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The benchmark data consists of seven image sequences with 326 
cell division events, uniformly sampled with a time-lapse inter-
val of 4.6 min7. Using CellCognition software7, we segmented 
13,040 individual cell objects. We extracted statistical features 
describing texture and shape for each cell object and tracked cells 
over time7 to assemble a synchronized time series of cell features 
(Supplementary Note 1).We converted these time series using 
principal component analysis (PCA) to reduce data dimensional-
ity (Fig. 1c,d and Supplementary Fig. 2), and this converted data 
served as a starting point to model cell morphologies with various 
methods (Fig. 1e). When we applied a basic probabilistic model for 
multiple Gaussian distributions of cell objects—Gaussian mixture 
modeling (GMM)—we observed a poor match between clustered 
individual cell objects and user annotation (Fig. 1f,g). The low per-
formance of GMM can be explained by the known risk of its con-
vergence to unsatisfactory local maxima and sensitivity to initial 
conditions. Thus, additional knowledge needs to be incorporated 
for effective unsupervised learning of cell morphologies.

We developed a temporally constrained combinatorial clus-
tering (TC3) procedure (Online Methods and Supplementary 
Fig. 3) in which temporally linked objects are clustered according 
to a user-defined number of categories for each cell trajectory. We 
first detected mitotic subgraphs by binary clustering to generate 
three subgraphs (Supplementary Fig. 4a), which were then indi-
vidually clustered by the TC3. This strategy makes it practical to 
conduct an exhaustive search for the best cluster assignment in 
a large time series (Supplementary Note 1). The TC3 labels and 
user annotations show substantial agreement (Fig. 1f,h).

To further improve classification accuracy and to build the basis 
of a dynamic model, TC3 was used to initialize a GMM based on 
the sample mean and covariances from classes of TC3-labeled 
cell objects. Indeed, the TC3-initialized GMM generated a label 
matrix that was more similar to user annotation (Fig. 1f,i) than 
to stand-alone GMM (Fig. 1g and Supplementary Note 2). The 
process was then extended to hidden Markov models (HMM); in 
this context, transition probabilities capture the temporal dynam-
ics of cell states, whereas observation densities characterize cell 
morphologies. This model predicted dynamic cell behavior and 
generated labels that matched user annotation with further-
improved accuracy (Fig. 1j and Supplementary Fig. 4b).

We compared the performance of our unsupervised method 
(TC3 + GMM + HMM) with that of supervised methods. State-
of-the-art support vector machine (SVM) classification with 
HMM error correction yields low rates of obvious errors, as vis-
ible from post-classification inspection7 (Fig. 1k). Ambiguous 
morphologies at class transitions, however, make the estimation 
of absolute error rates challenging. We therefore established the 
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analysis of cellular phenotypes in large imaging data sets 
conventionally involves supervised statistical methods, which 
require user-annotated training data. this paper introduces 
an unsupervised learning method, based on temporally 
constrained combinatorial clustering, for automatic prediction 
of cell morphology classes in time-resolved images. We applied 
the unsupervised method to diverse fluorescent markers and 
screening data and validated accurate classification of human 
cell phenotypes, demonstrating fully objective data labeling in 
image-based systems biology.

Automated live-cell microscopy and large-scale perturbation by 
RNA interference (RNAi) is a powerful approach to investigate 
gene function1–5. The analysis of huge data sets requires auto-
mated procedures, typically comprising computational image 
processing followed by statistical analysis of cellular morpholo-
gies. State-of-the-art methods rely on user-labeled training data 
to detect cellular phenotypes5–12, but annotating such data can 
be time consuming and limited by subjectivity. We introduce an 
annotation-free method to model cellular morphologies based 
on unsupervised learning.

