-
viously mentioned, the batch size, learning rate and dropout
probability were also fine-tuned, considering values in the sets {8,
16, 32, 64, 128, 256, 512, 1024}, {0.001, 0.005, 0.01, 0.05} and
{0.25, 0.5, 0.75}, respectively. All parameters were optimized for
model performance on the test set of a cross-validation (CV) proced-
ure considering 70%, 10% and 20% of data for training, validation
and testing, respectively, within the time frame [r_; — #]. In
addition, the number of epochs was selected by using early stopping
monitoring the loss in the validation sets, with a patience of 10
epochs.

3.3 Performance measures

The performance of DeeProtGO was assessed by using the standard
CAFA evaluation metrics. The F.,, a protein-centric F-measure
computed over the set of prediction thresholds, was used as the
main performance indicator. For obtaining it, precision and recall
for the i-th protein at the #-th threshold should be firstly obtained
with p;(¢) = 3 I(f € Pi(t) Af € Th))/ 326 1(f € Pi(t)) and 7,(2) =
(O If e Pit) Nf € T)/ 324 1(f € T), where I(:) is the identity
function returning 1 if the condition is true and 0 otherwise, f is a
GO term, P;(t) is the set of predicted terms for the protein 7 at the
threshold # and T; is the set of true annotations of protein 7.

Average precision and recall are then obtained as

m(t) . n .
bl = 2ot PO, ) Saan®) @)

m(t) n

where m(#) is the number of proteins with at least one predicted GO
term, and 7 is the total of proteins with true annotations. Fy.y is

computed as
_ 2p(1)7(2)
Fmax = m?x{m}, (3)

considering ¢ € [0,1] with a step size of 0.01 (Radivojac et al.,
2013).

4 Results and discussion

4.1 Hyperparameters analysis

DeeProtGO has been trained for solving the 18 tasks defined by the
combination of the three GO sub-ontologies (BP, CC and MF), the
three types of protein sets (NK, LK-NK and LK-S) and the two taxo-
nomic groups (prokarya and eukarya). The average performance
measures were calculated on the test partition within a 3-fold CV
process in order to obtain an internal evaluation of hyperparameters
for the proposed model. The optimization of hyperparameters
involved training around a thousand models. The effect of the
hyperparameters in the DeeProtGO performance was individually
explored, evaluating the F,,,, in each case. A detailed analysis of the
effect of batch size, dropout probability and the number of neurons
in the hidden layers of the classification sub-network is presented in
the section Hyperparameters analysis of the Supplementary
Material.

One of the main hypotheses of DeeProtGO is that integrating
heterogeneous protein knowledge can lead to a better and more ef-
fective annotation process. Supplementary Figures STA and S2A re-
veal that this hypothesis is fulfilled for predicting BP and CC terms
for NK proteins, where models integrating different types of data

reached the highest F,,, scores, in comparison with other single and
unintegrated types of inputs. For both eukaryotic and prokaryotic
proteins, when integrating Emb-Taxon DeeProtGO performs almost
as well as when it uses PSD-Emb-Taxon as input. Thus, this indi-
cates that the information useful for GO prediction represented by
PSD may be contained in the Emb. Similarly, adding the input repre-
senting InterPro annotations did not have a great impact on the
model performance, probably because domains information is al-
ready included in the sequence Emb representations. Thus, the in-
crease in the number of parameters without adding new training
examples leads to similar performance scores than those previously
obtained without this new feature. Interestingly, for those proteins,
the Emb data alone was enough for DeeProtGO to predict MF GO
terms. For LK-NK model, combining Emb with the co-occurrence
of GO annotations (GOCol and GOCo2) as model input led to the
highest performances in both, eukaryotic and prokaryotic proteins
(see Supplementary Figs S1B and S3A, respectively). Interestingly,
combining PSD to these inputs led to poorer performance in the eu-
karyotic model for BP, the largest model in terms of the number of
GO terms to be predicted (Supplementary Table S1). Since adding a
fourth encoding sub-network implies significantly increasing the
number of input dimensions and model parameters to be learned, it
is possible that the number of training proteins was not enough for
allowing DeeProtGO to reach the performance achieved when Emb,
GOCo1 and GOCo2 were integrated. For LK-S, using annotations
at the reference time (GORef) combined with PSD and Emb was
enough for proteins from prokaryotic organisms (Supplementary
Fig. S4A). Meanwhile, adding GOCol and GOCo2 improved the
DeeProtGO performance for the eukaryotic case (Supplementary
Fig. S1C). Thus, in summary, the more heterogeneous protein infor-
mation DeeProtGO integrates, the more effective the prediction of
GO terms is. In addition, one of DeeProtGO advantages is its flexi-
bility for easily changing its inputs. For example, instead of the pro-
tein Embs from SeqVec, Embs obtained with newer methods, such
as ProtTS$ (Elnaggar et al., 2021) can simply be used, which was in
fact recently tested reaching a slight improvement in the DeeProtGO
performance.

