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Abstract

By relying on the input–output feedback linearization approach, a novel adaptive controller
for flexible joint robots is proposed in this work. First, a model-based controller is devel-
oped to get a structure that is useful in the development of the adaptive controller. The
adaptive version is developed by using two techniques. To stabilize the output function,
an adaptive neural network controller is used, which approximates the non-linear function
that contains the uncertainties. The desired rotor position required by the input–output
feedback linearization controller is defined with the structure of a link dynamics adap-
tive regressor-based controller. The main reason to adopt the mentioned structure in the
definition of the desired rotor link position is to guarantee its differentiability. Real-time
experiment comparisons among the model-based controller, a model-based controller with
desired compensation, an adaptive controller based on joint torque feedback, and an adap-
tive neural network-based controller are carried out. Experimental results support the the-
ory reported in this document and the accuracy of the proposed approach.

1 INTRODUCTION

Many of the controllers developed for robot manipulators are
designed for rigid robots. The inclusion of the flexibility in the
dynamic model when developing a motion controller would
increase the precision of the task [1]. The flexibility in robot
manipulators is included non-intentionally by harmonic drives,
transmission belts, or long shafts, or is included intentionally
with the purpose of increasing the safety with human interac-
tion [2].

The study of controllers on flexible joint robots (FJRs) is not
a new topic. Over the years, a lot of research has been done.
Let us mention some of the past works. The feedback lineariza-
tion technique was applied in [3], where the mathematical model
used is globally feedback linearizable. In [4], a hybrid adaptive
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control for trajectory tracking of FJRs was proposed. The tech-
nique consists of one adaptive indirect controller to compen-
sate uncertainties in the rigid-link equations, while an adaptive
robust controller is devoted for compensating the dynamics on
the actuators. A robust controller was designed in [5] for tra-
jectory tracking of FJRs with two actuators. Three different
controllers were developed in [6] by using the integrator back-
stepping, a model-based controller, an adaptive controller, and
a robust controller. In [7], a partial state feedback controller
was proposed by using an integrator backstepping approach for
FJRs. An adaptive controller without velocity measurement for
FJRs was proposed in [8]. Finally, in [9], three model-based con-
trollers for FJRs were designed and tested. Nevertheless, the
study on the development of controllers for FJRs is still an inter-
esting topic, and much work has been done. Let us mention
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some recent works. An adaptive fuzzy controller for trajectory
tracking of FJRs was developed in [10], where the controller is
based on the backstepping theory, and fuzzy logic systems are
used to approximate the unknown non-linearities of the dynam-
ics. In [11], a voltage-based adaptive sliding mode controller for
an n rigid-link flexible-joint robot manipulator was developed.
An approach with a fractional-order observer-based adaptive
controller for FJRs was presented in [12]. A time-optimal tra-
jectory planning algorithm for flexible-joint robots was intro-
duced in [13], where the algorithm is used to move the robot
along smooth parametrized paths. A control scheme for tra-
jectory tracking of FJRs was proposed in [14], where a model-
based controller provides a simultaneous solution for trajectory
tracking and variable impedance control. In [15], authors pro-
posed a method to design a family of virtual contraction-based
controllers to solve the trajectory tracking problem of flexible-
joint robots in the port-Hamiltonian framework. A continuous
fuzzy non-singular terminal sliding mode control based on a
non-linear finite-time observer to control a serial-chain n-link
flexible joint electrically-driven robot manipulator was proposed
in [16].

FJRs are complex and are considered as underactuated
mechanical systems [17]. The underactuated mechanical sys-
tems are those that have more degrees of freedom than
control inputs [18]. Next, some examples of underactuated sys-
tems will be cited. The inertia wheel pendulum is a mecha-
nism which consists of a wheel attached at the end of a pen-
dulum, the wheel is actuated, and the pendulum is not actuated.
Some works related to inertia wheel pendulum are [19–21] and
[22]. The pendubot, studied in [23–24], is a double pendulum
actuated in the shoulder joint, while the elbow joint remains
free. Similarly, the acrobot system is a double pendulum, but
the actuated joint is the elbow, and the free joint is the shoul-
der [25]. Another underactuated mechanical system is the cart-
pendulum, studied in [26–27]. The cart-pendulum consists of
a passive pendulum mounted on a cart. The movement of the
cart should keep the pendulum at the upward vertical position.
The Furuta pendulum is another test bench used in the literature
to test the performance of controllers, as can be seen in [28].
Besides, the control of other underactuated mechanical systems
has been studied in the literature.

The feedback linearization technique has been widely used
to design efficient control schemes. This technique cancels the
non-linear terms of the dynamic model, leaving a linear system
to stabilize [29]. A disadvantage of this technique is that the
dynamic model and its parameters have to be known. Besides,
a good acquisition of the full-state is needed. For those rea-
sons, this technique is combined with other ones to robus-
tify the performance of the control action. Some recent works
related to feedback linearization will be mentioned. In [30], a
sliding mode controller based on feedback linearization was
developed for an induction motor drive. The feedback lineariza-
tion technique was applied to a sensorless induction motor
drive in [31]. A model reference adaptive system-sliding mode
observer is also incorporated to the scheme to compensate for
the lack of sensors. In [32], the authors proposed a structural
feedback linearization technique with a robust linearization to

make an effective rejection of the non-linearities of a specific
class of functions. A robust controller based on the feedback
linearization technique was developed in [33] for a permanent
magnet synchronous generator based-wind energy conversion
system. In [34], a feedback linearization-based distributed model
predictive control was proposed for the secondary voltage and
frequency of an islanded microgrid. The feedback linearization
technique with fractional-order calculus was implemented in
[35] for the maximum power extraction framework of a wind
energy conversion system. In [36], a feedback controller with
two gain-scaling factor was proposed for global stabilization of a
class of approximately feedback linearized non-linear systems. A
static and a dynamic output feedback controllers were designed
for a class of switched non-linear time-delay systems in [37].

As was mentioned before, the feedback linearization tech-
nique needs the knowledge of the parameters of the dynamic
model. In order to avoid this problem, adaptive controllers are a
solution when the parameters are not precisely known, given
that this technique allows estimating the parameters online.
Adaptive control has been proven to show a good performance,
as shown in [38–45]. Besides, the use of neural networks in con-
trol systems has been very popular. One of the most important
properties of neural network is stated in the universal approx-
imation theorem [46]. The weights of neural networks can be
computed online, or can be computed offline with different
training algorithms. In the literature, works where offline algo-
rithms are employed to control complex systems have been
given in [47–49].

On the other hand, adaptive neural network controllers are of
low computational cost, with the advantages of not requiring an
offline training process and the property that non-linear func-
tions may be approximated. Adaptive neural networks-based
controllers compensate the unknown dynamics, the unknown
disturbances, and they do not demand the system parameters
resulting in a robust controller. Nowadays, adaptive neural net-
works have been widely used. Let us mention some recent
works. In [50], an inverse non-linear controller combined with
an adaptive neural controller was proposed for mobile robots.
An adaptive neural sliding mode controller in discrete-time was
developed in [51], which was applied for trajectory tracking of
a SCARA robot arm. In [52], a PID for a SCARA robot was
proposed with the particularity that the PID gains are esti-
mated online with an adaptive neural network. A trajectory
tracking controller for an underactuated control moment gyro-
scope was proposed in [53]. The control goal was achieved uti-
lizing an adaptive neural network. In [54], an adaptive neural
controller was proposed for attitude tracking and attitude sta-
bilization for a hexacopter with uncertain dynamics. In [55],
an adaptive neural network-based controller with an event trig-
gered mechanism was developed for a class of single-input
single-output high-order non-linear systems. In [56], the authors
proposed a trajectory tracking controller for a class of uncer-
tain non-linear systems with time delay by using command
filtered-based event-triggered adaptive neural network con-
trol. A filtering adaptive neural network-based controller with
Gaussian radial basis function was developed in [57] to com-
pensate mismatched uncertainties in multivariable non-linear
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systems. A backstepping-based controller with adaptive neu-
ral networks was proposed in [58] for non-strict-feedback
systems with input delays. The consensus tracking control prob-
lem was addressed in [59], where an adaptive neural networks
controller based on backstepping technique was proposed. In
[60], a controller based on a double adaptive neural network
was proposed to stabilize a Furuta pendulum in the presence
of external disturbances. The problem of input saturation and
state constraints for rigid robot manipulators was studied in [61]
by using adaptive neural networks. In [62], an adaptive neural
network controller for stochastic non-linear systems with full
state constraints was developed. An adaptive tracking controller
for a class of stochastic non-linear systems with input satura-
tion based on multi-dimensional Taylor network via backstep-
ping was proposed in [63]. In [64], an adaptive neural network
finite-time dynamic surface controller was proposed for systems
with an unknown dead zone.