As reference data for performance measurements, we used time-
lapse microscopy images of human tissue culture cells (HeLa ‘Kyoto’ 
cells) expressing a fluorescent chromatin marker (histone H2B–
monomeric (m) Cherry; Fig. 1a). The task consists of classifying cell 
morphologies corresponding to interphase and to the five phases of 
mitosis (prophase, prometaphase, metaphase, anaphase and telo-
phase). Despite the well-defined chromatin morphology of mitotic 
stages, user annotation can be inconsistent. Dissimilarity analysis of 
annotations performed by three biologists reveals modest inconsisten-
cies between annotations performed by the same person on different 
days, whereas annotations performed by different users varied exten-
sively (Fig. 1b and Supplementary Fig. 1); these problems highlighted 
the need for objective data-annotation procedures. We obtained a con-
sensus approximation to ‘ground truth’ (by a majority vote of multiple 
user annotations) to serve as the gold standard for the labels.
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following validation procedure: the set of cell trajectories derived 
from each of the seven image sequences was used independently 
to train an SVM7; the cell trajectories from the other six image 
sequences constituted a test set. SVM classification followed by 
HMM error correction yielded total accuracies slightly lower than 
those of the unsupervised method (Supplementary Fig. 5 and 
Supplementary Table 1; Supplementary Note 3). Thus, unsu-
pervised learning can achieve classification accuracy similar to 
that of supervised methods.

To estimate the extent of user bias on SVM classification, SVM 
model selection as in ref. 7 was performed for each of nine annota-
tions by three users of a training image sequence. The nine models 
obtained were evaluated on nine annotations from three users and 
the gold-standard annotation of a distinct test image sequence. 
Total accuracies for the labels generated by the nine selected mod-
els varied extensively (Supplementary Fig. 6), indicating that 
supervised SVM classification may be inconsistent. Involving 
multiple users for a gold-standard annotation can reduce this 
problem, yet this is often difficult in a typical laboratory setting. 
The independence from user annotation of our unsupervised 
method hence provides an important advantage over supervised 
methods. We used biological knowledge about mitosis to define 
the number of clusters in the benchmark data. When such detailed  
a priori knowledge is not available, determining the optimal cluster  
number can be difficult. In such a case, our unsupervised method 
can be used to automatically visualize labeling schemes with a 
variable number of clusters (Supplementary Fig. 7). Visual 
inspection of the resulting label matrices then simplifies the deter-
mination of an optimal cluster number.

We explored the versatility of the unsupervised method by 
applying it to additional markers. Live imaging of HeLa cells 
expressing EGFP-tagged proliferating cell nuclear antigen (PCNA) 

visualized progression through the G1, S and G2 phases through 
a changing pattern of replication foci7 (Fig. 2a). Classification 
by our unsupervised method yielded labels that closely matched 
user annotation (Fig. 2b,c; 86.7% total accuracy). Mitotic spindle 
dynamics of HeLa cells expressing fluorescently tagged α-tubulin 
(Supplementary Fig. 8) were classified with a slightly lower total 
accuracy (75.5%) because of confusion between midbody and 
interphase morphologies (Supplementary Fig. 8d,e). This may 
have been caused by an under-representation of statistical features 
responding to single small-scale structures; implementation of 
appropriate features could solve this problem.

Finally, we analyzed several well-characterized RNAi pheno-
types of cell division regulators: a spindle checkpoint pro-
tein (Mad2), subunits of the chromosomal passenger complex 
(INCENP and Aurora B), an activator of the anaphase-promoting  
complex (Cdc20), a microtubule motor protein (CENP-E), a spin-
dle assembly regulator (Tpx2) and a regulator of sister chromatid 
cohesion (separase). Time-lapse image sequences of RNAi-treated 
H2B-mCherry–expressing HeLa cells were acquired on a screen-
ing microscope as in refs. 4,7 in three independent experimen-
tal replicates (363,120 individual cell objects, Supplementary 
Table 2; examples shown in Supplementary Fig. 9). The unsuper-
vised method detected changed timing of mitotic phases (Fig. 2d 
and Supplementary Fig. 10) matching the known function of 
the respective RNAi target proteins. For example, Mad2 RNAi 
shortened metaphase13, Cdc20 RNAi prolonged metaphase14 
and INCENP RNAi prolonged prometaphase and metaphase15. 
Some RNAi experiments caused permanent mitotic arrest, 
demonstrating that the method also detects terminal phenotypes 
(Supplementary Fig. 11).