4.2 Performance on the training set

The performance measures of DeeProtGO on test partitions of the
training dataset are depicted in Figure 4 and fully reported in
Supplementary Table S2. The figure shows, for each prediction task
(NK, LK-NK and LK-S) and each sub-ontology, the performance of
DeeProtGO for each taxonomic kingdom. Filled bars represent the
3-folds average F., reached by each model, with different colors
indicating the best input integration. Within each filled bar, empty
bars represent the corresponding recall (left) and precision (right),
respectively. In addition, the Fp,, scores achieved by using baseline
methods are also shown with circle (Naive) and diamond (BLAST)
marks. These methods were implemented considering as predictor
the subset of proteins with GOA that are in each training set defined
in Section 2.1.

Results obtained with DeeProtGO for predicting annotations in
NK proteins showed a pattern consistent with the state-of-the-art,
where the highest scores were achieved for CC and MF sub-
ontologies (Fig. 4A). In the case of BP, the F,,, were 0.486 and
0.386 for prokarya and eukarya models, respectively, with preci-
sions higher than recall in both cases. For predicting CC terms,
observed F.. were higher than 0.700 being, as in the BP case,
higher for prokaryotic organisms. The Fy,,, found for the MF pre-
diction was up to 0.823 for eukaryotic proteins and almost 0.642
for the prokaryotic ones. Interestingly, for both BP and CC, models
reaching the best performance received information from sequence
and taxon as input whereas MF models only used sequence data rep-
resented with Embs. Furthermore, and for the three sub-ontologies,
DeeProtGO outperformed baseline methods.

This same experiment was repeated in order to evaluate how the
hierarchical structure of GO contributes to the model performance.
A flattened version of DeeProtGO, i.e. having a single output layer,
was trained and tested in these six NK problems. Comparing the
obtained scores (listed in Supplementary Table S3) against those
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Fig. 4. Performance of DeeProtGO and baseline methods during evaluation in a 3-fold CV scheme when predicting GO terms for (A) NK, (B) LK-NK and (C) LK-S proteins.
Filled bars represent achieved Fy,,y by DeeProtGO; empty bars represent recall (left) and precision (right) the recall and precision achieved at the Fy,,, respectively. Colors fill-
ing the Fp,, bars indicate the input data combination used. Circles and diamonds indicate the F,,,, of Naive and BLAST, respectively

previously reported (first rows in Supplementary Table S2) revealed
that in NK models for BP in prokarya, and MF in prokarya and
eukarya the F,,y scores dropped up to 9% mainly because precision
was reduced up to 16%. In the other three cases, although the F,,,
values were similar to those reached using DeeProtGO in its original
version, precision dropped between 2% and 8%.