Given the robustness of adaptive neural networks, this tech-
nique has been widely applied to FJRs for decades. For exam-
ple, in [65], an adaptive neural networks controller was designed
by using the feedback linearization technique developed in [3].
More recently, in [66], an adaptive dynamic surface control was
designed for a FJR with unmodelled dynamics and time-varying
output constraints. The authors used radial basis functions neu-
ral networks to approximate the unknown continuous func-
tions. A neuro-adaptive observer-based controller was devel-
oped in [67], which used radial basis function neural networks
to estimate state variables of one-link FJR. In [68], an adaptive
neural network controller was proposed for trajectory track-
ing control of FJRs. The scheme used a multilayer neural net-
work, in which output weights are adapted online based on
the trajectory tracking error, while the input weights use an
online algorithm based on backpropagation. An adaptive con-
troller with actor-critic design for trajectory tracking was devel-
oped in [69]. The controller used a neural network to calcu-
late the cost function used to judge the control performance,
and another neural network is used to cope with system uncer-
tainties. An adaptive hybrid impedance controller for electrically
driven FJRs with input saturation was proposed in [70], where
adaptive neural networks are used to approximate the saturation
terms.

As can be seen in the literature review, many works on adap-
tive neural networks have been applied to FJRs. In all the works,
the universal approximation property of neural networks is used
to approximate unknown functions. While in [65], the state
feedback linearization control technique is used to develop a
controller, in this manuscript the input-output feedback lin-
earization framework is used to develop an adaptive controller.
In our design, the output function is inspired by the results given
in [71]. Another important difference between the results in [65]
and our approach is that in the input–output feedback lineariza-
tion, an analysis for the internal dynamics should be carried out.
In order to stabilize the internal dynamics, the desired rotor
position is calculated as an adaptive regressor-based auxiliary
controller. As it was mentioned in the literature review, previous
works explored different ways to address the trajectory tracking
control, but no one considered the approach introduced in this

work. Besides, the controller in this work is developed so that a
singularity-free scheme is synthesized.

In this document, a combined adaptive neural network and
regressor-based trajectory tracking controller for FJRs is pro-
posed. First, a model-based controller is developed by using the
input-output feedback linearization technique. The controller
is designed to achieve link trajectory tracking. The controller
is designed in two parts, the control law that stabilizes the
external dynamics, and the desired rotor position stabilizes the
internal dynamics. Then, taking into account the model-based
controller, an adaptive version is developed by using neural net-
works. It is important to remark that adaptive neural networks
require a discontinuous function to compensate for the approx-
imation error. Given that the controller 𝝉m used to stabilize the
external dynamics requires the desired rotor acceleration, the
desired rotor position can not be developed with adaptive neu-
ral networks. Taking this into account, the desired rotor position
required by the adaptive neural network controller is given in
the form of a link dynamics adaptive regressor-based controller.
The main contribution of this work is the development of a
combined adaptive controller which uses adaptive neural net-
works and a link dynamics adaptive regressor. Combining these
two techniques makes the controller not require any param-
eter knowledge, not even the elasticity constant. The use of
neural networks compensates for non-modelled system dynam-
ics. Besides, as was mentioned in the literature review, adaptive
neural networks do not require a training process. In fact, the
weights are estimated online like any adaptive regressor-based
controller. Analysis of the closed-loop trajectories is provided.
The theory is validated by means of real-time experiments in a
flexible joint robot of two links. In order to provide a compari-
son, the model-based controller, a model-based controller with
desired compensation proposed in [9], an adaptive controller
based on joint torque feedback developed in [72], and an adap-
tive neural network-based controller designed in [65] are imple-
mented experimentally and the results are analyzed. The pro-
posed adaptive controller shows the best performance among
all the controllers tested in this work.

The remaining of this document is organized as follows. In
Section 2, the dynamic model and the control problem is pre-
sented. The model-based controller is developed in Section 3,
which is inspired in the input-output feedback linearization
technique. In Section 4, the design of the combined adaptive
controller and the analysis of the closed-loop trajectories are
presented. The experimental platform, the controllers used for
the performance comparison, and the experimental results are
in Section 5. Finally, the conclusions are presented in Section 6.

2 DYNAMIC MODEL, CONTROL
PROBLEM, AND MATHEMATICAL
PRELIMINARIES

2.1 Dynamic model

The dynamic model of a flexible joint robot in the horizontal
plane, as the one shown in Figure 1, is given by [2], [73],
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FIGURE 1 Representation of an n-link flexible joint robot

M (ql )q̈l +C (ql , q̇l )q̇l + Fvl q̇l + K (ql − qm ) = 0n×1, (1)

J q̈m + Fvmq̇m + K (qm − ql ) = 𝝉m, (2)

with M (ql ) ∈ IRn×n the inertia matrix of the link side of the
robot, C (ql , q̇l ) ∈ IRn×n the Coriolis and centrifugal forces
matrix, K ∈ IRn×n is the matrix associated with the stiffness of
the springs, J is the constant diagonal positive definite matrix
of n × n, which contains the inertia of the gears and rotors. Fvl

and Fvm ∈ IRn×n are constant positive definite diagonal matri-
ces which contain the viscous friction coefficients of the joints,
before and after of the flexible elements, respectively, and 𝝉m ∈
IRn is the torque input vector. The coordinates ql and qm ∈ IRn

denote the position of the links and the rotors, respectively.
Finally, the coordinates q̇l , q̈l ∈ IRn and q̇m, q̈m ∈ IRn are the
velocities and accelerations of the link and rotor, respectively.

2.2 Mathematical preliminaries and
important properties

In this work, the Euclidean norm of a vector x ∈ IRn is denoted
by ‖x‖ =√xT x. The notation 𝜆min{A} and 𝜆max{A} represent
the minimum and maximum eigenvalues of a matrix A ∈ IRn×n,
respectively. The spectral norm of a matrix A is defined as‖A‖ =√𝜆maxAT A.

The Rayleigh–Ritz theorem establishes that for all x ∈ IRn,

𝜆max{A}‖x‖2 ≥ xT Ax ≥ 𝜆min{A}‖x‖2, (3)

where A = AT ∈ IRn×n is a symmetric matrix.

For a symmetric and positive definite matrix A, the next
inequality holds

|yT Ax| ≤ ‖A‖‖y‖‖x‖, (4)

where ‖A‖ = 𝜆max{A} in this case, and x, y ∈ IRn.
The trace of a matrix A is denoted by Tr (A). The trace

identity relation of two vectors a ∈ IRm and b ∈ IRm is defined
by

Tr (abT ) = bT a. (5)

In the case of a matrix B ∈ IRn×m , the Frobenius norm is
defined by [74]

‖B‖2
F
=
∑
i, j

b2
i, j = Tr (BT B). (6)

The Frobenious inner product is defined as

⟨C ,D⟩F = Tr (C T D),

and according to the Schwartz inequality

| ⟨C ,D⟩F | = |Tr (C T D)| ≤ ‖C‖F ‖D‖F , (7)

with C ∈ IRn×m and D ∈ IRn×m as two compatibility dimen-
sioned matrices.

It is worth noting that the rigid part of a FJR, denoted by
equation (1), holds the next properties [75]:

Property 1. The inertia matrix M (ql ) is symmetric positive definite,

and

𝜆min{M (ql )}‖x‖2 ≤ xT M (ql )x ≤ 𝜆max{M (ql )}‖x‖2. (8)

for all x ∈ IRn
.

Property 2. For the Coriolis and centrifugal matrix C (ql , q̇l ), there

exists a number kC1
, such that

‖C (ql ,x)y‖ ≤ kC1
‖x‖‖y‖ (9)

for all x, y ∈ IRn
.

Property 3. The matrix C (ql , q̇l ) denotes the Coriolis and centrifugal

forces matrix and is related to the inertia matrix, as follows

xT
[1

2
Ṁ (ql ) −C (ql , q̇l )

]
x = 0, (10)

for all x ∈ IRn
. Besides,

Ṁ (ql ) = C (ql , q̇l ) +C (ql , q̇l )T . (11)
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Assumption 1. The equation (1) is linear in the parameters, in
the form:

K−1[M (ql )q̈l +C (ql , q̇l )q̇l + Fvl q̇l + K (ql − qm )]

= Φ(ql , q̇l , q̈l )𝜽, (12)

where Φ(ql , q̇l , q̈l ) ∈ IRn×𝜌 is the regression matrix, and 𝜽 ∈
IR𝜌 is the vector with all the lumped parameters.

Because the matrix K ∈ IRn×n is diagonal and invert-
ible, equation (12) resembles a property rather than an
assumption.