Visualization of GMM model parameters revealed characteris-
tic morphological deviations for several RNAi phenotypes (Fig. 2e 
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figure 1 | Classification of time-lapse data into cell morphology classes  
by unsupervised and supervised methods. (a) Benchmark data: time-lapse  
fluorescence microscopy images of a live HeLa cell expressing Histone  
2B fused to mCherry. Morphology classes were labeled by a trained  
biologist. Time lapse is 4.6 min per frame. Scale bar, 10 µm.  
(b) Dissimilarity matrix of three different annotations from three  
users (U1, U2, U3). The gold standard (GS) was obtained by majority vote. (c) First seven principal-component (PC) features of 51 cell trajectories. 
(d) Cell object distribution in two-dimensional PCA subspace. Dots refer to individual cell objects, color-coded as in a. Black crosses indicate sample 
means of morphology classes derived from human annotations. Arrows indicate temporal progression. (e) Workflows of cell morphology classification by 
different methods. Circled letters correspond to the respective results shown in f–k. Primary methodology developed in this study is displayed in black 
and alternative methods in gray. (f) Label matrix of user annotation for all cells of the image sequence corresponding to the example shown in a,  
color-coded as in a. The matrix consists of 51 cell trajectories (rows) and 40 time frames (columns). (g–k) Labels generated by GMM (g), TC3 (h),  
GMM after TC3-initialization (i), HMM extension of TC3 + GMM (j) and SVM followed by HMM error correction (k). 
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and Supplementary Fig. 12). We therefore included spatial model 
parameters in the analysis of the RNAi phenotypes. Hierarchical 
clustering of RNAi experiments based on spatial and temporal 
features (Fig. 2f) showed that siRNAs targeting the same protein 
generally clustered together (with the exception of one siRNA  
targeting separase). Our unsupervised method even discrimi-
nated between siRNAs targeting two different subunits of the 
same protein complex (Aurora B and INCENP), indicating that 
TC3 + GMM + HMM has high sensitivity toward subtle pheno-
typic differences.

In conclusion, we present a method for consistent and objective 
annotation of time-resolved cellular imaging data. Such consist-
ency is unattainable by supervised methods because they depend 
on user labels that can differ among individuals and over extended 
project durations. Avoiding user annotation in image-based 
screening facilitates large-scale data integration. Our unsupervised 
method generates spatio-temporal models of cellular dynamics 
and provides a powerful means for phenotype profiling.

methods
Methods and any associated references are available in the online 
version of the paper.

Note: Supplementary information is available in the online version of the paper.
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figure 2 | Unsupervised classification of images with different morphology markers and RNAi phenotypes. (a) Time-lapse images of a HeLa cell 
expressing EGFP-PCNA. Four morphology classes were labeled by a trained biologist. Time lapse is 11.8 min per frame. Scale bar, 10 µm. (b) Label matrix 
of user annotation for EGFP-PCNA image sequence (41 cell trajectories, 55 time frames). (c) Labels generated by TC3 + GMM + HMM. (d) The plot shows 
the duration of the mitotic phases in H2B-mCherry–expressing HeLa cells transfected with the indicated siRNAs as determined by the unsupervised TC3 +  
GMM + HMM method. Time lapse is 4.6 min per frame. Dots indicate mean timing per image sequence; error bars indicate s.e.m. (sample numbers: 
supplementary table 2); n = 3. Independent experimental replicates on different days. (e) Visualization of models derived from data for four RNAi 
conditions in d. Ellipsoids depict GMM component densities at 68% confidence interval, color-coded according to mitotic morphology classes as in 
figure 1a. Black circles indicate Gaussian component means. Arrows indicate temporal progression. Gray values of arrows indicate transition probabilities 
derived from HMMs. (f) Hierarchical phenotype clustering of RNAi screening data from d. Colors correspond to target genes as in d.
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Benchmark image data and image processing. Published fluo-
rescence live-cell microscopy data7 of dividing human HeLa 
cells expressing the chromatin marker H2B-mCherry, the DNA 
replication marker EGFP-PCNA and EGFP-α-tubulin were used 
as benchmark data. Object detection, tracking of cells over time 
and feature extraction were carried out using the image analysis 
framework CellCognition7, and the resulting trajectories were 
converted to synchronized multivariate time series of identical 
length representing mitotic events. Details of the method are 
described below and in Supplementary Note 1.

