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a b s t r a c t 

In real-time optimization, the solution quality depends on the model ability to predict the plant Karush–

Kuhn–Tucker (KKT) conditions. In the case of non-parametric plant-model mismatch, one can add input- 

affine modifiers to the model cost and constraints as is done in modifier adaptation (MA). These modifiers 

require estimating the plant cost and constraint gradients. This paper discusses two ways of reducing the 

number of input directions, thereby improving the efficiency of MA in practice. The first approach capi- 

talizes on the knowledge of the active set to reduce the number of KKT conditions. The second approach 

determines the dominant gradients using sensitivity analysis. This way, MA reaches near plant optimal- 

ity efficiently by adapting the first-order modifiers only along the dominant input directions. These ap- 

proaches allow generating several alternative MA schemes, which are analyzed in terms of the number 

of degrees of freedom and compared in a simulated study of the Williams–Otto plant. 

© 2022 Elsevier Ltd. All rights reserved. 

1

i

p

a

t

a  

a

m

o

i

i

n

b

s

t

r

s

m

b

 

h

0

. Introduction 

Real-time optimization (RTO) uses process measurements to 

mprove the performance of optimization methods in industrial 

rocesses. Hence, RTO avoids relying exclusively on a (possibly in- 

ccurate) process model. The RTO methods proposed in the litera- 

ure can be divided into two classes depending on whether or not 

 process model is used in real time ( Srinivasan et al., 2003 ). If

 model is used, it can be updated iteratively based on real-time 

easurements and then used for numerical optimization. Since an 

ptimization problem is solved at each iteration, such an approach 

s labeled explicit RTO . In contrast, optimality can also be enforced 

n real time via feedback control. Such an approach, which does 

ot require solving an optimization problem in real time, is la- 

eled implicit RTO . This paper is concerned with the model-update 

tep in explicit RTO. The two main structuring decisions deal with 

he choices of (i) plant information that can be collected and is 

elevant to optimality (what to measure or estimate from mea- 

urements?), and (ii) the degrees of freedom (dof) available in the 

odel (what to adapt?). A classification of explicit RTO schemes 

ased on these two issues is given in Table 1 and discussed next. 
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E-mail address: dfmr@tecnico.ulisboa.pt (D. Rodrigues) . 

ttps://doi.org/10.1016/j.compchemeng.2022.107867 

098-1354/© 2022 Elsevier Ltd. All rights reserved. 
• Fit plant outputs. The “two-step approach” (TS; Chen and 

Joseph, 1987; Marlin and Hrymak, 1997 ) advocates mea- 

suring plant outputs (such as temperatures and concentra- 

tions in a reactor) and adapting model parameters (such 

as kinetic parameters) so as to force the model outputs to 

fit the plant outputs. However, this approach has the ma- 

jor drawback that model adaptation does not actively seek 

to match the plant optimality conditions, in this case the 

first-order Karush–Kuhn–Tucker (KKT) conditions that in- 

clude constrained values as well as cost and constraint gra- 

dients ( Bazaraa et al., 2006 ). As a result, TS often results in

sub-optimal performance in the presence of structural plant- 

model mismatch. 
• Fit plant outputs and selected KKT conditions. The fact that 

TS typically does not converge to plant optimality motivated 

the development of modified TS approaches that attempt to 

match selected KKT conditions in addition to the outputs. 

- A first scheme is “Integrated System Optimization and 

Parameter Estimation” (ISOPE; Roberts, 1995; Brdy ́s and 

Tatjewski, 2005 ) that was initially developed for prob- 

lems without uncertainty in the constraints, for example 

in the absence of process-dependent constraints. ISOPE 

uses an estimate of the plant cost gradient to modify 

the cost function of the optimization problem and en- 

force KKT matching between the modified model and the 

plant. 

https://doi.org/10.1016/j.compchemeng.2022.107867
http://www.ScienceDirect.com
http://www.elsevier.com/locate/compchemeng
http://crossmark.crossref.org/dialog/?doi=10.1016/j.compchemeng.2022.107867&domain=pdf
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https://doi.org/10.1016/j.compchemeng.2022.107867
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Table 1 

Classification of explicit RTO schemes based on the type of model update: vertical , the plant information that the model has to fit; horizontal , the model han- 

dles, that is, the available degrees of freedom for model adaptation. The various methods are the two-step approach (TS), simultaneous model identification and 

optimization (SMIO), integrated system optimization and parameter estimation (ISOPE), parameter adaptation (PA), and modifier adaptation (MA). 

Model handles: available degrees of freedom 

Model parameters 

( n θ parameters) 

Modifiers ( n m 
modifiers) 

Model parameters 

+ Selected 

modifiers 

Plant information 

to be fitted by 

model 

Outputs ( n y outputs) TS 

n θ → n y 

- - 

Outputs + Selected KKT 

conditions 

SMIO 

n θ → (n y + n grad ) 

- ISOPE 

(n θ + n u ) → 

(n y + n u ) 

All active KKT conditions ( n a 
conditions) 

PA 

n θ → n a 

MA 

n m → n a 

- 

Dimensions : n u is the number of inputs, n y the number of outputs, n θ the number of model parameters, n m the number of modifiers, n grad the number of 

gradients in the KKT conditions, and n a the number of active KKT conditions. Note that n m , n grad and n a depend on the formulation of the optimization problem 

(either standard, output, or Lagrangian) and on whether the active set is known or not (details are given in Section 2.2 ). Reading example for TS : n θ → n y means 

that n θ model parameters are available to fit n y plant outputs. 
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- Another scheme is “Simultaneous Model Identification 

and Optimization” (SMIO; Mandur and Budman, 2015 ) 

that adapts the model parameters in two steps, first to 

match the outputs as well as possible, followed by an- 

other limited correction to try to get closer to the cost 

and constraint gradients. As there are often too few de- 

grees of freedom to match both the outputs and the gra- 

dients, the resulting parameter values represent a com- 

promise between the two objectives. 
• Fit all active KKT conditions. For plant optimality, one would 

like to monitor all plant KKT conditions and track the ac- 

tive ones. However, since the active KKT conditions are typ- 

ically unknown, one needs to consider all KKT conditions. 

Also, usually, there is no one-to-one correspondence be- 

tween model parameters and KKT conditions, which means 

that a given model parameter can affect none, one, or sev- 

eral KKT conditions. 

- If all n a active plant KKT conditions can be matched 

by adjusting the n θ model parameters, then RTO is im- 

plemented iteratively by adapting the model parame- 

ters to match the measured (or estimated from mea- 

surements) plant KKT conditions locally at each iteration. 

This scheme is labeled here “parameter adaptation” (PA). 

However, this situation is rarely encountered in practice 

as n a is often much larger than n θ . 

- In “modifier adaptation” (MA; Marchetti et al., 2016 ), 

model parameters are kept fixed, but input-affine mod- 

ifier terms are added to the model cost and constraints 

so that the KKT conditions of the modified model match 

those of the plant locally. Each modifier is used to fit a 

single KKT element without affecting the other elements. 

Since there are as many modifiers as there are KKT ele- 

ments, MA can achieve full KKT matching upon conver- 

gence ( Marchetti et al., 2009 ). 

This paper investigates the use of modifiers to correct the 

odel and drive the plant to, or near to, optimality. Over the 

ears, several alternative MA formulations have been proposed. 

he initial (standard) formulation adds input-affine modifier terms 

o both the cost and constraint functions ( Marchetti et al., 2009 ). 

t has also been suggested to put the modifiers on the out- 

ut functions instead (MAy; Papasavvas et al., 2019 ). Another op- 

ion is to add the modifiers to the Lagrangian function (MA- L ; 

archetti et al., 2016 ). Although these formulations are not equiv- 
2 
lent, they all lead to KKT matching upon convergence. Note that 

hese three formulations are fairly general and do not require prior 

nowledge of the active set. 

This paper also discusses the fact that, for good performance, 

t is often not necessary to consider all active KKT conditions 

ince only a few of them are dominant. Tracking all KKT condi- 

ions requires estimating all gradient elements at each RTO iter- 

tion, which can be experimentally expensive. This calls for wel- 

ome simplifications, in particular when (i) the active set is known, 

nd (ii) the dominant input directions can be determined. For the 

atter case, Costello et al. (2016) proposed a method to improve 

he efficiency of gradient estimation by estimating plant deriva- 

ives only along a few dominant input directions. The computa- 

ion of these directions relies on computing the local sensitiv- 

ty of the Lagrangian gradient with respect to perturbations of 

he uncertain parameters. The resulting scheme has been labeled 

directional modifier adaptation” (DMA). Along the same lines, 

inghal et al. (2018) proposed a global sensitivity analysis to rank 

he input and parameter directions according to their effect in the 

hole parameter space. The scheme has been labeled “active di- 

ectional modifier adaptation” (ADMA). Despite this relevant work, 

he reduction in the number of input directions and KKT condi- 

ions remains an important challenge. 

The contribution of this paper is threefold: (i) use the knowl- 

dge of the active set to reduce the number of KKT condi- 

ions and propose novel known-active-set schemes since, although 

he corresponding KKT conditions are known (see for instance 

archetti et al., 2020 ), these schemes have not been proposed 

n the literature; (ii) generalize the use of dominant gradients 

btained via global sensitivity analysis and propose novel ADMA 

chemes, some of them in combination with the knowledge of the 

ctive set; and (iii) compare the various schemes in terms of both 

he number of degrees of freedom and performance in a relevant 

imulated study, which allows the reader to perceive the differ- 

nces between the various methods as well as their advantages 

nd disadvantages with respect to each other. 

The paper is organized as follows. Section 2 formulates the 

tatic RTO problem, proposes three sets of KKT conditions, and 

riefly reviews the corresponding MA schemes. Section 3 proposes 

o use directional information to increase the efficiency of MA 

chemes. The developed concepts are illustrated in Section 4 via 

 simulated study of the Williams–Otto plant, while Section 5 con- 

ludes the paper. There is also an appendix dealing with paramet- 

ic sensitivity analysis and the concept of active subspaces. 
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. Preliminaries 

.1. Formulation of the optimization problem 

The optimization problem for the plant reads 

in 

u 
�p (u ) := φ

(
u , y p (u ) 

)
(1a) 

.t. G j,p (u ) := g j 
(
u , y p (u ) 

)
≤ 0 , j = 1 , . . . , n g , (1b) 

here u ∈ R 

n u is the input vector, y p ∈ R 

n y the output vector, φ :

 

n u × R 

n y → R the cost to be minimized, and g j : R 

n u × R 

n y → R 

he j th constraint. 