2.3 Control problem

Let us assume that ql , q̇l , q̈l , q⃛l , qm, and q̇m are available for
measurement. The control problem consists of designing a con-
trol law 𝝉m such that

lim
t→∞

q̃l (t ) = 0n×1, (13)

where

q̃l = qld − ql , (14)

with qld (t ) ∈ IRn the desired position of the links, which is
assumed to be four times differentiable at least.

Next, an output function will be presented, and the input–
output feedback linearization technique will be used to develop
a motion controller. Besides, the stability of the internal and
external dynamics will be discussed.

3 INPUT-OUTPUT FEEDBACK
LINEARIZATION-BASED CONTROLLER

3.1 Open-loop system

By using the definition of the link position error q̃l in (14) and
defining the rotor position error as

q̃m = qmd − qm,

with qmd as the desired position of the rotor. Then, the equa-
tions (1) and (2) can be expressed in the state-space form
as

ẋ = f (t ,x) + G (t ,x)𝝉m, (15)

where

x =
[
q̃l

T ̇̃ql
T

q̃m
T ̇̃qm

T ]T

∈ IR4n, (16)

f (t ,x) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

̇̃ql

q̈ld +M (qld − q̃l )−1[C (qld − q̃l , q̇ld − ̇̃ql )

(q̇ld − ̇̃ql ) + Fvl (q̇ld − ̇̃ql )

+K (qld − q̃l − qmd + q̃m )]

̇̃qm

q̈md + J−1[Fvm (q̇md − q̃m )

+K (qmd − q̃m − qld + q̃l )]

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(17)
and

G (t ,x) =

⎡⎢⎢⎢⎢⎣
0n×n

0n×n

0n×n

−J−1

⎤⎥⎥⎥⎥⎦
.

Notice that an FJR is an underactuated system of 4n dimension
represented by the states x in (16). Thus, the control goal in (13)
is achieved under a non-conventional design controller [17].

The output function is inspired by the feedback linearization
controllers developed in [71], the output function consists of a
linear combination of the states x, as follows:

y = 𝛼1q̃l + 𝛼2q̃m + 𝛽1 ̇̃ql + 𝛽2 ̇̃qm,

where y ∈ IRn and 𝛼1, 𝛼2, 𝛽1, and 𝛽2 are constant matrices of
n × n dimension to be defined.

3.2 Controller development

Next, the feedback linearization technique will be used to
develop the control input 𝝉m for the system (15).

Computing the time derivative of the output function y, we
get

ẏ = 𝛼1 ̇̃ql + 𝛼2 ̇̃qm + 𝛽1 ̈̃ql + 𝛽2 ̈̃qm

= 𝛼1 ̇̃ql + 𝛼2 ̇̃qm + 𝛽1 f 2 + 𝛽2 f 4 − 𝛽2J−1𝝉m, (18)

where f 2 and f 4 ∈ IRn are the second and the fourth com-
ponents of the vector f ∈ IR4n in (17), respectively. The rela-
tive degree is r = n, given the output function has n dimension,
and after differentiating once with respect to time, the control
input appears.

Multiplying both sides of the equation (18) by J𝛽−1
2 , we

obtain

J𝛽−1
2 ẏ = J𝛽−1

2 𝛼1 ̇̃ql + J𝛽−1
2 𝛼2 ̇̃qm + J𝛽−1

2 𝛽1 f 2 + J f 4 − 𝝉m.

(19)

By defining 𝛽2 as a diagonal and positive definite matrix, the
product J𝛽−1

2 is positive definite. The control law can then be
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designed as

𝝉m = J𝛽−1
2 𝛼1 ̇̃ql + J𝛽−1

2 𝛼2 ̇̃qm + J𝛽−1
2 𝛽1 f 2 + J f 4 + Kpoy,

(20)

where Kpo is a positive definite diagonal matrix of n × n dimen-
sion. Under (20), the system becomes the next linear system:

J𝛽−1
2 ẏ = −Kpoy, (21)

which is globally exponentially stable if Kpo is selected as a diag-
onal positive definite matrix, as is proven in the following.

3.2.1 Analysis of the closed-loop output
dynamics

Notice that (21) can be written as

ẏ = Ay, (22)

where A = −𝛽2J−1Kpo. It is important to remark that J ∈ IRn×n

and 𝛽2 ∈ IRn×n are diagonal and positive definite matrices. If Kpo

is a diagonal positive definite matrix, all the eigenvalues of A are
negative and real. The solution of (22) is

y(t ) = eAt y(0).

According to [76], if A is diagonal, and −A = −AT > 0, then

eAt =

⎡⎢⎢⎢⎢⎣
ea1t 0 … 0

0 ea2 t … 0

⋮ ⋱ ⋮

0 0 … ean t

⎤⎥⎥⎥⎥⎦
,

which means that y(t ) converges to zero as time t goes to
infinity.

3.2.2 Internal dynamics and desired rotor
position qmd

In order to obtain the normal form of the closed-loop systems,
a change of variables should be computed [29].

The quantity of independent coordinates 𝜂i (x) which express
the internal dynamics is

i = 4n − r = 4n − n = 3n.

These coordinates should satisfy [29]

𝜕𝜂i (x)

𝜕x
G (t ,x) = 01×4n.

Specifically, the following three states are used:

𝜼 =

⎡⎢⎢⎢⎣
𝜼1

𝜼2

𝜼3

⎤⎥⎥⎥⎦ =
⎡⎢⎢⎢⎣

q̃l

̇̃ql

q̃m

⎤⎥⎥⎥⎦ ∈ IR3n,

which stand as the independent coordinates of the internal
dynamics. Hence,

z =

⎡⎢⎢⎢⎢⎣
𝜼1

𝜼2

𝜼3

y

⎤⎥⎥⎥⎥⎦
= T x =

⎡⎢⎢⎢⎢⎣
In 0 0 0

0 In 0 0

0 0 In 0

𝛼1 𝛽1 𝛼2 𝛽2

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣

q̃l

̇̃ql

q̃m

̇̃qm

⎤⎥⎥⎥⎥⎦
(23)

is the transformation to obtain the closed-loop system.
The inverse transformation of (23) is given by

x = T −1z =

⎡⎢⎢⎢⎢⎣
In 0 0 0

0 In 0 0

0 0 In 0

−𝛽−1
2 𝛼1 −𝛽−1

2 𝛽1 −𝛽−1
2 𝛼2 𝛽−1

2

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣
𝜼1

𝜼2

𝜼3

y

⎤⎥⎥⎥⎥⎦
.

(24)

Equations (23) and (24) are useful to obtain the internal
dynamics, which is given by

𝜼̇1 = 𝜼2, (25)

𝜼̇2 = q̈ld +M (ql )−1[C (ql , q̇l )q̇l

+ Fvl q̇l + K (ql − qmd ) + K𝜼3], (26)

𝜼̇3 = −𝛽
−1
2 [𝛼1𝜼1 + 𝛽1𝜼2 + 𝛼2𝜼3 − y]. (27)

Equation (26) is left-multiplied by K−1M (ql ), and therefore
(25)–(27) as

𝜼̇1 = 𝜼2, (28)

K−1M (ql )𝜼̇2 = K−1M (ql )q̈ld + K−1C (ql , q̇l )q̇l + K−1Fvl q̇l

+ ql − qmd + 𝜼3, (29)

𝜼̇3 = −𝛽
−1
2 [𝛼1𝜼1 + 𝛽1𝜼2 + 𝛼2𝜼3 − y]. (30)

Notice that (29) has a similar structure to a rigid joint robot
manipulator, taking into account qmd as the control input. The
next desired rotor position qmd is proposed in order to stabilize
the internal dynamics:

qmd = K−1M (ql )q̈ld + K−1C (ql , q̇l )q̇l + K−1Fvl q̇l

+ ql + Kd𝜼2 + Kp𝜼1, (31)
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with Kp and Kd ∈ IRn×n are diagonal positive definite matrices.
It is worth mentioning that the signal qmd can be designed as

any signal which stabilizes the internal dynamics (28) and (29).
The closed-loop system (normal form) can be rewritten by

replacing (20) and (31) into (19) and (30), resulting in

⎡⎢⎢⎢⎣
𝜼̇1

K−1M (ql )𝜼̇2

𝜼̇3

⎤⎥⎥⎥⎦
=

⎡⎢⎢⎢⎣
0n×n In 0n×n

−Kp −Kd In

−𝛽−1
2 𝛼1 −𝛽−1

2 𝛽1 −𝛽−1
2 𝛼2

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣
𝜼1

𝜼2

𝜼3

⎤⎥⎥⎥⎦ +
⎡⎢⎢⎢⎣

0

0

𝛽−1
2

⎤⎥⎥⎥⎦y, (32)

J𝛽−1
2 ẏ = −Kpoy, (33)

It is possible to demonstrate that there are sufficient conditions
for the closed-loop system (32) and (33) to be locally exponen-
tially stable, which consist of the matrix Kpo being a symmetric
positive definite, and of the matrix

A(t ) =

⎡⎢⎢⎢⎣
0n×n In 0n×n

−M (ql )−1KKp −M (ql )−1KKd M (ql )−1K

−𝛽−1
2 𝛼1 −𝛽−1

2 𝛽1 −𝛽−1
2 𝛼2

⎤⎥⎥⎥⎦
satisfying the Lyapunov equation

−Ṗ (t ) = P (t )A(t ) + A(t )T P (t ) + Q(t ), (34)

with P (t ) and Q(t ) being positive definite matrices, continuously
differentiable, symmetric and bounded for all t ≥ 0.

