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28040 Madrid, Spain 
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A B S T R A C T   

Worldwide, human activities are rapidly changing land cover and its spatial configuration. While it is widely 
acknowledged that habitat loss is a major cause of biodiversity loss, there is less agreement on how biodiversity 
responds to changes in habitat configuration. We assessed the effects of forest amount and forest fragmentation 
per se (the number of patches for a given forest amount, an aspect of configuration) on woody species richness, 
composition, and traits in the Dry Chaco forest, a global deforestation hotspot. We sampled woody plants in 24 
forest sites varying in forest amount and fragmentation per se in the surrounding landscapes. Using Generalized 
Linear Modeling we tested whether a model with just forest amount was at least as able to predict species 
richness as a model with either patch size or isolation or the combination of both. We also tested whether forest 
amount and fragmentation per se influenced species richness, composition, and the density of four species traits. 
Finally, we compared these responses to forest amount and fragmentation per se measured in the past (2009) vs. 
in the present (2017) to look for time-lagged responses. We found that: 1) in support of the habitat amount 
hypothesis, species richness was more strongly related to forest amount than to the size and/or isolation of the 
forest patch containing the sample plot; 2) the positive effect of forest amount on species richness was more 
important than the effect of fragmentation per se (also positive); 3) fragmentation per se changed species 
composition such that plots in landscapes with more fragmented forest had species with smaller leaves and seeds, 
and higher wood density; and 4) species richness showed a time-lagged response to forest amount but not to 
forest fragmentation per se. Our results suggest that preservation of native Dry Chaco forest should be prioritized 
regardless of its fragmentation level, for conserving woody plant species diversity.   

1. Introduction 

Worldwide, human activities are rapidly changing land cover and 
land-use patterns with negative consequences for biodiversity and 
ecosystem functioning (Foley et al., 2005; Haddad et al., 2015; Newbold 
et al., 2015). However, despite much research on this topic, there are 

still knowledge gaps regarding the effects of landscape structure (e.g. the 
amount of natural habitat and its spatial arrangement) on biodiversity 
and its functioning (Marull et al., 2019). This is particularly noteworthy 
in subtropical dry forests, which have recently experienced agricultural 
expansion causing some of the highest deforestation rates in the world 
(Hansen et al., 2013) and have not received much attention regarding 
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the effects of forest loss and fragmentation on biodiversity. 
While it is widely acknowledged that habitat loss is a major cause of 

biodiversity loss (Newbold et al., 2015), there is less agreement on how 
biodiversity responds to changes in habitat configuration (Fahrig et al., 
2019; Fletcher et al., 2018; Miller-Rushing et al., 2019). Indeed, an 
interesting debate is currently taking place about the effects on biodi
versity of ‘fragmentation per se’, i.e., the effect of breaking apart of 
habitat into multiple patches, for a given habitat amount. While it is 
usually stated that fragmentation has negative effects on biodiversity 
(Debinski and Holt, 2000; Fletcher et al., 2018; Haddad et al., 2015), 
most studies that assessed biodiversity responses to fragmentation have 
confounded the breaking apart of habitat with habitat loss effects 
(Fahrig, 2019). Furthermore, studies assessing fragmentation effects on 
species abundance, occurrence, and richness while controlling for 
habitat amount (fragmentation per se) usually find no effect and, if any, a 
positive effect (Fahrig, 2017). In addition, some models indicate that 
negative effects of habitat fragmentation per se will occur only at low 
levels of habitat amount (Fahrig, 1998). 