Observed Fp,y scores in LK-NK proteins for DeeProtGO in each
sub-ontology (Fig. 4B) were closer to those previously described,
being the best models those having input information about GO-
terms co-occurrences. For these proteins, predicting BP terms for
both, prokarya and eukarya, is the most complex task because it
requires training models able to learn how to assign more than 3600
and 15000 GO terms, respectively. Indeed, for the eukarya predic-
tion, the best model (F,,,x=0.328) used input information from
PSD, Emb and GO co-occurrences, altogether. Whereas, the F,.
score of DeeProtGO for the prokarya prediction was almost below
0.541, but reaching a precision score up to 0.600. Similarly to NK
models, the prediction scores for CC terms were higher for prokary-
otic proteins than for the eukaryotic ones. Particularly, the best per-
formance of DeeProtGO for LK-NK proteins was achieved in
predicting this sub-ontology (Fiax up to 0.743 and 0.665 for pro-
karya and eukarya, respectively). In addition, higher scores were
reached when predicting MF terms for eukaryotic proteins. In the
three sub-ontologies, it was also observed that DeeProtGO achieved
higher precision than recall for both prokarya and eukarya cases.
Same as for NK proteins, DeeProtGO outperformed baseline meth-
ods for most models.

In all LK-S tasks, shown in Figure 4C, the best DeeProtGO
model integrates the annotation that LK-S proteins already have at
the time of reference (GOref) with sequence information. Moreover,
the Fpax reached here is higher than those found in the NK and LK-
NK problems, as it can be expected precisely due to this additional
information. DeeProtGO performed very well for predicting BP
terms of prokaryotic proteins, achieving an F,,, up to 0.804 with a
very high precision (0.900). Although the F., was slightly lower
than 0.700 of eukaryotic proteins, the corresponding precision was
0.769. Interestingly, the scores reached for predicting CC and BP
terms for both eukaryotic and prokaryotic proteins were very simi-
lar, even revealing an extremely high precision up to 0.936. The best
performance of DeeProtGO was reached when predicting MF terms,
being the F,.x almost 0.900 and 0.800 for prokarya and eukarya,
respectively. Interestingly, for these groups of proteins, the Naive
method outperformed BLAST in the three sub-ontologies although

both reached lower scores than DeeProtGO. The high scores for the
Naive method are due to the fact that this 3-fold CV setup is within
training data, thus the train and test partitions have very similar dis-
tributions of GO annotation.

Our results confirmed that when the prediction problem is very
complex, i.e. with less available information and, at the same time, a
high number of GO terms to predict, the data integration process
proposed by DeeProtGO is more effective and has a high impact on
performance. In addition, consistently throughout the three sub-
ontologies, it can be stated that DeeProtGO always exhibited a
higher precision than recall, indicating its ability to assign true GO
terms with fewer false positives. This is particularly important in the
case of those proteins that have not been previously annotated, for
helping the discovery of truly new knowledge.

4.3 DeeProtGO performance on CAFA3 benchmark data
The DeeProtGO model was also evaluated on the CAFA3 bench-
mark obtaining the results detailed in Table 2. The table shows, for
each sub-ontology, and within it for each type of protein prediction
problem and kingdom, the precision, recall and F,, obtained.
Comparing DeeProtGO performance on benchmark with the
achieved for the test partition in the 3-fold CV, the smallest drops
were found in BP, the most challenging sub-ontology. Analyzing BP
predictions revealed that the F,,,, ranged between 0.308 and 0.454.
For NK proteins, the achieved F,,,, decreased in 35% and 10% in
comparison with the scores observed for prokarya and eukarya, re-
spectively, in the test set of the 3-fold CV experiments (shown in
Fig. 4A). These results indicate that DeeProtGO is still good for pre-
dicting annotations for NK, mainly for eukaryotic proteins.
Computing a weighted-average by the amount of proteins in each
subset (according to the taxonomic kingdom) led to an overall F,,x
of 0.344 for NK proteins. Interestingly, the performance score
observed for the eukarya LK-NK subset was higher in benchmark
(Fimax=0.454) than in the CV test partition (F,,,=0.328, see
Fig. 4B). A possible explanation for this result is that DeeProtGO
for LK-NK has been trained using the proposed augmented data,
which could have had a distribution of GO terms more similar to
that of real LK-NK in the benchmark dataset. Moreover, note that
given the very low number of true LK-NK proteins for BP (16 for
prokarya and 652 for eukarya), training a model without data aug-
mentation would have been practically impossible. Therefore,
DeeProtGO was quite good at predicting the real subset of these
annotations in the benchmark proteins. Interestingly, the largest
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Table 2. Performance of DeeProtGO models in the CAFA3 bench-
mark dataset