The conditions for the gains Kp, Kd and the parameters 𝛼1,
𝛼2, 𝛽1, and 𝛽2 for A(t ) to meet (34) will be developed in the
next section.

3.3 Comments on the designed controller

From equations (20) and (31), the overall controller is estab-
lished as follows:

𝝉m = J𝛽−1
2 𝛼1 ̇̃ql + J𝛽−1

2 𝛼2 ̇̃qm + J𝛽−1
2 𝛽1 f 2 + J f 4 +Kpoy, (35)

qmd = K−1M (ql )q̈ld + K−1C (ql , q̇l )q̇l + K−1Fvl q̇l + ql

+ Kpq̃l + Kd ̇̃ql . (36)

with

f 2 = q̈ld +M (qld − q̃l )−1[C (qld − q̃l , q̇ld − ̇̃ql )(q̇ld − ̇̃ql )

+ Fvl (q̇ld − ̇̃ql ) + K (qld − q̃l − qmd + q̃m )],

f 4 = q̈md + J−1[Fvm (q̇md − q̃m ) + K (qmd − q̃m − qld + q̃l )].

Notice that the computing of the desired rotor velocity q̇md
requires the link acceleration q̈l , while the computing of the
desired rotor acceleration q̈md requires the link jerk q⃛l . Nev-
ertheless, under the assumption that the model parameters are
known exactly q̈l can be obtained from equation (1) given the
matrix M (ql ) is invertible. At the same time, q⃛l is obtained by
calculating the time derivative of q̈l , as follows

q⃛l = −Ṁ−1[C (ql , q̇l )q̇l + Fvl q̇l + K (ql − qm )]

−M (ql )−1[Ċ q̇l +C (ql , q̇l )q̈l + Fvl q̈l + K (q̇l − q̇m )],

with Ṁ−1 =
dM (ql )−1

dt
and Ċ =

dC (ql ,q̇l )

dt
. This is possible

because the design assumes all the robot manipulator param-
eters to be known.

An important observation is that the implementation of
the feedback linearization-based controller (35), with qmd in
(36), requires that the desired link position qld (t ) to be at
least four times continuously differentiable. Another observa-
tion is that the desired rotor velocity q̇md and the desired rotor
acceleration q̈md cannot be estimated as discussed above if
the model parameters are unknown or uncertain. In this case,
other methods should be used, such as numerical differentiation
[65], [77].

4 DESIGN OF THE COMBINED
ADAPTIVE CONTROLLER

Notice that the controller in equations (35) and (36) is a model-
based controller that requires the knowledge of the parame-
ters of the flexible joint robot, which in some cases, are not
precisely known. A combined adaptive controller is developed
in this section to avoid this problem. Note that two adap-
tive techniques are used, adaptive neural networks to stabilize
the output dynamics and adaptive regressor-based controller
to compute the desired rotor position. This new controller is
based on the structure of the model-based controller (35) and
(36).

4.1 Adaptive neural network controller

Notice that the output dynamics can be expressed from (19) as

J𝛽−1
2 ẏ = F (x ) − 𝝉m, (37)

where

F (x) = J𝛽−1
2 (𝛼1 ̇̃ql + 𝛼2 ̇̃qm + 𝛽1 f 2 + 𝛽2 f 4).

By using the universal approximation theorem [46], the
function F (x) can be approximated with a neural network
as

F (x) =W T 𝝈(V T x̄ f ) + 𝜖
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where W ∈ IRL×n is the matrix of ideal output weights of
the neural network, V ∈ IRL×k is the constant input weights
matrix, whose values are assigned randomly. The augmented
input vector x̄ f ∈ IRk is formed by [xT

f
1]T , with x f =

[q̃l
T q̃m

T ̇̃ql
T
̇̃qm

T
q̈ld

T q̈md
T ]T ∈ IRk−1 as the input vector.

The vector 𝜖 ∈ IRn is the approximation error of the neural net-
work, the number of elements of the input vector is k − 1 = 6n,
L ∈ IN is the number of neurons, and 𝝈 ∈ IRL is the vector of
activation functions.

The adaptive neural network controller is

𝝉m = F̂ (x) + Kpoy + Δsign(y), (38)

where

F̂ (x) = Ŵ T 𝝈(V T x̄ f ) = Ŵ T tanh(V T x̄ f ),

with Kpo ∈ IRn×n and Δ ∈ IRn×n diagonal positive definite

matrices, Ŵ ∈ IRL×n the estimated output weights, and the
function

sign(y) =

⎡⎢⎢⎢⎢⎣
sign(y1)

⋮

sign(yn )

⎤⎥⎥⎥⎥⎦
,

being

sign(x ) =

⎧⎪⎪⎨⎪⎪⎩
1, for x > 0,

0, for x = 0,

−1, for x < 0.

with x ∈ IR.
The adaptation law for updating Ŵ ∈ IRL×n is defined as

̇̂W = N𝝈(V T x̄ f )yT 𝛼 −NŴ 𝜅‖y‖, (39)

with N ∈ IRL×L and 𝛼 ∈ IRn×n diagonal positive definite matri-
ces, and 𝜅 ∈ IR a positive constant.

4.2 Desired rotor position (adaptive internal
dynamics stabilizer)

Notice that the internal dynamics (28)-(30) can be expressed as

𝜼̇1 = 𝜼2, (40)

K−1M (ql )𝜼̇2 = Φ(ql , q̇l , q̈ld )𝜽 + ql − qmd + 𝜼3, (41)

𝜼̇3 = −𝛽
−1
2 [𝛼1𝜼1 + 𝛽1𝜼2 + 𝛼2𝜼3 − y], (42)

with Φ(ql , q̇l , q̈ld ) ∈ IRn×p the system regressor, 𝜽 ∈ IRp is the
lumped parameter vector, n is the number of links, and p the
number of parameters. Notice that equation (41) is obtained by
using the linear in the parameter assumption (12).

The desired rotor position qmd proposed to stabilize the
internal dynamics (40)–(42) is

qmd = Φ(ql , q̇l , q̈ld )𝜽 + ql + Kpq̃l + Kd ̇̃ql , (43)

where 𝜽 ∈ IRp is the vector of estimated parameters, which are
obtained with the adaptation law

̇̂𝜽 = ΓΦ(ql , q̇l , q̈ld )[𝛾K q̃l + K ̇̃ql ], (44)

with Γ ∈ IRp×p a diagonal positive definite matrix. It is worth-
while to notice that the implementation of the adaptive neural
network 𝝉m in (38), relies on the assumption that the signals

q̇md = Φ(ql , q̇l , q̈ld ) ̇̂𝜽 + Φ̇(ql , q̇l , q̈l , q⃛ld )𝜽 + q̇l +Kp ̇̃ql +Kd ̈̃ql ,

and

q̈md = Φ(ql , q̇l , q̈ld ) ̈̂𝜽 + 2Φ̇(ql , q̇l , q̈l , q⃛ld ) ̇̂𝜽

+ Φ̈
(
ql , q̇l , q̈l , q⃛l , q

(4)

ld

)
𝜽 + q̈l + Kp ̈̃ql + Kd ⃛̃ql ,

where

̈̂𝜽 = ΓΦ̇
(
ql , q̇l , q̈l , q⃛ld

)
[𝛾K q̃l + K ̇̃ql ]

+ΓΦ(ql , q̇l , q̈ld )[𝛾K ̇̃ql + K ̈̃ql ],

are available. These signals can be indirectly estimated by
numerical differentiation. The adaptation laws (39) and (44) are
designed to match the analysis of the closed-loop trajectories to
be developed.