Fahrig (2013) proposed a simple view of the relationship between 
habitat amount and species richness at a sample plot (i.e. species den
sity), called the ‘habitat amount hypothesis’ (HAH). The HAH implies a 
null expectation of no effect of habitat fragmentation per se on species 
richness in a sample plot. According to the HAH, the number of species 
at a sample plot depends on the amount of habitat surrounding that plot, 
within its ‘local landscape’, i.e., the area of influence of the surrounding 
landscape on the plot. Essentially, the more habitat there is within the 
local landscape, the more individuals it contains. For a given species 
abundance distribution, this implies more species in the local species 
pool available to colonize the sample plot. The HAH suggests that 
observed effects of patch size and isolation on species richness are 
simply due to correlations (positive and negative, respectively) between 
these variables and habitat amount in the local landscape. Thus, the 
HAH predicts that a model containing just the amount of habitat in the 
local landscape can predict species richness at least as well as a model 
containing either the size or the isolation of the patch containing the 
sample plot, or both (Fahrig, 2013). While the HAH does not make direct 
predictions about the effect of habitat fragmentation per se on species 
richness in a sample plot, it indirectly implies that there would be no 
effect. This is because, for a given amount of habitat in the local land
scape of the sample plot, varying the size and/or isolation of the patch 
containing the sample plot requires varying the configuration of the 
habitat in the local landscape. If, consistent with the HAH, the size and 
isolation of the patch containing the sample plot do not affect species 
richness in the plot once habitat amount is controlled for, this would 
imply that the configuration of habitat in the local landscape does not 
affect species richness in the plot. As habitat fragmentation per se is an 
aspect of habitat configuration, this would also imply no effect of frag
mentation per se. Thus, the HAH provides theoretical underpinning for 
an expected lack of effect of habitat fragmentation per se on species 
richness in sample plots. If, in contrast, an effect of fragmentation per se 
is observed, we can infer that processes are at play that go beyond a 
simple relationship between habitat amount and the species pool 
available for colonizing the sample plot (potential processes are 
reviewed in Fahrig et al., 2022). While the most comprehensive test to 
date supported the HAH (Watling et al., 2020), some individual studies 
have not supported it (Evju and Sverdrup-Thygeson, 2016; With and 
Payne, 2021). 

In addition to their effects on species richness, habitat amount and 
fragmentation per se may also affect community composition. And, if an 
effect on species composition causes shifts in the distributions of 
different species traits in the community, this could also affect 
ecosystem processes (Díaz and Cabido, 2001). A variety of ecosystem 
processes such as tree mortality, carbon storage, primary productivity, 
seedling survival and ability to tolerate disturbances have stronger links 
with species composition than with species richness (Díaz and Cabido, 
2001; Greenwood et al., 2017; Westoby et al., 1996). 

Here we study the effects of forest amount and fragmentation per se 
on forest woody plant species richness, species composition, and dis
tribution of four species traits in forest sample plots. For forest amount, 
we predict an increase in species richness with the forest amount due to 
the sample area effect as described above: a larger total area of habitat 
will contain more individuals and, for a given abundance distribution, 
this will imply more species available to colonize the forest plot (Fahrig, 
2013). As forest amount decreases, we predict a change in composition 
such that rare species will be more prone to disappear (Hubbell et al., 
2008). Also, we predict that populations of tree species whose seed 
dispersal depends on rare and small-ranging animal species will 
decrease (Staude et al., 2020). 

While we expect little effect of forest fragmentation per se on forest 
plant species richness (see above), we might see effects of forest frag
mentation per se on species composition and associated shifts in the 
distributions of traits (Zambrano et al., 2019). Fragmentation per se in
creases the amount of forest edge in the landscape (Saunders et al., 
1991), which should favour some species over others due to changes in 
microclimate, energy flows and biological interactions (Liu et al., 2019). 
For example, a hotter environment at edges may favour species having 
small leaves and therefore less water loss (Zambrano et al., 2019). Thus, 
in landscapes with more fragmented habitat - many small patches and 
more forest edge -, there will be more immigration of edge-related 
species into forest interior plots. Tree species on forest edges often 
have lower wood density, are shorter and have lower specific leaf area 
than forest-interior trees (Rodrigues et al., 2016; Wright et al., 2013). 
Edge habitats also favour wind-pollinated pioneer plant species with 
small seeds (Liu et al., 2019) and a capacity to tolerate disturbance and 
water stress (Lasky et al., 2013). Extrapolating these local edge effects to 
a landscape scale, we predict that these traits will be more common in 
landscapes with higher forest fragmentation per se (and thus more forest 
edge), regardless of the location of the sample plot(s). The prevalence of 
some traits over others might then affect ecosystem functions such as 
primary productivity, food resources and carbon storage (Hertzog et al., 
2019), so it is important to understand how fragmentation per se affects 
these traits. 