The main challenge in solving this optimization problem stems 

rom the fact that the static map y p (u ) , which relates the inputs to

he plant outputs, is unknown. However, an approximate process 

odel is assumed to be available in the form of the parametrized 

nput-output map y (u , θ) , where θ ∈ R 

n θ are the model parame-

ers. Using this model, Problem (1) can be approximated by the 

odel-based optimization problem 

in 

u 
�(u , θ) := φ

(
u , y (u , θ) 

)
(2a) 

.t. G j (u , θ) := g j 
(
u , y (u , θ) 

)
≤ 0 , j = 1 , . . . , n g . (2b) 

The optimal input vector u 

� is found by solving Problem (2) . 

n the presence of plant-model mismatch, the model optimum u 

� 

iffers from the plant optimum u 

� 
p . Hence, the aim of RTO is to

nd u 

� 
p by iteratively adapting and solving Problem (2) . 

.2. KKT conditions 

Local minima of Problems (1) and (2) are characterized by the 

orresponding necessary conditions of optimality. There are sev- 

ral different but equivalent formulations as shown next. In this 

ection, it is assumed that linear independence constraint qualifi- 

ation is satisfied. 

.2.1. Standard formulation 

For u 

� to be a local minimum of Problem (2) , there must exist 

 vector ν� = [ ν� 
1 
, . . . , ν� 

n g 
] T such that the following KKT conditions 

old ( Bazaraa et al., 2006 ): 1 

∂�

∂u 

(u 

� , θ) + 

n g ∑ 

j=1 

ν� 
j 

∂G j 

∂u 

(u 

� , θ) = 0 (3a) 

 j (u 

� , θ) ≤ 0 , ∀ j ∈ { 1 , . . . , n g } (3b) 

� 
j G j (u 

� , θ) = 0 , ∀ j ∈ { 1 , . . . , n g } (3c) 

� 
j ≥ 0 , ∀ j ∈ { 1 , . . . , n g } . (3d) 

Note that it is possible to express this set of KKT conditions 

ifferently as shown next. 

.2.2. Output formulation 

The cost �(u , θ) and the constraints G (u , θ) are functions of

he outputs y (u , θ) as per Eq. (2) . It follows that the KKT condi-

ions (3) can be expressed in terms of the outputs y and the out- 

ut gradients ∂y 
∂u 

as follows (see Papasavvas et al., 2019 for more 

etails): 
1 The partial derivative of a scalar with respect to a vector is considered as a row 

ector throughout the paper. 

K

3 
∂φ

∂u 

(
u 

� , y (u 

� , θ) 
)

+ 

∂φ

∂y 

(
u 

� , y (u 

� , θ) 
) ∂y 

∂u 

(u 

� , θ) 

+ 

n g ∑ 

j=1 

ν� 
j 

[
∂g j 

∂u 

(
u 

� , y (u 

� , θ) 
)

+ 

∂g j 

∂y 

(
u 

� , y (u 

� , θ) 
) ∂y 

∂u 

(u 

� , θ) 

]
= 0 (4a) 

 j 

(
u 

� , y (u 

� , θ) 
)

≤ 0 , ∀ j ∈ { 1 , . . . , n g } (4b) 

� 
j g j 

(
u 

� , y (u 

� , θ) 
)

= 0 , ∀ j ∈ { 1 , . . . , n g } (4c) 

� 
j ≥ 0 , ∀ j ∈ { 1 , . . . , n g } . (4d) 

Although this output formulation encompasses more KKT ele- 

ents than the standard formulation (3) , it is of practical interest 

ince it involves the directly accessible outputs y and their gradi- 

nts ∂y 
∂u 

. 

.2.3. Lagrangian formulation 

One can consider the Lagrangian function, 

 (z , θ) := �(u , θ) + νT G (u , θ) , (5) 

here G ∈ R 

n g is the vector of model constraints, ν ∈ R 

n g the vec-

or of Lagrange multipliers, and z := 

[
ν
u 

]
∈ R 

n g + n u . With this for- 

ulation, the KKT conditions read (see Marchetti et al., 2016 for 

ore details): 

∂L 

∂u 

( z � , θ) = 0 (6a) 

 j (u 

� , θ) ≤ 0 , ∀ j ∈ { 1 , . . . , n g } (6b) 

� 
j G j (u 

� , θ) = 0 , ∀ j ∈ { 1 , . . . , n g } (6c) 

� 
j ≥ 0 , ∀ j ∈ { 1 , . . . , n g } . (6d) 

For the plant optimization problem, the Lagrangian function is 

 p (z ) := �p (u ) + νT G p (u ) . Note that the optimal plant Lagrange

ultipliers ν� 
p are typically unknown. If needed, for instance to 

ompute the plant Lagrangian, they can be approximated by the 

odel value ν� . 

Corresponding KKT elements. The KKT conditions involve the 

onstrained values as well as the cost and constraint gradients. 

hese conditions include n g + n u equalities and 2 n g inequalities to 

etermine n g + n u unknowns, namely, z � = 

[
ν� 

u 

� 

]
, that is, the iden- 

ity of the active constraints ( ν� ) and the optimal inputs u 

� . The

uantities in the KKT conditions, for example G , ∂�
∂u 

and 

∂G 
∂u 

in 

q. (3) , y and 

∂y 
∂u 

in Eq. (4) , or G and 

∂L 
∂u 

in Eq. (6) , are called

KT elements, the number of which varies with the formulation of 

he KKT conditions. For example, the standard formulation (3) con- 

ains n K := n g + n u (n g + 1) KKT elements, the output formulation

4) contains n K y := n y (n u + 1) elements, while the Lagrangian for- 

ulation (6) contains n g + n u KKT elements. 

We can group these elements in a so-called KKT vector as fol- 

ows: 

(u , θ) : = 

[
G 

T (u , θ) , 
∂�

∂u 

(u , θ) , 
∂G 1 

∂u 

(u , θ) , 

. . . , 
∂G n g 

∂u 

(u , θ) 

]T 

∈ R 

n K (7) 
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Table 2 

Alternative MA schemes based on the way the model is modified to match all ( schemes in bold ) or only a subset ( schemes in italics ) of the KKT conditions. The classification 

is organized according to whether or not the active set is known. 

Scheme 

# Modifiers 

n m available dof 

# Active KKT 

n a used dof 

# Residual dof 

n res 

Plant information 

to be matched by 

the model 

Active set unknown 

All KKT conditions 

MA n g + n u (n g + 1) n g + n u n u n g 
MAy n y (n u + 1) n g + n u n y (n u + 1) − n g − n u 
MA- L n g + n u n g + n u 0 

All constraints and 

dominant gradients 

ADMA n g + n d u (n g + 1) n g + n d u n d u n g 
ADMAy n y (n d u + 1) n g + n d u n y (n d u + 1) − n g − n d u 

ADMA- L n g + n d u n g + n d u 0 

All constraints 
CA n g n g 0 

CAy n y n g n y − n g 

Active set known 

All active KKT conditions 

(active constraints and 

reduced gradients) 

MA-kAS n g + n r (n g + 1) n a g + n r n r n g + n g − n a g 

MAy-kAS n y (n r + 1) n a g + n r n y (n r + 1) − n a g − n r 
MA- L -kAS n g + n r n a g + n r n g − n a g 

Active constraints and 

dominant reduced gradients 

ADMA-kAS n g + n d r (n g + 1) n a g + n d r n d r n g + n g − n a g 

ADMAy-kAS n y (n d r + 1) n a g + n d r n y (n d r + 1) − n a g − n d r 

ADMA- L -kAS n g + n d r n a g + n d r n g − n a g 

Active constraints 
CA-kAS n g n a g n g − n a g 

CAy-kAS n y n a g n y − n a g 

The first class includes the standard formulation (MA), the output formulation (MAy), the Lagrangian formulation (MA- L ), directional schemes (active directional modifier 

adaptation ADMA, its output formulation ADMAy and its Lagrangian formulation ADMA- L ), and constraint-based schemes (constraint adaptation CA and its output formula- 

tion CAy). The second class encompasses the corresponding schemes that can be used when the active set is known. The number of residual dof is the difference between 

the number of modifiers (or available dof) and the number of active KKT conditions (or used dof). Dimensions : n u is the number of inputs, n y the number of outputs, n g 
the number of constraints, n a g the number of active constraints, n d u the number of dominant input directions, n r = n u − n a g the number of reduced input directions, n d r the 

number of dominant reduced input directions, n m the number of modifiers, n a the number of active KKT conditions, and n res the number of residual degrees of freedom. 
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or the standard formulation (3) , 

 

y (u , θ) := 

[
y T (u , θ) , 

∂y 1 
∂u 

(u , θ) , . . . , 
∂y n y 
∂u 

(u , θ) 

]T 

∈ R 

n K y 

(8) 

or the output formulation (4) , or 

 

L (z , θ) := 

[
G 

T (u , θ) , 
∂L 

∂u 

(z , θ) 

]T 

∈ R 

n g + n u (9) 

or the Lagrangian formulation (6) . 

.3. Corresponding modifier-adaptation schemes 

This section briefly reviews the schemes MA, MAy and MA- L 

ssociated with the three KKT formulations presented in the pre- 

ious section. These schemes are listed in Table 2 , which also con- 

ains extensions that will be introduced in Section 3 . 