By substituting the equations (38) and (39) into (37) and the
equations (43) and (44) into (41), the overall closed-loop system
is obtained as

𝜼̇1 = 𝜼2, (45)

𝜼̇2 = M (qld − 𝜼1)−1K (−Kp𝜼1 − Kd𝜼2 + 𝜼3 + Φ(ql , q̇l , q̈ld )𝜽 ),

(46)

𝜼̇3 = −𝛽
−1
2 𝛼1𝜼1 − 𝛽

−1
2 𝛽1𝜼2 − 𝛽

−1
2 𝛼2𝜼3 + 𝛽

−1
2 y, (47)

̇̃𝜽 = −ΓΦ(ql , q̇l , q̈ld )[𝛾K q̃l + K ̇̃ql ], (48)
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FIGURE 2 Block diagram of the novel adaptive controller (38–44)

J𝛽−1
2 ẏ = W̃ 𝝈(V T x̄ f ) − Kpoy − Δsign(y), (49)

̇̃W = −N𝝈(V T x̄ f )yT 𝛼 +NŴ 𝜅‖y‖, (50)

where W̃ =W − Ŵ is the matrix of estimated output weight
errors, and 𝜽 = 𝜽 − 𝜽 is the vector of estimated parame-
ter errors.

The block diagram of the novel adaptive controller (38), (39),
(43), and (44) is presented in Figure 2.

4.3 Analysis of the closed-loop trajectories

Taking into account the controller derived in this section, a the-
orem can be proposed:

Theorem 1. Consider the dynamic model of an FJR defined in (1) and

(2). The combined adaptive controller, expressed in equations (38), (39),

(43), and (44), guarantees that the trajectories q̃l (t ), ̇̃ql (t ), q̃m(t ), and
̇̃qm(t ) tend to zero as time t increases for a compact set of initial conditions

contained inside a local ball Br of radius r > 0.

Proof. In order to prove the theorem, the closed-loop system
trajectories must be analyzed. The analysis consists of two parts.
First, the output dynamics are analyzed. Then, the zero dynam-
ics must be studied, which consists in substituting y = 0 in
the internal dynamics (45)–(48) and performing a Lyapunov-
like analysis.

For the output dynamics, represented by equations (49) and
(50), the next positive definite function is proposed:

V1 =
1
2

yT 𝛼J𝛽−1
2 y +

1
2

Tr (W̃ T N−1W̃ ), (51)

where Tr (A) is the matrix trace. Notice that J ∈ IRn×n is a diag-
onal positive definite matrix. Therefore, to guarantee that (51)

be positive definite, it is sufficient to choose 𝛽2 ∈ IRn×n and
𝛼 ∈ IRn×n as diagonal positive definite matrices.

Computing the time derivative of (51) along the trajectories,
we get

V̇1 = yT 𝛼J𝛽−1
2 ẏ + Tr (W̃ T N−1 ̇̃W )

= yT 𝛼(W̃ T 𝝈(V T x̄ f ) − Kpoy − Δsign(y) + 𝜖)

+ Tr (−W̃ T 𝝈(V T x̄ f )yT 𝛼 + W̃ T Ŵ 𝜅‖y‖).

By using the property (5)

yT 𝛼
⏟⏟⏟

bT

W̃ T 𝝈(V T x̄ f
⏟⎴⎴⏟⎴⎴⏟

a

) = Tr (W̃ T 𝝈(V T x̄ f )
⏟⎴⎴⎴⏟⎴⎴⎴⏟

a

yT 𝛼
⏟⏟⏟

bT

),

we get

V̇1 = −yT 𝛼Kpoy − yT 𝛼Δsign(y) + yT 𝛼𝜖

+ 𝜅‖y‖Tr (W̃ T (W̃ − W̃ )).

By using the Frobenious inner product defined in (7),
we get

Tr (W̃ T (W − W̃ )) = ⟨W̃ ,W ⟩F − ‖W̃ ‖2
F

≤ ‖W̃ ‖F ‖W ‖F − ‖W̃ ‖2
F
,

so that V̇1 can be upper bounded as

V̇1 ≤ −𝜆max{𝛼}𝜆max{Kpo}‖y‖2

− 𝜅‖y‖(‖W̃ ‖2
F
− ‖W̃ ‖2

F
‖W ‖2

F

)
+ (𝜆max{𝛼}(𝜆max{𝜖} − 𝜆max{Δ}))‖y‖
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≤ −𝜆max{𝛼}𝜆max{Kpo}‖y‖2 − 𝜅‖y‖(‖W̃ ‖F − ‖W ‖F

)2

−

(
𝜆max{𝛼}𝜆max{Δ} − 𝜆max{𝛼}𝜆max{𝜖} − 𝜅

‖W ‖2
F

4

)‖y‖.
Therefore, to guarantee that V̇1 ≤ 0, the next conditions have
to be met

𝛼 = 𝛼T > 0, (52)

Kpo = K T
po > 0, (53)

𝜆max{Δ} >
𝜆max{𝛼}𝜆max{𝜖} + 𝜅

‖W ‖2
F

4

𝜆max{𝛼}
. (54)

Because V̇1 ≤ 0, the states y(t ) and W̃ (t ) are bounded. In con-
sequence, ẏ(t ) is also bounded. Notice that the next inequality
holds:

V̇1 ≤ −𝜆max{𝛼}𝜆max{Kpo}‖y‖2. (55)

By integrating both sides of (55) from t = 0 to t = ∞, we have
that

−V1(0) ≤ −𝜆max{𝛼}𝜆max{Kpo}∫
∞

0
‖y(t )‖2dt −V1(∞).

Given that V1 is positive definite, V1(∞) is either positive or
zero, and we finally show that

−V1(0) ≤ −𝜆max{𝛼}𝜆max{Kpo}∫
∞

0
‖y(t )‖2,

∫
∞

0
‖y(t )‖2dt ≤ V1(0)

𝜆max{𝛼}𝜆max{Kpo}
.

There are sufficient conditions to invoke the Barbalat’s lemma
[78] to conclude that

lim
t→∞

y(t ) = 0.

Now, to analyze the internal dynamics, it is necessary to
obtain the zero dynamics, by making y = 0, giving as result

𝜼̇1 = 𝜼2, (56)

M (qld − 𝜼1)𝜼̇2 = −KKp𝜼1 − KKd𝜼2 + K𝜼3 + KΦ(ql , q̇l , q̈ld )𝜽,

(57)

𝜼̇3 = −𝛽
−1
2 𝛼1𝜼1 − 𝛽

−1
2 𝛽1𝜼2 − 𝛽

−1
2 𝛼2𝜼3. (58)

The next positive definite function is proposed:

V2 =
1
2

⎡⎢⎢⎢⎣
𝜼1

𝜼2

𝜼3

⎤⎥⎥⎥⎦
T ⎡⎢⎢⎢⎣

KKp + 𝛾KKd 𝛾M 0

𝛾M M 0

0 0 K𝛽−1
1 𝛽2

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣
𝜼1

𝜼2

𝜼3

⎤⎥⎥⎥⎦
+

1
2
𝜽

T
Γ−1𝜽, (59)

where M = M (qld − 𝜼1) by simplicity.
Notice that (59) satisfies the next inequality

V2 ≥ 1
2

⎡⎢⎢⎢⎣
‖𝜼1‖‖𝜼2‖‖𝜼3‖

⎤⎥⎥⎥⎦
T

P

⎡⎢⎢⎢⎣
‖𝜼1‖‖𝜼2‖‖𝜼3‖

⎤⎥⎥⎥⎦ +
1
2
𝜽

T
Γ−1𝜽, (60)

where

P =

⎡⎢⎢⎢⎢⎣
𝜆min{K }𝜆min{Kp} + 𝛾𝜆min{K }𝜆min{Kd } −𝛾𝜆max{M } 0

−𝛾𝜆max{M } 𝜆min{M } 0

0 0 𝜆min{K }𝜆min{𝛽2}∕𝜆min{𝛽1}

⎤⎥⎥⎥⎥⎦
.

Notice that to get the lower bound expressed in equation (60),
the properties (3), (4), (8) are used.

To guarantee that P be positive definite, the next condition
has to be met

𝜎1 − 𝜎2 < 𝛾 < 𝜎1 + 𝜎2. (61)

where

𝜎1 =
𝜆min{K }𝜆min{Kd }𝜆min{M }

2𝜆max{M }
2

,

𝜎2 =

√
𝜆min{K }

2
𝜆min{Kd }

2
𝜆min{M }

2
+ 4𝜆max{M }

2
𝜆min{M }𝜆min{K }𝜆min{Kp}

2𝜆max{M }
2

.