GO sub-ontology Model  Kingdom Recall Precision  Fyay

BP NK Prokarya  0.270 0.383 0.317
Eukarya 0.322 0.378 0.348
LK-NK  Prokarya  0.303 0.372 0.334

Eukarya 0.390 0.543 0.454
LK-S Prokarya  0.213 0.362 0.327
Eukarya 0.257 0.383 0.308
Prokarya  0.326 0.324 0.325
Eukarya 0.609 0.553 0.580
LK-NK  Prokarya  0.369 0.541 0.439

Eukarya 0.561 0.619 0.588
LK-S Prokarya  0.736 0.412 0.529
Eukarya 0.543 0.489 0.514
Prokarya  0.455 0.554 0.500
Eukarya 0.480 0.649 0.552
LK-NK  Prokarya  0.384 0.585 0.463

Eukarya 0.473 0.584 0.523
LK-S Prokarya  0.402 0.734 0.520

Eukarya 0.456 0.649 0.536

CC NK

MF NK

drop of DeeProtGO performance was observed for LK-S models,
where data augmentation was not performed. Thus, this result also
supports our proposal of using data augmentation strategy to reduce
the differences in the distribution of GO terms between the CAFA3
training and benchmark datasets. It is worth highlighting that the
DeeProtGO precision for BP GO-terms prediction was always
greater than the recall, as it was observed during model evaluation
in the test set of the 3-CV.

In the case of CC predictions for eukarya, involving the largest
amount of NK proteins, DeeProtGO performed very well, exhibiting
an F,.x closer to 0.600. Although the model performance for pro-
karyotic proteins (only 156 in the benchmark dataset) was 0.325,
the weighted overall F,,, for the full set of NK proteins was 0.546.
Since true NK proteins for CC were not found during the training
set construction for prokarya, DeeProtGO was purely trained with
augmented data for this task. Although this could lead to the anno-
tation of more terms than expected for a growth period like the one
used for the CAFA3 benchmark, without data augmentation this
task cannot be learned with a supervised approach. Similarly to the
observed in BP terms prediction, the F,, drop between model
evaluation in testing and benchmark was lower for models of the
biggest set of proteins (eukarya) than for the smallest one (prokarya)
in the three prediction groups, NK, LK-NK and LK-S. This is due to
the large imbalance existing in CAFA3 training data regarding these
kingdoms: there are very few examples (around one order of magni-
tude less) of prokaryotic proteins than eukaryotic ones, requiring a
data augmentation strategy to train a predictor for such cases.

The best performance of DeeProtGO was for predicting MF GO
terms. As it was previously found for most cases in the other two sub-
ontologies, the scores reached for eukaryotic proteins were higher than
those found for prokaryotic models. Thus, revealing DeeProtGO per-
formance was good for predicting MF GO terms for most benchmark
proteins achieving Fp.. higher than 0.520. Interestingly, the best
DeeProtGO performance was found for predicting annotations of the
hardest problem, represented by NK proteins. Evenmore, the high
score achieved for eukaryotic proteins led to an overall F,,,,=0.545 for
the full set of NK proteins in the CAFA3 benchmark.

4.4 Comparison with state-of-the-art methods

The overall F, scores reached by DeeProtGO for NK proteins are
shown in Figure 5. As it was previously mentioned, this F., has
been average weighted according to the number of proteins in each
kingdom. In the same figure, for each sub-ontology, the perform-
ance is reported for baseline methods and the top models of the
CAFA3 (Zhou et al., 2019). Since several of the CAFA3 top models

achieved the same scores, they were grouped under a single F..
value. Results reveal DeeProtGO has clearly outperformed the two
baselines and it has performed in the top 5 CAFA3, achieving a
score very similar to the one reached by the challenge competitors
for BP. Predicting BP GO terms is still the most challenging problem
in the AFP context, with the highest score barely exceeding 0.400
and with baseline predictions hovering around 0.300. Interestingly,
only 4 of the top 10 methods in CAFA 3 achieved precision higher
than recall at the F,,,,, indicating their reliability to assign true GO
terms with fewer false positives. This is especially important for pre-
dicting annotations of NK proteins. Meanwhile, DeeProtGO
reported an Fp,, of 0.344, with precision up to 0.390 exceeding the
recall (average value of 0.315).