.3.1. Standard formulation – MA 

Modifier adaptation introduces input-affine corrections to the 

ost and constraint functions of the nominal model. At the k th RTO 

teration, the inputs u k are applied to the plant, and the modifiers 

re computed as follows: 

 

G 
k := G p (u k ) − G (u k , θ) (10a) 

 λ�
k ) 

T := 

∂�p 

∂u 

(u k ) −
∂�

∂u 

( u k , θ) (10b) 

 λG 
k ) 

T := 

∂G p 

∂u 

(u k ) −
∂G 

∂u 

( u k , θ) . (10c) 

Here, ε G 
k 

∈ R 

n g are zeroth-order modifiers for the constraints, 

nd λ�
k ∈ R 

n u and λG 
k ∈ R 

n u ×n g are first-order modifiers for the cost 

nd constraint gradients, respectively. The next inputs u k +1 are 

omputed by solving the following modified optimization problem: 

 k +1 = arg min 

u 
�m 

(u , θ) := �(u , θ) + ( λ�
k ) 

T u (11a) 

.t. G m 

(u , θ) := G (u , θ) + ε 

G 
k + ( λG 

k ) 
T (u − u k ) ≤ 0 . (11b) 
4

The major advantage of MA is that it guarantees meeting the 

lant KKT conditions upon convergence. The satisfaction of the 

KT conditions for the plant optimization Problem (1) , upon con- 

ergence of standard MA, is proven in Marchetti et al. (2009) . The 

eader is referred to the overview by Marchetti et al. (2016) for 

ore details on MA, including the use of filtering. 

.3.2. Output formulation – MAy 

In this formulation, input-affine corrections are introduced to 

he output functions. At the k th RTO iteration, the inputs u k are 

pplied to the plant, and the modifiers are computed as: 

 

y 

k 
:= y p (u k ) − y (u k , θ) (12a) 

 λy 

k ) 
T := 

∂y p 

∂u 

(u k ) −
∂y 

∂u 

( u k , θ) . (12b) 

Here, ε y 
k 

∈ R 

n y are zeroth-order modifiers for the outputs, and 

y 

k 
∈ R 

n u ×n y are first-order modifiers for the output gradients. The 

ext inputs u k +1 are computed by solving the following modified 

ptimization problem: 

 k +1 = arg min 

u 
�m 

(u , θ) := φ
(
u , y m 

(u , θ) 
)

(13a) 

.t. G m 

(u , θ) := g 

(
u , y m 

(u , θ) 
)

≤ 0 , (13b) 

here 

 m 

(u , θ) := y (u , θ) + ε 

y 

k 
+ ( λy 

k ) 
T (u − u k ) . (14) 

atisfaction of the plant KKT conditions upon convergence is 

roven in Papasavvas et al. (2019) . 

.3.3. Lagrangian formulation – MA- L 

With this formulation, input-affine corrections are introduced 

o the Lagrangian function ( Marchetti et al., 2016 ). At the k th RTO 

teration, the inputs u k are applied to the plant, and the modifiers 

re computed as: 

 

G 
k := G p (u k ) − G (u k , θ) (15a) 

 λL 
k ) 

T := 

∂L p 
(z k ) −

∂L 

( z k , θ) . (15b) 

∂u ∂u 
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Here, ε G 
k 

∈ R 

n g are zeroth-order modifiers for the constraints, 

nd λL 
k ∈ R 

n u are first-order modifiers for the Lagrangian gradient. 

he next inputs u k +1 and the Lagrange multipliers νk +1 are com- 

uted by solving the following modified optimization problem: 

 k +1 = arg min 

u 
�m 

(u , θ) := �(u , θ) + ( λL 
k ) 

T u (16a) 

.t. G m 

(u , θ) := G (u , θ) + ε 

G 
k ≤ 0 . (16b) 

The fact that MA- L reaches plant optimality is detailed in 

ppendix B , which also illustrates the difference in convergence 

ath between MA and MA- L . 

. Efficient directional modifier adaptation 

In modifier adaptation, the model modification includes two as- 

ects, namely, a local correction and an iterative process: 

• Locally, at the current operating point u k , one can correct 

the model so that its constrained values and its cost and 

constraint gradients match those of the plant, the plant val- 

ues being measured or estimated from measurements. 
• Since the model corrections are made locally at u k , and not 

at the (unknown) plant optimum u 

� 
p , one needs to iterate to 

reach plant optimality. 

When directional information is available, the number of input 

irections along which gradient elements need to be estimated can 

e reduced. Directional information is typically available when the 

ctive set or the dominant gradients are known. These two cases 

re discussed next. 

.1. Knowledge of active set 

Knowledge of the active set leads to a reduced set of KKT con- 

itions, and in particular to fewer gradients, as shown next. 

.1.1. Reduced set of KKT conditions 

Since ν� 
j 
= 0 for each inactive constraint G j (u 

� , θ) < 0 , one can

onsider only the n a g active constraints in Eq. (3) to obtain 

∂�

∂u 

(
u 

� , θ
)

+ 

n a g ∑ 

j=1 

νa� 
j 

∂G 

a 
j 

∂u 

(
u 

� , θ
)

= 0 (17a) 

 

a 
j (u 

� , θ) = 0 , ∀ j ∈ { 1 , . . . , n 

a 
g } (17b) 

a� 
j ≥ 0 , ∀ j ∈ 

{
1 , . . . , n 

a 
g 

}
, (17c) 

here the superscript (·) a relates to the active constraints. 

Eq. (17a) shows that the cost gradient must equal a linear com- 

ination of the gradients of the active constraints. In other words, 

he projection of the cost gradient on the space tangent to the 

ctive constraints (called the reduced cost gradient) must vanish. 

his space is obtained by writing 

∂G 

a 

∂u 

(u 

� , θ) N 

� = 0 , (18) 

here N 

� ∈ R 

n u ×n r is a null-space matrix with orthonormal 

olumns that satisfies Eq. (18) and n r = n u − n a g . The n r columns

f N 

� represent a basis of the space that is orthogonal to the gra-

ients of the active constraints. 2 Post-multiplying Eq. (17a) by N 

� 

nd using Eq. (18) gives: 

 r �(u 

� , θ) := 

∂�

∂u 

(u 

� , θ) N 

� = 0 , (19) 
2 N 

� can be computed as the n r right singular vectors of ∂G a 

∂u 
that correspond to 

anishing singular values. 

 

v

5 
here ∇ r �(u 

� , θ) ∈ R 

1 ×n r is the reduced cost gradient of optimiza-

ion Problem (2) . 3 

emark 1. With L 

a (z , θ) := �(u , θ) + ( νa ) T G 

a (u , θ) , Eq. (17a) can

e written 

∂L 

a 

∂u 

(
z � , θ

)
= 

∂�

∂u 

(
u 

� , θ
)

+ ( νa� ) 
T ∂G 

a 

∂u 

(
u 

� , θ
)

= 0 , (20) 

hich, upon post-multiplying by N 

� and with the definition of the 

educed Lagrangian gradient ∇ r L 

a (z � , θ) := 

∂L a 
∂u 

(z � , θ) N 

� , gives: 

 r L 

a (z � , θ) = ∇ r �(u 

� , θ) = 0 . (21) 

his shows that, with this reduced set of KKT conditions, the re- 

uced cost gradient is also the reduced Lagrangian gradient. 

In summary, if the set of active constraints is known, the KKT 

onditions correspond to the following n a g + n r equalities related to 

he active constraints and reduced cost gradients: 

 

a (u 

� , θ) = 0 (22a) 

 r �(u 

� , θ) = 0 . (22b) 

Note that this reduced set of KKT conditions does not involve 

ny Lagrange multipliers. More details about this reduced set of 

KT conditions can be found in Marchetti et al. (2020) . 

KKT elements. In this formulation, the KKT elements can be 

rouped in the KKT vector 

 

a (u , θ) := 

[ 
G 

a T (u , θ) , ∇ r �(u , θ) 
] T 

∈ R 

n u , (23) 

ith n u = n a g + n r . 

.1.2. Known-active-set schemes (X-kAS schemes) 

If the active set at the plant optimum is known, there are fewer 

in fact n u = n a g + n r ) KKT elements owing to the use of reduced

radients as per Section 3.1.1 . However, due to plant-model mis- 

atch, it will be necessary to use additional degrees of freedom to 

nsure both feasibility prior to convergence and optimality upon 

onvergence. We will illustrate the known-active-set formulation 

ia the MA-kAS scheme, although it is also possible to formulate 

ther X-kAS schemes. Note that all the X-kAS schemes are novel 

nd do not exist in the published literature. 

The reduced cost and constraint gradients at u k read: 

 r �(u k , θ) = 

∂�

∂u 

(u k , θ) N k , (24a) 

 r G (u k , θ) = 

∂G 

∂u 

(u k , θ) N k , (24b) 

here N k ∈ R 

n u ×n r is a null-space matrix with orthonormal 

olumns that satisfies 

∂G 

a 

∂u 

(u k , θ) N k = 0 . (25) 

he use of reduced gradients leads to fewer modifiers, namely: 

 

G 
k := G p (u k ) − G (u k , θ) , (26a) 

 λ�,r 
k ) T := ∇ r �p ( u k ) − ∇ r �( u k , θ) , (26b) 

 λG ,r 
k ) T := ∇ r G p ( u k ) − ∇ r G ( u k , θ) , (26c) 

here λ�,r 
k ∈ R 

n r and λG ,r 
k ∈ R 

n r ×n g are the first-order modifiers 

or the reduced cost and constraint gradients, respectively. The 

educed cost and constraint gradients of the plant, ∇ r �p ( u k ) = 

∂�p 

∂u 
(u k ) N k and ∇ r G p ( u k ) = 

∂G p 
∂u 

(u k ) N k , can be estimated via
3 The reduced cost gradient represents the cost variation resulting from input 

ariations in the space tangent to the active constraints. 
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nite-difference approximation by perturbing the inputs in the n r - 

imensional subspace at each RTO point u k . 