The RNAi screening data consisted of 30 image sequences, 
recorded as three independent experimental replicates on differ-
ent days for ten different RNAi conditions. Using CellCognition, 
9,078 cell division events, or 363,120 individual cell objects, were 
detected. Raw features of all image sequences were jointly trans-
formed by PCA. TC3 + GMM + HMM models were then identi-
fied for each image sequence individually. Timing measurements 
for mitotic phases were based on the labels obtained from TC3 +  
GMM + HMM.

Cell lines and RNAi. Experiments (Fig. 2d–f) were performed 
using a monoclonal reporter HeLa Kyoto cell line stably express-
ing H2B-mCherry4. Cells were maintained in Dulbecco’s Modified 
Eagle Medium (DMEM, Gibco/Invitrogen) supplemented with 
10% (v/v) FBS (PAA Laboratories), 50 units ml−1 of penicillin and 
streptomycin (Gibco/Invitrogen) and 200 µg ml−1 G418 (Gibco/
Invitrogen) as a stable reporter’s maintenance selection agent.

For live-cell imaging, 3,000 cells per well were reverse-
 transfected in liquid phase with Hiperfect reagent (Qiagen) using 
a final siRNA concentration of 10 nM in 96-well plastic-bottom 
imaging plates (Greiner Bio-One), following the manufacturer’s  
instructions. Cells were grown in DMEM without phenol 
red or riboflavin (Gibco/Invitrogen), to reduce autofluores-
cence4,16, and containing 10% (v/v) FCS and 50 units ml−1 of  
penicillin and streptomycin.

siRNAs (Ambion, Qiagen) were custom-synthesized using 
sequences identical to previously validated siRNAs as indicated in 
the cited references (Supplementary Table 3): MAD2L1 (ref. 17), 
CDC20 (ref. 7), separase/ESPL1 (ref. 18), INCENP19, AURKB20, 
CENP-E21 and TPX2 (si_TPX2_6 validated Qiagen siRNA). The 
negative controls were as follows: siControl #1, Ambion NC1, cat. 
no. AM4635; siControl #2, Qiagen AllStars, cat. no. 1027280); and 
siControl #3, Microsynth NC .

Live-cell microscopy. Live-cell imaging was performed using an 
ImageXpress Micro screening microscope (Molecular Devices), 
equipped with a 10×, 0.5 numerical-aperture (NA) S-Fluor 
Dry Objective (Nikon) and a 5% CO2, 37 °C humid-chamber 
stage incubator. A MetaMorph-based custom control macro, 
PlateScan, developed in house was used to control the micro-
scope as described7. Light intensity was calibrated and maintained 
constant between experimental replicas to keep the cell death 
rate below 5% in siRNA-control transfected cells. Imaging started  
16 h post-transfection for a period of 36 h with an average time 
lapse of 4.6 min.

Feature transformation and reduction. PCA22 was employed 
to reduce dimensionality and to transform correlated original 

feature variables into uncorrelated ones. Normalization was 
performed by z-score standardization23. All the features up to 
99% accumulative explained variance were kept and sequential 
feature tensors were obtained.

Temporally constrained combinatorial clustering. Temporally 
constrained combinatorial clustering (TC3) takes advantage of 
temporal constraints in cellular morphology dynamics extracted 
from single cell trajectories. No parameter tuning or model fit-
ting is required to inspect the solution space or to satisfy the 
incorporated temporal constraints. TC3 can be used to cluster 
cyclical time series (for example, progression through an entire 
cell cycle) as well as time series of terminal processes (such as 
mitotic arrest).

The number of possible temporally constrained combinatorial 
clustering assignments of a time series with T frames into K non-
empty, disjoint and sequential subsets (clusters) is specified by the 
following recurrence relation: 

C T K
C T K C T K K T

K K T
K T

( , )
( , ) ( , )

=
− − + − < <

= ∨ =
>









1 1 1 1
1 1
0

The full enumeration of all possible cluster assignments is given 
by the corresponding binomial coefficient

C T K
T
K

( , ) =
−
−







1
1

The limited, sequential and periodic nature of cellular  
dynamics, as during the cycle, enables the procedure to find 
globally optimal solutions to initialize cellular morphology  
clusters. TC3’s formal definition and mathematical properties  
are described in Supplementary Note 1.