Computing the time derivative of (59) along the trajectories
(56)-(58), we get

V̇2 = 𝜼
T
1 (KKp + 𝛾Kd )𝜼2 + 𝜼

T
2 Ṁ𝜼2 + 𝜼

T
2 (−KKp𝜼1 − KKd𝜼2

+ K𝜼3 + KΦ(ql , q̇l , q̈ld )𝜽 ) + 𝛾𝜼T
1 Ṁ𝜼2

+ 𝜼T
3 K𝛽−1

1 (−𝛼1𝜼1 − 𝛽1𝜼2 − 𝛼2𝜼3) + 𝛾𝜼T
1 (−KKp𝜼1

− KKd𝜼2 + K𝜼3 + KΦ(ql , q̇l , q̈ld )𝜽 ) + ̇̃𝜽
T

Γ𝜽

+𝛾𝜼T
2 M𝜼2 (62)
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By substituting the adaptation law (48) into (62), defining 𝛼1 =
𝛾𝛽1, and simplifying, we get

V̇2 = −𝛾𝜼
T
1 KKp𝜼1 − 𝜼

T
2

(
KKd − 𝛾M −

1
2

Ṁ
)
𝜼2

+ 𝜼T
3 K𝛽−1

2 𝛼2𝜼3 + 𝛾𝜼
T
1 Ṁ𝜼2. (63)

Notice that (63) can be upper bounded by

V̇2 ≤ −
⎡⎢⎢⎢⎣
‖𝜼1‖‖𝜼2‖‖𝜼3‖

⎤⎥⎥⎥⎦
T

Q

⎡⎢⎢⎢⎣
‖𝜼1‖‖𝜼2‖‖𝜼3‖

⎤⎥⎥⎥⎦, (64)

with

Q =

⎡⎢⎢⎢⎢⎣
𝛾𝜆min{K }𝜆min{Kp} −𝛾kC1

‖q̇ld‖ 0

−𝛾kC1
‖q̇ld‖ 𝜎3 0

0 0
𝜆min{K }𝜆min{𝛼2}
𝜆max{𝛽2}

⎤⎥⎥⎥⎥⎦
,

(65)

and

𝜎3 = 𝜆min{K }𝜆min{Kd } − 𝛾𝜆max{M }

− kC1
‖q̇ld‖ − (kC1

+ 2𝛾kC1
)‖𝜼‖

where the properties (9), (10), (11), the inequality

kC1
‖𝜼2‖ + 2𝛾kC1

‖𝜼1‖ ≤ (kC1
+ 2𝛾kC1

)‖𝜼‖,
and the triangle inequality

kC1
‖𝜼2‖‖q̇ld − 𝜼2‖ ≤ kC1

‖𝜼2‖‖q̇ld‖ + kC1
‖𝜼2‖2,

with

‖𝜼‖ = ‖‖‖‖‖‖‖‖
𝜼1

𝜼2

𝜼3

‖‖‖‖‖‖‖‖,
are used.

Notice that there exists a ball Br of radius r > 0 defined as

Br =

⎧⎪⎨⎪⎩𝜼1, 𝜼2, 𝜼3 ∈ IRn ∶

‖‖‖‖‖‖
𝜼1
𝜼2
𝜼3

‖‖‖‖‖‖ < r

⎫⎪⎬⎪⎭, (66)

on which V̇2 ≤ 0.

The radius r can be defined as

r ∶ =
𝜆min{K }𝜆min{Kd } − 𝛾𝜆max{M } − kC1

‖q̇ld‖
kC1
+ 2𝛾kC1

−
𝛾k2

C1
‖q̇ld‖2

(kC1
+ 2𝛾kC1

)𝜆min{K }𝜆min{Kp}
. (67)

If the conditions

𝛾 <
𝜆min{K }

2
𝜆min{Kd }𝜆min{Kp} − kC1

𝜆min{K }𝜆min{Kp}‖q̇ld‖
𝜆max{M }𝜆min{K }𝜆min{Kp} + k2

C1
‖q̇ld‖2

,

(68)

𝜆min{Kd } >
k2

C1
‖q̇ld‖

𝜆min{K }
, (69)

are satisfied, the radius r in (67) is ensured to be positive and Q

in (65) is positive definite.
The existence of gains such that V2 in (59) is positive definite

and V̇2 in (63) is locally negative semi-definite is guaranteed by
satisfying the conditions (61), (68), and (69). By using the theo-
rem of Rayleigh–Ritz [75], the upper bound (64) can be upper
bounded by

V̇2 ≤ −𝜆min{Q}‖𝜼‖2. (70)

Then, we obtain the conclusion that 𝜼(t ), 𝜼̇(t ) and 𝜽(t ) are
bounded. By integrating from t = 0 to t = ∞ both sides of (70),
we obtain

−V2(0) ≤ −𝜆min{Q}∫
∞

0
‖𝜼(t )‖2dt −V2(∞).

Given that V2 is positive definite, V2(∞) is either positive or
zero, and we finally get

∫
∞

0
‖𝜼(t )‖2dt ≤ V2(0)

𝜆min{Q}
.

Then, there are sufficient conditions to invoke Barbalat’s
lemma [78] to conclude that, for a set of initial conditions
[𝜼1(0)T 𝜼2(0)T 𝜼3(0)T ]T inside of the ball Br , the limit

lim
t→∞

⎡⎢⎢⎢⎣
𝜼1(t )

𝜼2(t )

𝜼3(t )

⎤⎥⎥⎥⎦ = 0

is satisfied.
Since y(t ) converges to zero and the continuity of (45)-(48),

the solution of the internal dynamics (45), (46), and (47) will
tend to zero as time t goes to infinity.

Since the solutions y(t ) and [𝜼T
1 (t ) 𝜼T

2 (t ) 𝜼T
3 (t )]T tend to

zero as time t increases, and the transformation (23) is invert-
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FIGURE 3 Flexible joint robot used in the real-time experiments

ible, the limit

lim
t→∞

⎡⎢⎢⎢⎢⎢⎢⎣

q̃l (t )

̇̃ql (t )

q̃m(t )

̇̃qm(t )

⎤⎥⎥⎥⎥⎥⎥⎦
= 0

is concluded for a compact set of initial conditions
[q̃l (0)T ̇̃ql (0)T q̃m(0)T ̇̃qm(0)T ]T inside of the ball Br defined
in (66). □

5 EXPERIMENTAL RESULTS

5.1 Experimental platform

The two-link flexible joint robot of Quanser [79] shown in
Figure 3 is used to carry out the real-time experiments. The
platform has four optical encoders of 4096 counts per revo-
lution in quadrature. The system is equipped with a DC motor
(shoulder) Maxon 273759 connected to a harmonic drive with
zero-backlash and a gear ratio of 100:1, and a DC motor
(elbow) Maxon 118752 connected to a harmonic drive with
zero-backlash and a gear ratio of 50:1. The first and second
links have a gear ratio with respect to the encoders of 6.4:1.
Each link has a workspace limitation of ±90 [deg] and counts
with limit switches to protect the platform if the position limit
is exceeded. The motors are powered by the Quanser AMPAQ
current amplifier, which is connected to the data acquisition
device Q8-USB. The signals are sent from a computer with Mat-
lab 2012 with Simulink toolbox. The corresponding elements of
the dynamic model (1) and (2) are

M (q) =

[
𝜃1 + 2𝜃2 cos(q2) 𝜃3 + 𝜃2 cos(q2)
𝜃3 + 𝜃2 cos(q2) 𝜃3

]
,

C (q, q̇) =

[
−𝜃2 sin(q2)q̇2 −𝜃2 sin(q2)(q̇1 + q̇2)
𝜃2 sin(q2)q̇1 0

]
,

TABLE 1 Parameters of the experimental flexible joint robot reported in
[73]

Symbol Value

𝜃1 0.207184

𝜃2 0.017580

𝜃3 0.013163

𝜃4 0.216776

𝜃5 0.216776

𝜃6 0.006842

𝜃7 0.037675

𝜃8 0.002959

𝜃9 0.135564

𝜃10 9.358730

𝜃11 4.212811

Fvl =

[
𝜃6 0
0 𝜃7

]
, J =

[
𝜃4 0
0 𝜃5

]
,Fvm =

[
𝜃8 0
0 𝜃9

]
,

K =

[
𝜃10 0
0 𝜃11

]
.

The parameters are shown in Table 1, which were obtained from
[73].