Once the modifiers (26) have been evaluated, the next inputs 

 k +1 are computed by solving the following modified optimization 

roblem: 

 k +1 = arg min 

u 
�m 

(u , θ) := �(u , θ) + 

(
λ�,r 

k 

)T 

N 

T 
k u (27a) 

.t. G 

a 
m 

(u , θ) := G 

a (u , θ) + ε 

G a 

k + 

(
λG a ,r 

k 

)T 

N 

T 
k (u − u k ) = 0 , 

(27b) 

 

i 
m 

(u , θ) := G 

i (u , θ) + ε 

G i 

k + 

(
λG i ,r 

k 

)T 

N 

T 
k (u − u k ) ≤ 0 , (27c) 

here the superscripts (·) G a and (·) G i denote the active and in- 

ctive constraints, respectively. Note that the active inequality con- 

traints have been replaced by equality constraints in Problem (27) , 

hile the inactive inequality constraints are kept to avoid con- 

traint violations prior to convergence. 

MA-kAS can reach plant optimality upon convergence if 
∂G a p 
∂u 

(u ∞ 

) N ∞ 

= 0 as detailed in Appendix C . This condition can be

et in two different ways: 

(i) If ∂G a 

∂u 
(u k , θ) = 

∂G a p 
∂u 

(u k ) , that is, when there is no plant-

model mismatch associated with the gradients of the active 

constraints, for instance, when the active constraints include 

only input-dependent constraints such as input bounds. In 

this case, the converged condition 

∂G a 

∂u 
(u ∞ 

, θ) N ∞ 

= 0 obvi- 

ously implies 
∂G a p 
∂u 

(u ∞ 

) N ∞ 

= 0 . 

(ii) If N k is chosen to satisfy 
∂G a p 
∂u 

(u 

h 
k 
) N k = 0 , with u 

h 
k 

being

the value of u k available every h ∈ N iterations. This alter- 

native choice of N k , which also leads to 
∂G a p 
∂u 

(u ∞ 

) N ∞ 

= 0 ,

is experimentally more expensive than the choice of N k in 

Eq. (25) as it involves estimating the gradients of the active 

plant constraints in all n u directions at every h iterations. 

The computation of the modifiers λ�,r 
k and λG ,r 

k in (26b) and 

(26c) requires estimating the gradients of the plant cost and 

constraints in n r directions at each iteration regardless of the 

choice of N k . Thus, the choice of N k in this Case (ii) requires

n r + 

n u −n r 
h 

+ 1 experimental runs on average at each itera- 

tion, which is more than n r + 1 with the choice of N k in

Eq. (25) but less than n u + 1 experimental runs for standard 

MA. 

In practice, one often prefers the choice of N k in Eq. (25) , that

s, the reduced input directions N k are chosen orthogonal to the 

radients of the active model constraints, since they can be com- 

uted at a lower experimental cost than the choice of N k in Case 

ii). For this reason, the choice of N k in Eq. (25) is used in the

emainder. Note, however, that this choice results in a (hopefully 

mall) loss of optimality upon convergence when the condition as- 

ociated with Case (i) does not apply. 

emark 2. The proposed MA-kAS formulation is in fact a direc- 

ional MA approach, wherein, at each RTO iteration, the cost and 

onstraint gradients are corrected along the n r input directions u r 

iven by the columns of N k , that is, u r := N 

T 
k 

u . 

emark 3. Problem (27) can be transformed into an output formu- 

ation similar to (13) or a Lagrangian formulation similar to (16) , 

hich results in MA schemes labeled MAy-kAS and MA- L -kAS. As 

n the case of MA-kAS, the only changes in MAy-kAS and MA- L -

AS with respect to MAy and MA- L are the replacement of the 

ctive inequality constraints by equality constraints and the use of 

educed gradients instead of full gradients. It can be shown that 

Ay-kAS and MA- L -kAS can reach plant optimality by following a 

easoning similar to the one in Appendix C . 
6 
emark 4. The first-order cost modifiers (26b) can be written as: 

 λ�,r 
k ) T = 

(
∂�p 

∂u 

(u k ) −
∂�

∂u 

( u k , θ) 

)
N k = ( λ�

k ) 
T N k , (28) 

hich allows writing the modified cost in Eq. (27a) as: 

m 

(u , θ) := �(u , θ) + ( λ�
k ) 

T N k N 

T 
k u . (29) 

ince N k N 

T 
k 

∈ R 

n u ×n u is a projection matrix of rank n r , 

q. (29) shows that, compared to full gradient modifiers, the 

rst-order cost modifiers in MA-kAS correct the cost gradient only 

n the n r reduced input directions u r := N 

T 
k 

u . The same remark 

s valid for the first-order constraint modifiers λG ,r 
k in (26c) . This 

as the advantage that the modifiers λ�,r 
k and λG ,r 

k only need to 

e estimated in the reduced input directions. These reduced input 

irections are in fact the sensitivity-seeking directions introduced 

y François et al. (2005) . 

Implementation aspects (MA-kAS). We propose an algorithm that 

trives for KKT matching when the active set is known. The null- 

pace matrix N k that satisfies ∂G a 

∂u 
(u k , θ) N k = 0 is computed online

t each RTO iteration. The reduced plant gradients at u k are evalu- 

ted as: 

 r �p (u k ) := 

∂�p (u k + N k p ) 

∂p 

∣∣∣p = 0 , (30a) 

 r G p (u k ) := 

∂G p (u k + N k p ) 

∂p 

∣∣∣p = 0 , (30b) 

ith the perturbation vector p ∈ R 

n r . More details about the 

election of an appropriate step size for p can be found in 

ostello et al. (2016) . The MA-kAS scheme given in Algorithm 1 

s novel, albeit based on the MA algorithm proposed by 

archetti et al. (2009) (see also Papasavvas et al., 2019; Marchetti 

t al., 2016 ). Note that it is possible to write similar versions for 

Ay-kAS and MA- L -kAS, as mentioned in Remark 3 . 

.2. Computation of dominant gradients 

Here, we challenge the idea that all KKT conditions must be 

atched for “good performance”. Indeed, it suffices to match the 

ctive constraints and the dominant elements of the cost and con- 

traint gradients. However, the active constraints are often un- 

nown, and the dominant gradients need to be determined, for 

hich a few practical considerations are given next: 

• For safety and quality issues, satisfying process constraints is 

key to process performance. Hence, it is essential to match 

at least the n a g active constraints. When the active set is un- 

known, it is proposed to match the values of all n g con- 

straints using bias terms. This will ensure that the (un- 

known) active constraints will be matched. Note that, if the 

constrained values can be measured, this step of matching 

the plant constraints is rather straightforward. 
• In contrast, the estimation of plant gradients is often time 

consuming and thus experimentally expensive. Hence, one 

might be interested in matching these gradients only in the 

dominant input directions rather than in all input direc- 

tions, which requires the estimation of fewer plant deriva- 

tives. To determine the n d u dominant input directions, we 

propose to perform a sensitivity analysis using the La- 

grangian formulation. The active subspace approach pro- 

posed by Singhal et al. (2018) can be applied to the La- 

grangian gradient ∂L 
∂u 

(z , θ) . Concretely, the approach de- 

scribed in Appendix A.3 can be applied, with the vec- 

tor function f ( θ) in Algorithm 4 chosen as ∂L 
∂u 

(z , θ) . The
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Algorithm 1 Modifier adaptation with known active set (MA-kAS). 

Step 0 (Initialization) : Select the filter matrix K ∈ R 

n u ×n u (typically a diagonal matrix) with eigenvalues in the interval (0,1], and choose 

the feasible starting point u 0 . 

for k = 0 → ∞ 

Step 1 (Plant evaluation) : Apply u k to the plant, wait for steady state, collect the measurements y p ( u k ) , and evaluate �p ( u k ) and G p ( u k ) . 

Step 2 (Estimation of directional derivatives) : 

Use the model to compute the ( n u × n r )-dimensional null-space matrix with orthonormal columns N k that satisfies ∂ G a 

∂ u 
( u k , θ) N k = 0 , and 

estimate the plant directional derivatives as per Eq. (30) . 

Step 3 (Computation of modifiers) : 

Compute the modifiers at u k as per Eq. (26) . 

Step 4 (Computation of next inputs) : Solve the modified optimization Problem (27) to compute the optimal inputs u 

� 
k +1 

and generate the 

filtered inputs 

u k +1 = ( I − K ) u k + K u 

� 
k +1 

. (31) 

end 

Algorithm 2 Output active directional modifier adaptation (ADMAy). 

Step 0 (Initialization) : Use the model to compute the ( n u × n d u )-dimensional matrix with orthonormal columns ˆ W 1 of dominant input 

directions as per Algorithm 4 in Appendix A.3 . 

Select the filter matrix K ∈ R 

n u ×n u (typically a diagonal matrix) with eigenvalues in the interval (0,1], and choose the feasible starting point 

u 0 . 

for k = 0 → ∞ 

Step 1 (Plant evaluation) : Apply u k to the plant, wait for steady state and collect the measurements y p ( u k ) . 

Step 2 (Estimation of directional derivatives) : Estimate the plant directional derivatives as per Eq. (32) . 

Step 3 (Computation of modifiers) : At u k , estimate the full output gradients as: 
∂ y p 
∂ u 

( u k ) = ∇ ˆ W 1 
y p ( u k ) ˆ W 

T 
1 

+ 

∂ y 
∂ u 

( u k , θ) 
(
I n u − ˆ W 1 

ˆ W 

T 
1 

)
, (33) 

and compute the modifiers as per Eq. (12) . 

Step 4 (Computation of next inputs) : Solve the modified optimization Problem (13) to compute the optimal inputs u 

� 
k +1 

and generate the 

filtered inputs 

u k +1 = ( I − K ) u k + K u 

� 
k +1 

. (34) 

end 
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dominant input directions are computed as the ( n u × n d u )- 

dimensional matrix ˆ W 1 that represents the n d u dominant 

eigenvectors of the matrix ˆ G in Appendix A.3 . 

Hence, the “dominant” KKT conditions to be matched include 

 g constraints as well as the cost and constraint gradients in n d u 

ominant input directions. 