For CC sub-ontology, similar results were obtained when com-
paring DeeProtGO (overall F,,,,=0.546) and CAFA3 top methods.
Moreover, the score achieved by DeeProtGO for eukaryotic proteins
(Fmax=0.580) is very close to those shown in the Figure 5 of the
CAFA3 report (Zhou et al., 2019) (Fyax of Top models for eukary-
otic species between 0.600 and 0.630). Although this sub-ontology
is the smallest one, the reason why one could think that predicting
CC terms would be a very simple task, it has been described that CC
is more complex than MF in terms of its graph structure (Peng ef al.,
2018). This could explain, for instance, why both CAFA3 and
DeeProtGO performances are similar and even closer to the score
reached by the Naive approach.

The F..x reached by DeeProtGO in MF is 0.545, being it the
second-best method when predicting MF terms of NK proteins in
CAFA3 benchmark dataset. Interestingly, only two of the top CAFA3
models reported precision higher than 0.600 for these predictions.
Meanwhile, DeeProtGO achieved a precision of 0.636, even higher
than the corresponding recall (0.478). These results suggest that
DeeProtGO outperformed most CAFA3 tools for AFP of MF terms in
NK proteins, ensuring predictions with low rate of false positives. In
addition, all the results presented here would have made DeeProtGO,
one of the five best predictors for NK in BP and CC in CAFA3.

DeeProtGO was also compared against recent DL models pub-
lished after the CAFA3 challenge. In order to perform a fair com-
parison, among several published methods only those reporting their
performance separately for NK proteins of the CAFA3 were
selected. Thus, the scores achieved by DeepGOPlus (Kulmanov and
Hoehndorf, 2020), DEEPred (Rifaioglu ez al., 2019) and goPredSim
(Littmann et al., 2021) were extracted from their respective publica-
tions. For BP, the reported Fy,, are 0.390, 0.320 and 0.370, respect-
ively. Thus, comparing them with the overall score for DeeProtGO
(Fmax=0.344), our tool outperformed DEEPred, reaching an F.
closer to that obtained by goPredSim. A similar result was found for
CC, being the reported Fp,, values 0.614 for DeepGOPlus, 0.340
for DEEPred, 0.570 for goPredSim and 0.546 for DeeProtGO.
Meanwhile, for predicting MF terms, DeeProtGO (F,,x=0.545)
outperformed both DEEPred (F,,,=0.490) and goPredSim
(Fimax=0.500). It is worth noting that both DeepGOPlus and
DEEPred models present an important restriction, differently from
DeeProtGO, since they do not allow predicting the full set of GO
terms of a particular sub-ontology. These models were developed
for predicting only those terms annotated in more than 50 and 30
training proteins, respectively. Thus, aiming the models to focus
only on those well-represented terms in the training dataset, perhaps
makes them to miss very specific and precise GO terms describing a
detailed protein functioning. Differently, it must be noticed that our
proposal does not have such restrictions since DeeProtGO allows
predicting all the terms in each sub-ontology that are present in the
training dataset, which is a much harder problem.

Following the procedure used by DEEPred and DeepGOPlus,
DeeProtGO was re-trained limiting the number of GO terms being
learnt during training of NK models. Only those terms that are at least
represented in 5% of proteins of the training dataset were considered.
This restriction led to predict 80, 17 and 15 GO terms for BP, CC and
MEF, respectively, in prokaryotic proteins. While, the number of GO
terms to predict for eukarya models was 331, 116 and 79, for BP, CC
and MF, correspondingly. After exploring a small hyperparameter
space using the training dataset, the reduced models were evaluated on
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Fig. 5. Performance comparison of DeeProtGO, top CAFA3 methods and baseline tools (Naive and BLAST predictors) when predicting GO annotations of NK proteins of the