Joint and rotor velocities are calculated by using an average
filter described as follows. First, the average position is calcu-
lated by

q̄(kT ) =
Q(z−1)
p+ 1

q(kT ), (71)

where k is the integer time index, p is a natural number, T is the
sampling period, q represents either ql or qm, and

Q(z−1) = 1 + z−1 + z−2 +⋯+ z−p

is a polynomial in terms of z-transform. Then, the numerical
derivative is expressed as

̇̄q(kT ) =
1 − z−1

T
q̄(kT ). (72)

Finally, an average velocity filter is given as follows

q̇(kT ) ≈
Q(z−1)
p+ 1

̇̄q(kT ). (73)

In this work, the parameters used to calculate the velocities are
T = 0.001 [ms] and p = 4. The method described by equations
(71)–(73) has been used in past works, as [73] and [80], and has
shown to be a good algorithm to estimate the velocity from
encoder measurements. A low-pass filter is used to compute the
time derivative of the desired rotor position qmd , denoted as
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q̇md :

q̇md =
𝜆S

S + 𝜆
qmd , (74)

where S is the Laplace operator. To compute q̈md , a second
order low-pass filter is connected in cascade so that

q̈md =

[
𝜆S

S + 𝜆

]2

qmd , (75)

where 𝜆 = 10 [rad/s] (see [77]).
The adaptive controller (38) is used with the adaptation law

(39) and the desired rotor position (43) with the adaptive law
(44). Notice that the model regressor of (44) and the parameter
vector result in

Φ(ql , q̇l , q̈ld ) =

[
q̈ld 1 𝜙12 q̈ld 2 q̇l 1 0 0 0

0 0 0 0 q̈ld 1 + q̈ld 2 cos(ql 2)q̈ld 1 + sin(ql 2)q̇2
l 1 q̇l 2

]
,

𝜽 =
[
𝜃1

𝜃10

𝜃2

𝜃10

𝜃3

𝜃10

𝜃6

𝜃10

𝜃3

𝜃11

𝜃2

𝜃11

𝜃7

𝜃11

]
,

with

𝜙12 = 2 cos(ql 2)q̈ld 1 + cos(ql 2)q̈ld 2 − sin(ql 2)q̇l 2(q̇l 1 + q̇l 2)

− sin(ql 2)q̇l 1q̇l 2,

and the parameters 𝜃i in Table 1.
Besides, the low-pass filters (74) and (75) are used to com-

pute the first and second time derivatives of the desired rotor
position qmd (t ), respectively.

The desired trajectory used for all the experiments is

qld 1 = b1(1 − e−2t 3
) + c1(1 − e−2t 3

) sin(w1t ), (76)

qld 2 = b2(1 − e−2t 3
) + c2(1 − e−2t 3

) sin(w2t ), (77)

with the parameters b1 = 𝜋∕5 [rad], c1 = 𝜋∕9 [rad], w1 = 1.5
[rad/s], b2 = 𝜋∕5 [rad], c2 = 𝜋∕9 [rad], w2 = 2 [rad/s].

Different controllers are tested in order to make a com-
parison with the proposed controller. First, the model-based
controller (20) and (31) is tested by using model parame-
ters reported in [73]. An implementation is carried out with
the model-based controller denominated as desired compen-
sation controller with backward difference reported in [9] is
implemented. This controller is described by

𝝉m = K−1(K + Kpz )𝝉d − Kpzz − Kdz ż, (78)

where z = qm − ql , and

𝝉d = M (qld )(q̈ld + Λ ̇̃ql ) +C (qld , q̇ld )(q̇ld + Λq̃l ) + Fvl q̇ld

+ K (K +Kpz )−1(J (q̈ld +Λ ̇̃ql )+Fvmq̇m )+Ks ( ̇̃ql +Λq̃l ),

(79)

with Kpz , Kdz , Ks , and Λ ∈ IR2×2 diagonal positive defi-
nite matrices.

Besides, the adaptive controller with joint torque feedback
developed in [72] was tested experimentally. In this case, the
authors define

𝝉s = K (qm − ql ),

and the tracking errors el = q
l
− q

ld
and et = 𝝉s − 𝝉sd , where

𝝉sd = Φ𝜏s (ql , q̇l , vl , v̇l )𝜽𝜏s − KlDr l , (80)

with

Φ𝜏s (ql , q̇l , vl , v̇l )

=

[
v̇l 1 𝜙𝜏s12

v̇l 2 vl 1 0

0 sin(ql 2)q̇l 1vl 1 + cos(ql 2)v̇l 1 v̇l 1 + v̇l 2 0 vl 2

]
,

being

𝜙𝜏s12
= 2 cos(ql 2)v̇l 1 + cos(ql 2)v̇l 2 − sin(ql 2)vl 2(q̇l 1 + q̇l 2)

− sin(ql 2)vl 1q̇2,

and vli with i = 1, 2 are the component vector of

vl = q̇ld − Λel ,

where Λ is a diagonal matrix of 2 × 2. The adaptation law is
given by

̇̂𝜽𝜏s = −Γ2Φ𝜏s (ql , q̇l , vl , v̇l )r l (81)
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with r l = q̇l − vl . The signal ̇̂𝜽𝜏s (t ) is limited by

li < 𝜃̂𝜏si < hi . (82)

Then, the adaptive parameters result in

𝜃̂𝜏si (t
+ ) =

⎧⎪⎨⎪⎩
li , if 𝜃̂𝜏si (t ) < li ,

hi , if 𝜃̂𝜏si (t ) > hi ,

𝜃̂𝜏si (t ), otherwise,

where t+ is the resetting time. The adaptive controller in [72]
with joint torque feedback is given by

𝝉m = Φ𝜏 (ql , q̇l , 𝝉s , v𝝉, v̇𝝉 )[𝜽𝜏 − Δu] − K𝜏Dr𝜏, (83)

where K𝜏D is a 2 × 2 diagonal matrix, r𝜏 = 𝝉̇s − v𝜏 , with
v𝜏 = 𝝉̇sd − Λ𝜏et , and Λ𝜏 ∈ IR2×2 is a diagonal constant
matrix. The parameters vector 𝜽𝜏 and the regressor vector
Φ𝜏 (ql , q̇l , 𝝉s , v𝝉, v̇𝝉 ) in (83) are given by

𝜽𝜏 =
[
𝜃4 𝜃5 𝜃8 𝜃9 1 1 𝜃8∕𝜃10 𝜃9∕𝜃11 𝜃4∕𝜃10 𝜃5∕𝜃11

]T
,

Φ𝜏 (ql , q̇l , 𝝉s , v𝝉, v̇𝝉 )

=

[
q̈l 1 0 q̇l 1 0 𝜏s1 0 v𝜏1 0 v̇𝜏1 0

0 q̈l 2 0 q̇l 2 0 𝜏s2 0 v𝜏2 0 v̇𝜏2

]
,

and

Δu =

⎧⎪⎪⎨⎪⎪⎩
−𝜌

ΦT
𝜏 r𝜏‖ΦT
𝜏 r𝜏‖ if ‖Φ𝜏 (ql , q̇l , 𝝉s , v𝝉, v̇𝝉 )

T r𝜏‖ > 𝜖2
−
𝜌

𝜖2
ΦT
𝜏 r𝜏 if ‖Φ𝜏 (ql , q̇l , 𝝉s , v𝝉, v̇𝝉 )

T r𝜏‖ ≤ 𝜖2,

where 𝜌 > 0 is a constant gain and 𝜖2 > 0 is a constant param-
eter to choose. To get the accelerations q̈li , with i = 1, 2, a filter
with the form of (75) is used with 𝜆 = 10.

Finally, the adaptive neural network proposed in [65] is used
for comparison purpose. The controller has the form of

𝝉m = unn + urb, (84)

with

unn = M̂−1
y (−F̂y + ẏ4d

+ K1(y1d
− y1) + K2(y2d

− y2)

+ K3(y3d
− y3) + K4(y4d

− y4))

urb = −𝛿
BT

T
P q̃l‖BT

T
P q̃l‖ ,

𝛿 > 0 ∈ IR, x defined in (16),

⎡⎢⎢⎢⎢⎢⎢⎢⎣

y1d (t )

y2d (t )

y3d (t )

y4d (t )

⎤⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

qld(t )

q̇ld(t )

qld(t )

qld(t )

⎤⎥⎥⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎢⎢⎣

y1(t )

y2(t )

y3(t )

y4(t )

⎤⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

ql(t )

q̇l(t )

ql(t )

ql(t )

⎤⎥⎥⎥⎥⎥⎥⎥⎦
,

BT =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

02×2

02×2

02×2

I2×2

⎤⎥⎥⎥⎥⎥⎥⎥⎦
,AT =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

02×2 I2×2 02×2 02×2

02×2 02×2 I2×2 02×2

02×2 02×2 02×2 I2×2

−K1 −K2 −K3 −K4

⎤⎥⎥⎥⎥⎥⎥⎥⎦
.

The matrix P ∈ IR8×8 must satisfy the Lyapunov equation
AT

T
P + PAT = −Q, with Q ∈ IR8×8 a positive definite matrix,

Ki ∈ IR2×2 as positive definite matrix, with i = 1, 2, 3, 4,

M̂y = M (ql )−1KJ−1 + Δ̂M0, (85)

F̂y = f
y
+ Δ̂ f

y
,

f
y
= −M−1(C q⃛l + 2Ċ q̈l + C̈ q̇l + K q̈l

+ KJ−1
(
Fvmq̇m + K (qm − ql ) + f

cm
(q̇m )

)
)

− 2Ṁ−1
(
C q̈l + Ċ q̈l + K (q̇l − q̇m )

)
− M̈−1

(
C q̇l + K (ql − qm )

)
, (86)

where M = M (ql ), Ṁ−1 =
dM (ql )−1

dt
, M̈−1 =

d 2M (ql )−1

dt 2
, C =

C (ql , q̇l ), Ċ =
dC (ql )

dt
, C̈ =

d 2C (ql ,q̇l )

dt 2
.