.2.1. Active directional schemes (ADMA schemes) 

All aforementioned schemes are capable of reaching plant op- 

imality if the plant gradients are accurate. However, the experi- 

ental cost to estimate these gradients can be very high, in par- 

icular when there are many inputs since the number of gradient 

lements to be estimated is proportional to n u (more precisely, 

his number is n u (n g + 1) for MA, n y n u for MAy, n u for MA- L ,

 r (n g + 1) for MA-kAS, n y n r for MAy-kAS, and n r for MA- L -kAS).

ence, it is of considerable practical interest to be able to reduce 

he number of gradient elements to estimate by considering only 

he dominant input directions. Using the concept of dominant in- 

ut directions, the schemes MA, MAy, MA- L , MA-kAS, MAy-kAS, 

nd MA- L -kAS can be turned into corresponding ADMA schemes. 

hese formulations, together with some of their features, are listed 

n Table 2 . 

Implementation aspects (ADMAy) . For the case of unknown ac- 

ive set, we propose to implement partial KKT matching, that 

s, the gradient-zeroing conditions are matched only along dom- 

nant input directions. These n d u directions are computed of- 

ine as the ( n u × n d u )-dimensional matrix ˆ W 1 (see Algorithm 4 in 

ppendix A.3 ). Using the output formulation, the directional 

erivatives of the outputs at u k in the n d u dominant directions are: 

 ˆ W 1 
y p (u k ) := 

∂y p (u k + 

ˆ W 1 p ) 

∂p 

∣∣∣p = 0 , (32) 
7

ith the perturbation vector p ∈ R 

n d u . More details about the 

election of an appropriate step size for p can be found in 

ostello et al. (2016) . The ADMAy scheme given in Algorithm 2 is 

ovel, albeit based on the ADMA algorithm proposed by 

inghal et al. (2018) . Note that it is possible to write similar ver-

ions for ADMA- L and the known-active-set formulations ADMA- 

AS, ADMAy-kAS, and ADMA- L -kAS, as detailed in the next re- 

ark. 

emark 5. It is also possible to combine the last two schemes, that 

s, to reduce the n r input directions to n d r directions, which would 

orrespond to ADMAy-kAS in Table 2 . This is of particular interest 

hen n d r 
 n r . Such a scheme can be obtained by simply project- 

ng the columns of the matrix ˆ W 1 for the ADMAy scheme along 

he directions in the columns of the matrix N k for the MA-kAS 

cheme, which results in the matrix ˆ W 1 ,k = orth 

(
N k N 

T 
k 

ˆ W 1 

)
for the 

DMAy-kAS scheme, where orth returns a matrix with orthonor- 

al columns that span the same column space. 

. Simulation study 

.1. Problem statement 

The proposed methodology is applied to the process shown in 

ig. 1 , which is a modification of the Williams–Otto plant proposed 

y Williams and Otto (1960) . Hence, the WO plant used in this sec- 

ion is adapted from Williams and Otto (1960) , but all numerical 

alues are not directly available in the original publication, which 

rompted us to define the model in some unambiguous way. In 

his section, and in Appendix D , we recall the problem formulation 

roposed by Singhal (2018) . This formulation includes not only the 

illiams–Otto reactor that has been used as a simulation testbed 
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Fig. 1. Willliams–Otto process with a reactor, decanter, distillation column, splitter and recycle stream. 
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or several RTO methods in previous studies ( Navia et al., 2013; 

ao et al., 2015; Marchetti et al., 2016 ) but also other process units

hat make its structural plant-model mismatch more challenging. 

he WO reactor has two inputs, whereas the WO plant considered 

ere has four inputs, which is a much more challenging process to 

ptimize. Furthermore, as shown in this section, the WO plant ex- 

ibits a fair amount of directionality, whereas the WO reactor does 

ot. In summary, our example describes each unit operation in a 

impler and clearer way than the original WO plant, which facil- 

tates its understanding and implementation by other researchers, 

hile it remains a more challenging problem than the WO reactor. 

.1.1. Process description 

In the process shown in Fig. 1 , F A and F B are the fresh feeds

f Species A and B, while F i , i = R, S, G, D, P, T , Y , are the flowrates

f the various streams. The feeds F A and F B are mixed with the 

ecycle stream F T in a CSTR, where the following three reactions 

ake place: 

 + B 

k 1 −→ C , C + B 

k 2 −→ P + E , P + C 

k 3 −→ G , (35a) 

 i = A i exp 

( −E i 

T r + 273 . 15 

)
, i = 1 , 2 , 3 . (35b) 

Here, C is an intermediate, P is the main product, E is a side

roduct, and G is an oily waste product. The side product E can 

e sold for its fuel value, while G must be disposed of at a cost.

he decanter completely removes Species G from the reactor out- 

et stream into the waste product stream F G . The decanter outlet 

tream is sent to a distillation unit that removes the product P at 

he top. Due to the formation of an azeotrope between P and E, 

ome of the product P (in fact, the mass fraction β of the amount 

f E in the column feed) is retained in the bottoms. The fraction 

of this bottom product is recycled to the reactor, while the rest 

s used as fuel. The reactor is simplified by assuming isothermal 

peration. The other units are also simplified to keep the example 

mall and illustrate the proposed concepts with lesser complexity. 

s a result, the process is modeled without an energy balance. The 

aterial balance equations are given in Appendix D . 

.1.2. Available model 

To introduce structural plant-model mismatch, the reaction sys- 

em is modeled using only two reactions, thereby ignoring the in- 

ermediate C: 

 + 2 B 

k̄ 1 −→ P + E , A + B + P 

k̄ 2 −→ G , (36a) 
P

8 
 i = Ā i exp 

( −Ē i 

T r + 273 . 15 

)
, i = 1 , 2 . (36b) 

The corresponding model equations are given in Eq. (60) . The 

ve adjustable model parameters are the pre-exponential factors 
¯
 1 and Ā 2 , the activation energies Ē 1 and Ē 2 , and the bottoms 

raction β . The parameter values and their uncertainty ranges are 

iven in Table 4 . 

.1.3. Formulation of the optimization problem 

The objective is to maximize the return on investment (ROI) in 

erms of the net sales minus the costs for raw material, utility and 

aste disposal. It is also desired to keep the production rate of P 

elow a threshold value because of limitation in downstream pro- 

essing. The decision variables are the feed rates F A and F B , the re-

ctor temperature T r , and the split ratio α. These decision variables 

re bounded. The optimization problem can be formulated mathe- 

atically as: 

max 
 A ,F B ,T r ,α

ROI : = 7358 . 4 (P P F P + P E F D ) 

−8400 (P A F A + P B F B + P G F G ) − P R F R , (37a) 

.t. F P (kg/s) ≤ 0 . 7 , (37b) 

 ≤ F A (kg/s) ≤ 5 , 1 ≤ F B (kg/s) ≤ 4 . 5 , 

0 ≤ T r ( °C) ≤ 100 , 0 ≤ α ≤ 0 . 95 . 
(37c) 

The price values P i , i = A, B, E, G, P, R , are given in Table 3 .

he optimal plant inputs are u 

� 
p = [1 . 79 , 4 . 04 , 85 . 82 , 0 . 89] T with

 ROI value of 725.12 $/s and the constraint on F P active. Due 

o plant-model mismatch, the optimal inputs computed with 

he 2-reaction model are significantly different, namely, u 

� = 

1 . 60 , 3 . 52 , 88 . 17 , 0 . 88] T , which gives a plant ROI of 639.04 $/s.

he objective is to combine the best available but inaccurate model 

ith noisy output measurements to drive the plant cost from 

39.04 to close to 725.12 $/s, and this in as few iterations as pos- 

ible. 

.2. Performance of selected directional MA schemes 

Next, we present the application of selected RTO schemes to 

he Williams–Otto plant. It is assumed that the steady-state mass 

ow rates F P and F D are measured, from which all quantities in 

roblem (37) can be computed via simple mass balances. For all 
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Table 3 

Williams–Otto plant: plant parameters and parameters that are common to both the plant and the model. 

Plant parameter Value Common parameter Value Common parameter Value 

A 1 (s −1 ) 1 . 6599 × 10 6 V (kg) 2105 P A ($/kg) 0.0441 

A 2 (s −1 ) 7 . 2117 × 10 8 M A (kg/mol) 100 P B ($/kg) 0.0661 

A 3 (s −1 ) 2 . 6745 × 10 12 M B (kg/mol) 100 P E ($/kg) 0.015 

E 1 (K) 6666.7 M C (kg/mol) 200 P G ($/kg) 0.022 

E 2 (K) 8333.3 M P (kg/mol) 100 P P ($/kg) 0.6614 

E 3 (K) 11111 M E (kg/mol) 200 P R ($/kg) 4.8943 

β ( −) 0.1 M G (kg/mol) 300 − −

Table 4 

Williams–Otto plant: model parameters. 

Model parameter Model parameter value θ Uncertainty range Probability distribution 

Ā 1 (s −1 ) 1 . 2661 × 10 8 [8 . 5824 × 10 7 , 1 . 2874 × 10 8 ] uniform 

Ā 2 (s −1 ) 1 . 2179 × 10 13 [1 . 1324 × 10 13 , 1 . 6986 × 10 13 ] uniform 

Ē 1 (K) 8014.0 [5966 . 88 , 8950 . 32] uniform 

Ē 2 (K) 12350.4 [11031 . 6 , 16547 . 4] uniform 

β (-) 0.0882 [0 . 06 , 0 . 09] uniform 

R

m

a

o

b

l

m

P

a

e

m

f

t

i

b

a

f

g

a

2

n

p

a  

n  

A

i

o  

γ  

t

d

i  

[

t

k

f

s

M

s

t

t

A

a

t

t  

l

t

2

TO schemes, two different conditions are tested: (i) no measure- 

ent noise, to assess the theoretical potential of each scheme; 

nd (ii) Gaussian measurement noise with a standard deviation 

f 0.05% of the true output values. This is a plausible noise level 

y considering that the steady-state mass flow rates of the out- 

et streams P and D can be obtained by using redundant measure- 

ents of mass flow rates or precise measurements of the mass of 

 and D that is placed in storage tanks for further processing in 

 certain amount of time. A filter matrix K with all diagonal el- 

ments equal to 0.9 is used for all simulations without measure- 

ent noise, while diagonal elements equal to 0.5 are considered 

or all simulations with measurement noise. At the k th RTO itera- 

ion, the plant gradients are estimated via finite-difference approx- 

mation from measurements at the nominal point u k and neigh- 

oring points. This implies that the number of experimental runs 

t each iteration equals the number of neighboring points plus one 

or the nominal point. The step away from u k to compute each 

radient corresponds to 0.1% of the distance between the lower 

nd upper bounds in the case of noise-free measurements, and to 

% of that distance in the presence of noisy measurements. The 

umber of neighboring points equals the number of relevant in- 

ut directions, namely, n u = 4 for the basic formulations MA, MAy, 

nd MA- L ; n r = 3 for MA-kAS, MAy-kAS, MA- L -kAS; n d u = 2 or

 

d 
u = 1 for ADMA, ADMAy and ADMA- L ; and n d r = 2 or n d r = 1 for

DMA-kAS, ADMAy-kAS, and ADMA- L -kAS. The number of dom- 

nant input directions is chosen as 1 or 2 since the eigenvalues 

f ˆ G are ˆ γ1 = 1 . 4959 × 10 12 , ˆ γ2 = 0 . 3110 × 10 12 , ˆ γ3 = 0 . 0318 × 10 12 ,