Mitotic subgraph detection splits each cell trajectory into three 
disjoint sequential intervals. These are the pre-mitotic subgraph, 
the mitotic subgraph and the post-mitotic subgraph. Respectively, 
their lengths are T1, T2 and T3. Summed together, they give the 
total length of the time series, which is T = T1 + T2 + T3 = 40. 
This strategy breaks down the initial problem into subproblems, 
and TC3 is applied to each one. Consequently, the task of detect-
ing K = 6 clusters (interphase and the five phases of mitosis) in 
a time series of length T corresponds to the partitioning of T1 
observations into two clusters (interphase and prophase) in the 
pre-mitotic subgraph, T2 observations into K − 2 = 4 clusters (pro-
metaphase, metaphase, anaphase and telophase) in the mitotic 
subgraph and T3 observations into a single cluster (interphase) 
in the post-mitotic subgraph. Binary clustering is an optional 
processing step that can be omitted if computational resources 
are limited.

Rounded mean durations (± s.e.m.) are 10 ± 2 for the pre-mitotic 
subgraph, 13 ± 4 for the mitotic subgraph and 17 ± 3 for the post-
mitotic subgraph. The average number of possible cluster assign-
ments for a time series is C(10, 2) + C(13, 4) + C(17, 1) = 230. The 
search space is thus much smaller than that of assigning T = 40 
frames into K = 6 clusters without detection of mitotic subgraphs. 
Such a clustering has a search space of cardinality C(40, 6) =  
575,757. Because of the captured temporal structure of the task, it 
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is even smaller than the number of cluster assignments of classi-
cal combinatorial clustering24,25, which is given by S(40, 6) ≈ 1028  
(where S(·,·) are Stirling numbers of the second kind). In the 
mitotic subgraph, domain knowledge can be incorporated by 
avoiding singleton clusters (for example, setting minimal cluster 
sizes to 2), thus further reducing the cardinality of the search 
space from C(13, 4) = 220 to C((13 − 4), 4) = 56 and enabling a 
feasible exhaustive search for the best cluster configuration that 
minimizes the within-cluster point scatter. After TC3, data cluster 
memberships are converted to class labels.

Modeling of cellular morphologies. Identification of predictive 
models for cells progressing through mitosis is based on TC3 
labels. Continuous HMM (CHMM) as well as discrete HMM 
(DHMM)26 are inferred. Each observation density of CHMM 
is specified by the respective component distribution of GMM. 
Multivariate features are vector quantized by GMM into dis-
crete symbols for DHMM. TC3 is employed for the initializa-
tion of sample means and covariance matrices of the respective  
GMM components. The HMM of the method TC3 + GMM + 
HMM in the main text refers to DHMM.

Number of clusters. For the benchmark data, the number of 
clusters is given as the input of the algorithm. When a priori 
knowledge is unattainable, the optimal cluster number can be 
determined either by visual inspection of labeling schemes with a 
variable number of clusters (Supplementary Fig. 7) or by approx-
imation set coding, a general information-theoretic principle for 
model validation27.

Hierarchical clustering of RNAi phenotypes. A total of 20 morphol-
ogy and timing features are extracted from TC3 + GMM + HMM  

analysis of RNAi screening data. The eight temporal features are 
mean timing of mitotic subgraph phases and the associated s.e.m. 
values. The 12 spatial features are Gaussian component means of 
respective subgraph phases of the first three dimensions. Hierarchical 
clustering is based on Euclidean distance and complete linkage.

Implementation. The introduced method was coded in MATLAB 
(R2010a) and based on MATLAB built-in functions such as  
K-means, GMM and HMM. Kevin Murphy’s toolbox was employed 
for CHMMs (http://www.cs.ubc.ca/~murphyk/Software/HMM/
hmm.html). Benchmark data was generated by the CellCognition 
software7. The open source software LIBSVM28 was used to train 
and test SVM classifiers on the same benchmark data. The source 
code and data for the method presented in this manuscript are 
provided in the Supplementary Software and published online 
at http://www.cellcognition.org/software/tc3/.
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