In equations (85) and (86), the functions Δ̂M0 and Δ̂ f
y

are
adaptive neural networks with radial basis functions defined as

Δ̂M0 = 𝝓̂
T

E (x) =

[
𝝓T

1 𝜼1(x)

𝝓T
2 𝜼2(x)

]
,

Δ̂ f
y
= [Ψ̂T ⋅ Ξ(ql )] =

⎡⎢⎢⎣
𝝍̂

T

11𝝃 11(ql ) 𝝍̂
T

12𝝃 12(ql )

𝝍̂
T

21𝝃 21(ql ) 𝝍̂
T

22𝝃 22(ql )

⎤⎥⎥⎦ ,
𝝓̂ =

[
𝝓̂1
𝝓̂2

]
,
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Ψ̂ =

[
𝝍̂11 𝝍̂12

𝝍̂21 𝝍̂22

]
,

where 𝝓̂i ∈ IRLy and 𝝍̂ik(ql ) ∈ IRLy , with i = k = 1, 2, are the
estimated weights of the neural network, Ly are the number of
neurons use for each neural network, in this case Ly = 10. The
radial basis functions are defined as

a(xnn ) = exp

(
−
‖xnn − 𝜇i‖2

2

𝜎2

)
,

where a(xnn ) ∈ IRLy is either 𝝍̂ik(ql ) or 𝜼i (x). The adaptive laws
are defined as

̇̂𝝓i = 𝛾i0𝜂i q̃l
T PBTi , (87)

̇̂𝝍ik = 𝛾i j𝜉ikunni q̃l
T PBTi , (88)

with 𝛾i0 and 𝛾i j positive constants.
The gains and parameters used for the model-based con-

troller (35) and (36) and the adaptive controller (38), (39), (43)
and (44), are

Kpo =

[
1.1 0

0 0.08

]
,Kp =

[
2 0

0 1.5

]
,Kv =

[
0.1 0

0 0.05

]
,

𝛼2 =

[
80 0

0 10

]
, 𝛽1 =

[
2.4 0

0 0.5

]
, 𝛽2 =

[
3 0

0 0.8

]
,

𝛼 =

[
45 0

0 40

]
, Δ =

[
0.01 0

0 0.01

]
, 𝜅 = 15,

𝛼1 = 𝛾𝛽1, 𝛾 = 0.24, N = diag10{0.22}, and

Γ = diag{0.005, 0.0004, 0.004, 0.005, 0.0009, 0.0008, 0.0008},

and the initial conditions are Ŵ (0) = 010×2 and 𝜽(0) = 07×1.
Notice that all the gains and parameters satisfy all the conditions
(52), (53), (54), (61), (68) and (69), these conditions are satisfied
with the parameters given in Table 1, the desired trajectory (76)
and (77), and the constants

‖q̇ld‖ ≤ 2.1259,

𝜆max{M } = 0.2464,

𝜆min{M } = 0.0091,

kC 1 = 0.0703,

𝜆min{Kd } > 0.0355.

The gains for the model-based controller described in (78)
and (79) are

Λ =

[
0.500 0

0 4.333

]
,Kpz =

[
7.125 0

0 1.825

]
,

Kdz =

[
7.800 0

0 0.550

]
,Ks =

[
12 0

0 0.7

]
.

The gains used for the adaptive controller with joint torque
feedback (80), (81), and (83) are

KlD =

[
1.4 0

0 0.5

]
,K𝜏D =

[
0.7 0

0 0.08

]
,

Λ =

[
8 0

0 10

]
, Λ𝜏 =

[
9 0

0 13

]
,

Γ2 = diag{0.03, 0.03, 0.01, 0.02, 0.03}.

The upper and lower bounds, described in (82), are

h =
[
0.05 0.005 0.005 0.02 0.001

]T
,

l = −h,

while for Δu the gains 𝜌 = 0.01 and 𝜖2 = 0.001 were used.
Finally, the gains for the adaptive neural network controller (84),
(87), and (88), are set to

K1 =

[
58320 0

0 233280

]
,K2 =

[
15336 0

0 30672

]
,

K3 =

[
1908 0

0 1908

]
,K4 =

[
78 0

0 78

]
,

Q =diag{1000, 1000, 10 10 10 10 10 10}, 𝛾10 = 5, 𝛾20 = 10,
𝛾11 = 0.01, 𝛾12 = 0.05, 𝛾21 = 0.05, 𝛾22 = 0.01, 𝜇 = 0,
𝜎2 = 10, and the initial conditions of 𝝓̂i (0) = 010 and
𝝍̂ik(0) = 010.

5.2 Experimental results

Figures 4–8 show the results obtained from the experiments
with the controllers presented previously. The label MB denotes
the model-based controller (35) and (36). The model-based con-
troller (78) and (79) is presented with the label DC-BD. For the
adaptive controller with joint torque feedback (80), (81), and
(81), the label AJTF is used. The label ANN stands for the adap-
tive neural network (84), (87), and (88). Finally, the novel adap-
tive controller (38), (39), (43), and (44) is represented with the
label NAC.
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FIGURE 4 Experiment: Time evolution of the link position ql (t )
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FIGURE 5 Experiment: Time evolution of the rotor position qm(t )

In Figure 4, the link position ql (t ) is shown; it can be seen
that the novel adaptive controller (38), (39), (43), and (44) is
the controller which best follows the reference. In Figure 5,
the rotor position qm(t ) is shown, given that the reference for
qmd (t ) is computed in a different form for each algorithm. To
save space, the references are not presented in Figure 5. The
control input 𝝉m (t ) is depicted in Figure 6.

Concerning the novel adaptive controller, the time evolution
of the estimated parameters 𝜽(t ) and the real parameters 𝜽 are
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FIGURE 6 Experiment: Time evolution of the control input 𝝉m (t )

TABLE 2 RMS value of the trajectory tracking error q̃l (t ) in the time
interval 20 to 50 [s]

qli MB DC-BD AJTF ANN NAC

1 0.0176 0.0359 0.0198 0.0300 0.0142

2 0.1022 0.0252 0.0141 0.0169 0.0134

shown in Figure 7. Notice that the estimated parameters remain
bounded for all time t ≥ 0 and do not converge to the real
parameters; however, the adaptive control guarantees that the
control goal is accomplished. In Figure 8, the time evolution
of the estimated output weights Ŵ (t ) is presented. Notice that
the output weights were separated into two vectors, ŵ1 and ŵ2,
which correspond to the control inputs 𝜏m1 and 𝜏m2, respec-
tively. The estimated output weights Ŵ (t ) remain bounded for
all time as expected.

Finally, the root mean square (RMS) values of the positions
link error q̃l (t ) in the time interval 20 to 50 [s] are shown in
Table 2. The bold numbers remark the results of the best perfor-
mance. It can be noticed that the novel adaptive controller (38),
(39), (43), and (44) is the controller with the lower position error
RMS value. Therefore, the advantage of the non-linear compen-
sation is clear, as can be seen in the performance of the model-
based controller. Notice that the adaptive controllers, the AJTF
and NAC schemes, present the best performance in comparison
to the MB and DC-BD controllers. Finally, we can conclude that
the proposed adaptive controller presents better tracking accu-
racy.
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FIGURE 7 Experiment: Time evolution of the estimated parameters 𝜽(t ) obtained with the proposed controller (38), (39), (43), and (44)
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FIGURE 8 Experiment: Time evolution of the estimated output weights
Ŵ (t ) obtained with the proposed controller (38), (39), (43), and (44)

6 CONCLUSIONS

In this document, a novel combined adaptive neural network
and model regressor controller based on input–output feedback
linearization has been proposed for flexible joint robots. It is
well known that neural networks require a robustifying term
to compensate for the approximation error of the neural net-
work. Hence, a neural network cannot be used to generate the
commands for the rotor position since it is required to be two-
times differentiable. For this reason, the desired rotor position
has been proposed as an adaptive link dynamics model regres-
sor, which has the purpose of stabilizing the internal dynamics
produced by the input–output feedback linearization.

The experimental tests were carried out in a two-link flexible
joint robot, which has high flexibility. An experimental com-
parison among different controllers previously reported was
carried out. The proposed model-based controller, a model-
based controller with desired compensation, an adaptive con-
troller based on joint torque feedback, and an adaptive neural
network-based controller were used in the comparison, show-
ing that the combined adaptive controller presented the best
performance.
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The use of adaptive neural network and model regressor
control showed the advantage of compensating either for the
unknown dynamic effects, the friction terms, or error in the
parameter values. Notice that the proposed controller works
for flexible joint robots with low and high spring stiffness
values.
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