ˆ 4 = 0 . 0 0 01 × 10 12 , which means that ˆ γ1 is significantly larger

han ˆ γ2 , and ˆ γ2 is significantly larger than ˆ γ3 . The dominant input 

irections are then the first column or the first two columns of ˆ W 1 

n Appendix A.3 , namely, [ −0 . 7275 , 0 . 5728 , −0 . 0259 , 0 . 3767] T and

 −0 . 6423 , −0 . 7612 , −0 . 0292 , −0 . 0850] T . 

One can consider 12 different MA schemes corresponding to 

he Cartesian product of the following options: MA or ADMA; un- 

nown active set or known active set; standard formulation, output 

ormulation, or Lagrangian formulation. Hence, the possible RTO 

chemes are the standard formulation MA, the output formulation 

Ay, and the Lagrangian formulation MA- L , the known-active- 

et schemes MA-kAS, MAy-kAS, and MA- L -kAS, the active direc- 

ional schemes ADMA, ADMAy, and ADMA- L , and the active direc- 

ional, known-active-set formulations ADMA-kAS, ADMAy-kAS, and 

DMA- L -kAS. The results obtained using some of these schemes 

re discussed next. 

Fig. 2 shows the results without measurement noise as a func- 

ion of the number of RTO iterations. The figure shows the evolu- 
9 
ion of the cost (ROI) and of the constraint to be activated ( F P ) and

eads to the following conclusions: 

• In the absence of noise, the RTO schemes MA, MAy, and 

MA- L converge to the optimal ROI value of 725.12 $/s, but 

they all require the estimation of plant gradients along the 

4 inputs. The MA schemes with known active set do not 

reach plant optimality since the reduced input directions 

are chosen orthogonal to the gradients of the active model 

constraints. MA-kAS reaches a ROI value of 721 $/s with 

the plant gradients estimated in 3 input directions. With 

the ADMA-kAS schemes, the same value of 721 $/s can be 

achieved with the estimation of plant gradients in only 2 

input directions, while a value of 712 $/s is reached with 

the estimation of plant gradients in 1 input direction. By us- 

ing ADMA schemes with unknown active set, the results are 

worse than with the ADMA-kAS schemes for the same num- 

ber of input directions (not shown). Indeed, one obtains a 

ROI value of 710 and 715 $/s with the estimation of plant 

gradients in 1 and 2 input directions, respectively. 

Fig. 3 presents the results with measurement noise as a func- 

ion of the number of experimental runs corresponding to the first 

0 RTO iterations. The following conclusions can be drawn: 

• In the presence of noise, the various MA schemes reach cost 

values above 720 $/s, while the ADMA-kAS schemes with 

fewer input directions are only marginally inferior with cost 

values between 710 and 720 $/s. The fact that the ADMA- 

kAS schemes are only slightly affected by noise indicates 

that the dominant input directions are able to provide a 

large signal-to-noise ratio for the estimation of plant gradi- 

ents. 
• As shown by the performance in the first 10 to 15 experi- 

mental runs, both the schemes with known active set and 

the active directional schemes allow reaching near plant op- 

timality faster than the basic schemes MA, MAy, and MA- L . 

This shows the practical importance of estimating the plant 

gradients along a reduced number of input directions. In- 

deed, improvement speed is often more important than op- 

timality upon convergence. In an industrial setting, desired 

(such as setpoint changes) and undesired disturbances are 

frequent, and the process is more often trying to adapt to 

new conditions rather than converging to some optimal op- 

erating point. 
• The convergence of the Lagrangian schemes is compa- 

rable to that of the corresponding standard and output 
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Fig. 2. Plant performance without measurement noise as a function of the number of RTO iterations. Cost (left) and constraint to be activated (right) for MA/MA-kAS/ADMA- 

kAS (top), MAy/MAy-kAS/ADMAy-kAS (middle), and MA- L /MA- L -kAS/ADMA- L -kAS (bottom). Blue solid lines: basic schemes with n u = 4 . Blue dashed-dotted lines: known- 

active-set schemes with n r = 3 . Red dashed-dotted lines: active directional, known-active-set schemes with n d r = 2 . Green dashed-dotted lines: active directional, known- 

active-set schemes with n d r = 1 . Black dashed lines: values at the plant optimum. (For interpretation of the references to colour in this figure legend, the reader is referred 

to the web version of this article.) 

t

schemes. However, the Lagrangian schemes exhibit an un- 

derdamped behavior and may even result in constraint vi- 

olations prior to convergence, which supports Remark 6 in 

Appendix B . 

In addition, a comparison of Figs. 2 and 3 allows drawing addi- 

ional conclusions: 

• The ADMA schemes with known active set provide good per- 

formance both in the absence and in the presence of noise. 

This indicates that the dominant input directions, which 

should not only be sensitive to the plant-model mismatch, 

but also orthogonal to the gradients of the active plant con- 

straints, are well approximated by the model. Hence, al- 

though the model is not capable of predicting good optimal 

input values, it is useful to provide good dominant input di- 

rections for the ADMA schemes with known active set. 
10 
• In a practical context with measurement noise, the effect 

of noise may dominate the loss of optimality resulting from 

the reduced number of input directions in known-active-set 

or active directional formulations. In such cases, the method 

proposed in Papasavvas (2021) consisting in reducing the ef- 

fects of noise without increasing the number of experimen- 

tal runs could be used. It involves collecting more measure- 

ments once steady state has been detected and using ap- 

propriate statistical analysis to reject a large part of mea- 

surement noise. However, the collection of more measure- 

ments after each steady state would imply an increase of the 

time spent for each experimental run, which would contra- 

dict the purpose of reducing the time needed to reach near 

plant optimality. Hence, there is a clear tradeoff between the 

time needed to collect more measurements and reduce mea- 

surement noise and the time required by the RTO scheme to 
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Fig. 3. Plant performance with measurement noise as a function of the number of experimental runs. Cost (left) and constraint to be activated (right) for MA/MA-kAS/ADMA- 

kAS (top), MAy/MAy-kAS/ADMAy-kAS (middle), and MA- L /MA- L -kAS/ADMA- L -kAS (bottom). Blue solid lines: basic schemes with n u = 4 . Blue dashed-dotted lines: known- 

active-set schemes with n r = 3 . Red dashed-dotted lines: active directional, known-active-set schemes with n d r = 2 . Green dashed-dotted lines: active directional, known- 

active-set schemes with n d r = 1 . Black dashed lines: values at the plant optimum. (For interpretation of the references to colour in this figure legend, the reader is referred 

to the web version of this article.) 
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reach plant optimality. The optimal value of this tradeoff de- 

pends on the problem at hand. 

. Conclusions 

This paper has discussed practical aspects of modifier adapta- 

ion in the context of plant-model mismatch. In that context, it is 

mportant to have strong handles to modify the model and achieve 

KT matching between the model and the plant. With respect to 

artial KKT matching, the most important KKT conditions are the 

ctive constraints and the Lagrangian gradient along the dominant 

nput directions. Hence, one can reduce the number of input direc- 

ions by considering that either the active set or the dominant in- 

ut directions or both are known. With that information, one can 

ropose additional MA formulations that are tailored to reducing 

he experimental effort that is needed to drive the plant near opti- 
11 
ality. In this work, 4 MA or ADMA schemes were known a priori 

MA, MAy, MA- L , and ADMA), while 8 additional/novel ones have 

een proposed as per Table 2 . 

The investigation of the case study has been quite instructive. 

ote that this is not the Williams–Otto reactor that has been used 

xtensively in the literature, but rather the Williams–Otto plant 

hat consists of that reactor, a decanter, a distillation column and a 

plitter, with in addition a recycle stream. The steady-state model 

s kept purposely simple, but the real-time optimization task is 

hallenging due to the significant amount of structural plant-model 

ismatch and the existence of four inputs. Furthermore, we found 

he performance comparison of the various MA schemes as a func- 

ion of the number of experimental runs particularly interesting, 

s it really expresses the true experimental cost associated with a 

TO scheme. The results of the simulation study showed that it is 

ossible to achieve almost the same cost by using 1 or 2 input di- 
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F

ections instead of the original 4 directions, which allows reaching 

ear plant optimality in the first 10 to 15 experimental runs. For 

ll these reasons, we found our particular problem setting for the 

illiams–Otto plant very useful for comparing RTO algorithms and 

herefore we encourage other researchers to use the problem as a 

omparison case study for RTO. In particular, it could be instruc- 

ive for the community to compare the performance of novel RTO 

chemes with the results in Figs. 2 and 3 . 