CAFA3 benchmark dataset

Table 3. Performance of DeeProtGO in the NK CAFA3 benchmark
dataset, predicting all GO terms when training with terms present
in more than 5% of training proteins

GO sub-ontology Kingdom Recall Precision Fy.,  Overall F .,

BP Prokarya 0.337  0.324  0.330 0.355
Eukarya 0.321  0.407  0.359 —

CC Prokarya 0.339  0.425  0.377 0.564
Eukarya 0.559  0.628  0.592 —

MF Prokarya 0.500  0.518  0.509 0.547

Eukarya 0.476  0.660  0.553 —

Note: The overall F,,, represents the score weighted-average by the num-
ber of proteins in each subset (156 for prokarya and 1024 for eukarya).

the CAFA3 benchmark obtaining the performance scores listed in
Table 3. Interestingly, this simplest version of DeeProtGO reached
overall F,.. higher than those previously reported in Table 2.
Moreover, the improvement was larger for prokarya than for eukarya
models, and for BP and CC sub-ontologies. For predicting BP terms,
the new overall F,, is slightly lower than the score achieved by
goPredSim but still higher than the reported by DEEPred. Evenmore,
the Fp.x reached for eukaryotic proteins (Fi.,=0.359) is similar to the
values reported for the best CAFA3 models predicting all the proteins
from this taxonomic kingdom (Fax from 0.360 to 0.400). The highest
increase in the DeeProtGO performance when restricting the model
output was observed when predicting CC terms for prokaryotic pro-
teins. In fact, the new F,, for this NK subset is now in the range of
the scores reported for the best models for prokaryotic organisms in
CAFA3 (Fpax from 0.380 to 0.460). The DeeProtGO performance
observed for eukarya (Fy,x=0.592) is also similar to those reported for
CAFA3 top methods. Furthermore, the overall F,, resulted even
higher than the ones reported by both DEEPred and goPredSim in this
sub-ontology. For the MF sub-ontology, DeeProtGO still overperforms
both DEEPred and goPredSim, achieving an F,,, of 0.553 in eukaryot-
ic proteins and an overall F,,, of 0.547. Evenmore, DeeProtGO
reached the score reported by DeepGOPlus in this sub-ontology
(Fmax=0.557). Therefore, this experiment limiting the set of predicted
terms, confirms DeeProtGO as one of the top predictors for BP, CC
and MF terms of CAFA3 NK proteins outperforming both some of the
top methods of CAFA3 and also some recent state-of-the-art methods.

5 Conclusion

In this work, we have presented DeeProtGO, a DL model aimed to
predict GO terms by integrating heterogeneous protein knowledge.
Our model has been trained for solving 18 different AFP problems,
defined by the GO sub-ontologies (BP; CCs; and MF), the type of

proteins (NK; LK-NK; and LK-Subset, LK-S) and the taxonomic
kingdom (Prokarya and Eukarya). Data from the third CAFA chal-
lenge (CAFA3) was exhaustively processed in order to define ad-
equate training sets for each problem and data augmentation was
used for increasing training cases in less represented groups.
DeeProtGO has shown to improve its performance by successfully
integrating heterogeneous protein information currently available.
Moreover, and differently from other approaches, our proposal
demonstrated to be easily adaptable for the 18 tasks, the different
types of protein knowledge available, any number of terms from any
of the GO sub-ontologies, without restrictions on the number of
terms or annotated proteins and providing high coverage of protein
functions.

Our experiments confirmed that the approach proposed here
improves prediction results: the more protein information is inte-
grated into DeeProtGO, the more effective the prediction of GO
terms is. We demonstrated here the usefulness of DeeProtGO for
predicting GO annotations for proteins. Evenmore, our model has
achieved scores even higher than those reported by state-of-the-art
methods for NK proteins. DeeProtGO has proved to be able to reli-
ably predict likely annotations for proteins, with high precision, and
without any restriction, enhancing the discovery of new functions.
To improve the DeeProtGO performance, more experiments consid-
ering different protein knowledge, such as protein domains and PPI
networks, and even implementing other DL architectures, for in-
stance convolutional networks and transformers, will be carried out.
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