The proposed methodology was developed and used in the con- 

ext of explicit optimization , that is, adaptation of a model in real 

ime with subsequent use for numerical optimization. However, in 

he context of plant-model mismatch, there is a growing interest 

n implicit optimization schemes, whereby plant optimality is en- 

orced via self-optimizing control. The major challenge there deals 

ith the selection of both the controlled variables (typically dom- 

nant KKT conditions) and the manipulated variables (inputs that 

re most relevant for optimality). This selection task is typically 

one offline based on a model of the process. The techniques de- 

eloped in this work regarding the selection of the dominant KKT 

onditions and the associated dominant input directions appear to 

e quite relevant to the field of implicit optimization as well. 
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ppendix A. Parametric sensitivity analysis 

The effect of parametric perturbations on the KKT conditions is 

ey to the concept of directionality developed in this paper. In this 

ppendix, we recall the techniques developed by Singhal (2018) for 

arametric sensitivity analysis in the context of KKT matching 

or MA schemes to ensure that the paper is self-contained in its 

ethodology. 

We begin by formally defining the terms influential and less in- 

uential parameter directions. Consider the vector map f ( θ) , with 

 : R 

n θ → R 

n f . This map could for example represent the effect of

 θ parameters on n f active KKT conditions. In addition, consider 

he influential and less influential spaces I and LI that are or- 

hogonal complements to each other such that they form a direct 

um on R 

n θ , that is, I � LI = R 

n θ . 

efinition 1 (Influential and less influential parameter directions; 

mith, 2014 ) . Any parameter direction θ1 ∈ LI ⊂ R 

n θ is said to be 

ess influential for the vector function f if ‖ f ( θ1 ) − f ( θ2 ) ‖ < ε for

ll θ2 ∈ LI , where ε is a small positive scalar. The orthogonal com- 

lement of LI is the subspace I of influential directions. 
12 
There exist several tools to determine influential parameter 

irections. For instance, Fisher information is the classical way 

f finding these influential parameter directions. Another notable 

echnique is that of Sobol indices that quantify the influence of a 

arameter on the variance of the response ( Sobol, 2001 ). Although 

he latter approach has the advantage that it does not require any 

inearization, the computation of sensitivity indices can be pro- 

ibitively expensive for large parameter dimensions. The alterna- 

ive is to use linearization techniques to compute local sensitivities 

hat are used to determine influential parameter directions ( Abdel- 

halik et al., 2013; Constantine et al., 2014 ). The approximation to 

lobal sensitivities is then obtained by aggregating local sensitiv- 

ties evaluated at random parameter values sampled from an ad- 

issible parameter set. In the following subsection, we recall one 

uch approach known as active subspaces ( Russi, 2010; Constan- 

ine, 2015 ). 

1. Local sensitivity analysis 

Consider the n f -dimensional vector f ( θ) and the (n f × n θ ) -

imensional local sensitivity matrix S evaluated at θ̄: 

 := 

(
∂f 

∂ θ

)
θ

. (38) 

One can compute the domain (parameter) and image (KKT) di- 

ections at θ̄ by singular value decomposition of S as follows: 

 = Q � R 

T , (39) 

ith the (n f × n f ) -dimensional orthonormal matrix Q = 

 q 1 . . . q n f 
] , the (n θ × n θ ) -dimensional orthonormal matrix 

 = [ r 1 . . . r n θ ] and the (n f × n θ ) -dimensional singular value 

atrix � with the singular values σ1 ≥ . . . ≥ σn S ≥ 0 on the main 

iagonal and zeros everywhere else, where n S = min (n f , n θ ) . 

The number of dominant directions, n d 
S 
, is determined as the 

rst occurrence of σ
n d 

S 
 σ

n d 
S 
+1 

. It follows that the local sensitivity 

atrix S can be approximated as: 

 ≈ S 1 = Q 1 �1 R 

T 
1 , (40) 

ith Q 1 = [ q 1 . . . q 

n d 
S 
] , R 1 = [ r 1 . . . r n d 

S 
] and �1 = diag (σ1 , . . . , σn d 

S 
) .

The vectors in Q 1 describe n d 
S 

dominant orthogonal directions 

n the space of KKT conditions, while the vectors in R 1 describe n d 
S 

ominant orthogonal directions in the parameter space, the rela- 

ive strength of each direction being given by the singular values 

n �1 . 

2. Global sensitivity analysis 

For the vector map f ( θ) , with f : R 

n θ → R 

n f , we can compute

 global sensitivity by considering the probability distribution of 

he parameters θ. We propose to determine both the domain and 

mage active subspaces. 

For the domain (parameter) space, the sensitivity matrix F ∈ 

 

n θ ×n θ is considered, 

 = 

∫ 
∇ θ f T ( θ) ∇ θ f ( θ) ρ( θ) d θ, (41)

here ∇ θ f ( θ) := 

∂f 
∂ θ

( θ) is the Jacobian of the function f with re-

pect to θ, and ρ is the probability density function of θ over the 

dmissible bounded set � with ρ = 0 for θ / ∈ �. Here, the param- 

ter vector θ is a scaled version of the original parameters. With- 

ut loss of generality, the admissible parameter set can be taken as 

= [ −1 , 1] n θ ⊆ R 

n θ . Note that, since F is symmetric and positive

emi-definite, it diagonalizes as 

 = V � V 

T , � = diag (φ1 , . . . , φn θ ) , (42) 
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Algorithm 3 Computation of influential parameter space (domi- 

nant domain space). 

For the n f -dimensional vector function f ( θ) , do: 

Step 1 : Draw N independent samples θn , n = 1 , . . . , N, from � us- 

ing the probability density ρ( θ) . 

Step 2 : For each sample θn , compute the (n f × n θ ) -dimensional Ja- 

cobian matrix ∇ θ f ( θn ) . 

Step 3 : Compute the ( n θ × n θ )-dimensional matrix ˆ F as in (45) or 

(47) . 

Step 4 : Compute the ( n θ × n θ )-dimensional orthonormal matrix ˆ V 

by eigenvalue decomposition of ˆ F : 
ˆ F = 

ˆ V 

ˆ � ˆ V 

T , ˆ V = [ ̂ v 1 . . . ̂  v n θ ] , and 

ˆ � = diag ( ̂  φ1 , . . . , 
ˆ φn θ

) . 

Step 5 : Select the influential and less influential parameter spaces 

by partitioning the matrix ˆ V as follows: 
ˆ V 1 = [ ̂ v 1 . . . ̂  v 

n d 
θ

] , ˆ V 2 = [ ̂ v 
n d 
θ
+1 

. . . ̂  v n θ ] , 

n d 
θ

: ˆ φ
n d 
θ

 ˆ φ
n d 
θ
+1 

, 

I = col 
(

ˆ V 1 

)
, LI = col 

(
ˆ V 2 

)
. 

Algorithm 4 Computation of dominant KKT elements (dominant 

image space). 

For the n f -dimensional vector function f ( θ) , do: 

Step 1 : Draw N independent samples θn , n = 1 , . . . , N, from � us- 

ing the probability density ρ( θ) . 

Step 2 : For each sample θn , compute the (n f × n θ ) -dimensional Ja- 

cobian matrix ∇ θ f ( θn ) . 

Step 3 : Compute the ( n f × n f )-dimensional matrix ˆ G as in (46) or 

(48) . 

Step 4 : Compute the ( n f × n f )-dimensional orthonormal matrix ˆ W 

by eigenvalue decomposition of ˆ G : 
ˆ G = 

ˆ W ̂

 	 ˆ W 

T , ˆ W = [ ̂  w 1 . . . ˆ w n f 
] , and 

ˆ 	 = diag ( ̂  γ1 , . . . , ˆ γn f 
) . 

Step 5 : Select the dominant and less dominant KKT spaces by par- 

titioning the matrix ˆ W as follows: 
ˆ W 1 = [ ̂  w 1 . . . ˆ w 

n d 
f 

] , ˆ W 2 = [ ̂  w 

n d 
f 
+1 

. . . ˆ w n f 
] , 

n d 
f 

: ˆ γ
n d 

f 

 ˆ γ
n d 

f 
+1 

, 

I = col 
(

ˆ W 1 

)
, LI = col 

(
ˆ W 2 

)
. 

A

i

T

u

ν
e

P

n  

d

G

G

ith φ1 ≥ . . . ≥ φn θ
≥ 0 ; V ∈ R 

n θ ×n θ is an orthonormal matrix 

hose columns v 1 , . . . , v n θ are the orthonormal eigenvectors of F . 

For the image (KKT) space, the sensitivity matrix G ∈ R 

n f ×n f is 

onsidered, 

 = 

∫ 
∇ θ f ( θ) ∇ θ f T ( θ) ρ( θ) d θ. (43)

ince G is symmetric and positive semi-definite, it diagonalizes as 

 = W 	 W 

T , 	 = diag 
(
γ1 , . . . , γn f 

)
, (44) 

ith γ1 ≥ . . . ≥ γn f 
≥ 0 ; W ∈ R 

n f ×n f is an orthonormal matrix 

hose columns w 1 , . . . , w n f 
are the orthonormal eigenvectors of G . 

Since obtaining the sensitivity matrices F in (41) and 

 in (43) analytically may be prohibitive in many cases, 

onstantine (2015) proposed to compute these matrices and the 

ctive subspaces via sampling-based schemes. Concretely, the fol- 

owing two approaches can be highlighted to approximate F and 

 : 

(1) Monte–Carlo sampling, which relies on randomly picking N

sample points θ1 , . . . , θN from the probability density func- 

tion ρ( θ) and assigning equal weights to each sample. Then, 

approximations of (41) and (43) are computed as follows: 

ˆ F = 

1 

N 

N ∑ 

n =1 

∇ θ f T ( θn ) ∇ θ f ( θn ) , (45) 

ˆ G = 

1 

N 

N ∑ 

n =1 

∇ θ f ( θn ) ∇ θ f T ( θn ) . (46) 

(2) Gaussian quadrature, which relies on choosing N sample 

points θ1 , . . . , θN and N weights w 1 , . . . , w N such that the 

integrals of the form 

∫ 
v ( θ) ρ( θ) d θ are computed exactly 

for multivariate polynomials v ( θ) up to some degree d as ∑ N 
n =1 w n v ( θn ) . This method may be more efficient in terms 

of number of sample points and does not require sampling 

random parameter values. Then, approximations of (41) and 

(43) are computed as follows: 

ˆ F = 

N ∑ 

n =1 

w n ∇ θ f T ( θn ) ∇ θ f ( θn ) , (47) 

ˆ G = 

N ∑ 

n =1 

w n ∇ θ f ( θn ) ∇ θ f T ( θn ) . (48) 

The sampling-based schemes are described in Algorithms 3 and 

 . 

3. Computation of active subspaces 

The model can be so complex that the analytical expressions 

n the sensitivity matrices F and G are intractable. Sampling-based 

pproaches can be used to approximate these matrices, which is 

lso discussed in Singhal et al. (2018) . It is recommended to scale 

he parameters θ so that they lie between −1 and 1. The dominant 

nd less dominant domain and image spaces are computed by con- 

tructing the approximations ˆ F and 

ˆ G as given in Algorithms 3 and 

 , respectively. 

Note: For a single realization ( N = 1 ) and assuming n θ ≥ n f , the

 n θ × n θ )-dimensional matrix ˆ F is of rank n f . It is then full rank

ue to the summation over N ≥ n θ realizations. 
13 
ppendix B. Convergence of MA- L to plant optimality 

The following theorem proves that MA- L reaches plant optimal- 

ty upon convergence. 

heorem B.1 (KKT matching for MA- L ) . Let MA- L converge, with 

 ∞ 

= lim k →∞ 

u k being a KKT point for the modified Problem (16) and 

∞ 

= lim k →∞ 

νk ∈ R 

n g the vector of corresponding Lagrange multipli- 

rs. Then, u ∞ 

is also a KKT point for the plant Problem (1) . 

roof. Let us introduce the Lagrangian function of Problem (16) , 

amely, L m 

(z , θ) := �m 

(u , θ) + νT G m 

(u , θ) . It follows from the

efinitions of �m 

and G m 

and the use of Eq. (15) that: 

 m 

(u k , θ) = G p (u k ) , (49a) 

∂L m 

∂u 

( z k , θ) = 

∂L p 

∂u 

( z k ) . (49b) 

Upon convergence, that is, for k → ∞ , the KKT conditions read: 

∂L m 

∂u 

( z ∞ 

, θ) = 0 , (50a) 

 m 

(u ∞ 

, θ) ≤ 0 , (50b) 
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 ν∞ 

) T G m 

(u ∞ 

, θ) = 0 , (50c) 

∞ 

≥ 0 , (50d) 

r, with Eq. (49) , 

∂L p 

∂u 

( z ∞ 

) = 0 , (51a) 

 p (u ∞ 

) ≤ 0 , (51b) 

 ν∞ 

) T G p (u ∞ 

) = 0 , (51c) 

∞ 

≥ 0 , (51d) 

hich are the KKT conditions of Problem (1) . �

emark 6. Although MA- L uses a single gradient modifier λL 
k , it 

ay result in slower convergence to plant optimality and larger 

onstraint violations prior to convergence ( Marchetti et al., 2016 ). 

ppendix C. Convergence of MA-kAS to plant optimality 

The following theorem proves that MA-kAS can reach plant op- 

imality upon convergence. 

heorem C.1 (KKT matching for MA-kAS) . Let MA-kAS converge, 

ith u ∞ 

= lim k →∞ 

u k being a KKT point for the modified Problem 

27) and ν∞ 

= lim k →∞ 

νk ∈ R 

n g the vector of corresponding Lagrange 

ultipliers. Furthermore, let 
∂G a p 
∂u 

(u ∞ 

) N ∞ 

= 0 , which holds for either 

ase (i) or Case (ii) in Section 3.1.2 . Then, u ∞ 

is also a KKT point for

he plant Problem (1) . 

roof. Consider the modified cost and constraint functions �m 

nd G m 

of Problem (27) and the corresponding Lagrangian 

 m 

(z , θ) := �m 

(u , θ) + νT G m 

(u , θ) . Using Eqs. (24) and (26) , one

an write: 

 m 

(u , θ) = G (u , θ) + 

(
G p (u k ) − G (u k , θ) 

)
+ 

(∇ r G p ( u k ) − ∇ r G (u k , θ) 
)

N 

T 
k (u − u k ) , (52a) 

 m 

(z , θ) = �(u , θ) + 

(
∇ r �p ( u k ) − ∇ r �(u k , θ) 

)
N 

T 
k u 

+ νT 
[ 

G (u , θ) + 

(
G p (u k ) − G (u k , θ) 

)

+ 

(
∇ r G p ( u k ) − ∇ r G (u k , θ) 

)
N 

T 
k (u − u k ) 

] 
, (52b) 

∂L m 

∂u 

(z , θ) = 

∂�

∂u 

(u , θ) + 

(
∇ r �p ( u k ) − ∇ r �(u k , θ) 

)
N 

T 
k 

+ νT 

[
∂G 

∂u 

(u , θ) + 

(
∇ r G p ( u k ) − ∇ r G (u k , θ) 

)
N 

T 
k 

]
. 

(52c) 

Post-multiplying Eq. (52c) with N k , considering that N 

T 
k 

N k = I n r 
nd evaluating Eqs. (52a) and (52c) at u k gives: 

 m 

(u k , θ) = G p (u k ) , (53a) 

 r L m 

( z k , θ) = 

∂L m 

∂u 

( z k , θ) N k = ∇ r �p ( u k ) 

+ νT 
k ∇ r G p ( u k ) = ∇ r L p ( z k ) . (53b) 

From Eq. (22) , the KKT conditions of Problem (27) upon con- 

ergence are: 

 

a 
m 

(u ∞ 

, θ) = 0 , (54a) 

 r L 

a 
m 

( z ∞ 

, θ) = 

∂L 

a 
m ( z ∞ 

, θ) N ∞ 

= 0 , (54b) 

∂u 

14 
r, with Eq. (53) , 

 

a 
p (u ∞ 

) = 0 , (55a) 

 r L 

a 
p ( z ∞ 

, θ) = 0 , (55b) 

hich are the KKT conditions of Problem (1) when 

∂G a p 
∂u 

(u ∞ 

) N ∞ 

= 

 . �

ppendix D. Williams–Otto plant 

1. Plant equations 

The processing units of the plant are described next. The 

teady-state material balances and the reaction equations around 

he reactor are given as: 

 A + F T, A − F R, A − V r 1 = 0 , (56a) 

 B + F T, B − F R, B − V r 1 − V r 2 = 0 , (56b) 

 T, C − F R, C + 

M C 

M A 

V r 1 − M C 

M B 

V r 2 − V r 3 = 0 , (56c) 

 T, E − F R, E + 

M E 

M B 

V r 2 = 0 , (56d) 

 T, G − F R, G + 

M G 

M C 

V r 3 = 0 , (56e) 

 T, P − F R, P + 

M P 

M B 

V r 2 − M P 

M C 

V r 3 = 0 , (56f) 

 R − (F R, A + F R, B + F R, C + F R, E + F R, G + F R, P ) = 0 , (56g) 

 1 = k 1 
F R, A F R, B 

(F R ) 2 
, r 2 = k 2 

F R, B F R, C 

(F R ) 2 
, r 3 = k 3 

F R, C F R, P 

(F R ) 2 
, (56h) 

 i = A i exp 

( −E i 

T r + 273 . 15 

)
, i = 1 , 2 , 3 . (56i) 

The decanter unit assumes perfect recovery of the product G. 

he material balances for the decanter read: 

 S,i = F R,i , i = A , B , C , E , P , (57a) 

 S, G = 0 , (57b) 

 S = F S, A + F S, B + F S, C + F S, E + F S, P , (57c) 

 G,i = 0 , i = A , B , C , E , P , (57d) 

 G, G = F R, G , (57e) 

 G = F G, G . (57f) 

The distillation column assumes the separation of pure product 

 overhead but also that some of the product is retained in the 

ottoms due to formation of an azeotrope with E (the fraction β
f the mass flowrate of species E in the column feed is taken as 

he amount of P retained in the bottoms). The material balances 

or the distillation column read: 

 P,i = 0 , i = A , B , C , E , (58a) 

 P, P = F S, P − β F S, E , (58b) 

 P = F P, P , (58c) 

 Y,i − F S,i = 0 , i = A , B , C , E , (58d) 

 Y, P = β F S, E , (58e) 
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 Y = F Y, A + F Y, B + F Y, C + F Y, E + F Y, P . (58f) 

The splitter equations are: 

 T,i = α F Y,i , i = A , B , C , E , P , (59a) 

 T = F T, A + F T, B + F T, C + F T, E + F T, P , (59b) 

 D,i = (1 − α) F Y,i , i = A , B , C , E , P , (59c) 

 D = F D, A + F D, B + F D, C + F D, E + F D, P . (59d) 

The parameter values for the plant are given in Table 3 . 

2. Model equations 

The material balance and reaction equations around the reactor 

or the 2-reaction model are: 

 A + F T, A − F R, A − V r̄ 1 − V r̄ 2 = 0 , (60a) 

 B + F T, B − F R, B − 2 V r̄ 1 − V r̄ 2 = 0 , (60b) 

 T, E − F R, E + 

M E 

M A 

V r̄ 1 = 0 , (60c) 

 T, G − F R, G + 

M G 

M A 

V r̄ 2 = 0 , (60d) 

 T, P − F R, P + 

M P 

M A 

V r̄ 1 − M P 

M A 

V r̄ 2 = 0 , (60e) 

 R − (F R, A + F R, B + F R, E + F R, G + F R, P ) = 0 , (60f) 

¯
 1 = ̄k 1 

F R, A (F R, B ) 
2 

(F R ) 3 
, r̄ 2 = ̄k 2 

F R, A F R, B F R, P 

(F R ) 3 
, (60g) 

 i = Ā i exp 

( −Ē i 

T r + 273 . 15 

)
; i = 1 , 2 . (60h) 

With regard to the other units, the model has the same material 

alance equations as those for the plant. Of course, the intermedi- 

te species C is dropped from the equations. The model parame- 

er values θ, as well as the uncertainty ranges and the probabil- 

ty distribution that are used to construct the probability density 

unction ρ( θ) in Appendix A.3 , are given in Table 4 . Note that the

imits of the uncertainty ranges have also been used as bounds for 

he estimation of the model parameter values θ. 
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