In addition, effects of habitat amount and fragmentation per se on 
species richness and community composition could be delayed, as the 
effects of many processes such as pollination, dispersal, population 
establishment, species interactions, and genetic drift play out over long 
time periods (Brooks et al., 1999; Hanski and Ovaskainen, 2002; 
Metzger et al., 2009; Tilman et al., 1994). The possibility of delayed 
responses to habitat amount and fragmentation per se is especially 
relevant in rapidly changing agricultural frontiers such as those in 
subtropical forest ecoregions (Graesser et al., 2015; Semper-Pascual 
et al., 2018). Given this recent forest loss, we expect that the remaining 
forests still retain many species that will eventually disappear. This 
might make the current species richness and composition more similar 
to past landscape structure than to present landscape structure. For 
example, we predict that plots in landscapes with higher forest amount 
in the past will have higher current plant species richness than those 
with lower forest amount in the past, for the same current amount of 
forest. 

The Argentine Dry Chaco is a suitable region to test these predictions 
because: i) it is an endangered, understudied, and low-protected biome 
(Hansen et al., 2013; Hoekstra et al., 2004), and ii) agricultural expan
sion is driving rapid loss and fragmentation of the remaining forest 
(Gasparri and Grau, 2009; Piquer-Rodríguez et al., 2015; Carranza et al., 
2015; Velasco-Aceves et al., 2021). The Argentine Dry Chaco forest has 
experienced one of the highest rates of deforestation in the world 
(Hansen et al., 2013); the latest published estimate is 5 million hectares 
of forest lost between 2000 and 2019 (de la Sancha et al., 2021; Bau
mann et al., 2022). Forest loss and fragmentation were initially related 
to road construction for logging, and some small-scale agriculture 
(Piquer-Rodríguez et al., 2015). In recent decades, these processes 
increased due to large-scale agricultural expansion. This expansion 
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began in areas with better soils and near towns (Gasparri and Grau, 
2009) and then spread to nearby areas (Piquer-Rodríguez et al., 2018; 
Volante et al., 2016). This has resulted in different landscape configu
rations, with varying sizes and distributions of forest fragments within 
the agricultural matrix. Indeed, in different parts of the region, the same 
amount of forest can be distributed in a few large patches or in several 
small ones, allowing an analysis of the influence of forest fragmentation 
independently of forest amount. Although Dry Chaco landscapes are 
experiencing a huge transformation due to agricultural expansion, evi
dence for the effects of this transformation on vegetation diversity and 
species composition is lacking. Furthermore, the little existing evidence 
(Cagnolo et al., 2006; Torrella et al., 2013, 2015) has not evaluated the 
effects of fragmentation per se (as in Fahrig, 2003). 

We tested the habitat amount hypothesis and we assessed the effects 
of forest amount vs forest fragmentation per se, measured as the number 
of patches for a given forest amount, on woody species richness and 
composition, and four plant traits in vegetation plots in the Dry Chaco 
forests. We asked: (1) Does the woody plant community in Dry Chaco 
support the habitat amount hypothesis? (2) What are the effects of forest 
amount and fragmentation per se on species richness, species composi
tion, and plant traits including wood density, height at maturity, leaf 
area, and seed dry mass? (3) Is there a time-lag response of species 
richness and plant traits to changing forest amount and fragmentation 
per se? 

2. Methods 

2.1. Study site description 

The study was conducted in the NE of the province of Santiago del 
Estero, Argentina (Fig. 1). This area is located in the Dry Chaco region, 
and the Semi-arid Chaco sub-region (Morello et al., 2012; Oyarzabal 
et al., 2018). Here the climate is characterized by wet summers and dry 
winters, with large variability over years. The precipitation is around 
750–800 mm while the mean annual temperature is 27.7 ◦C (Torres 
Bruchmann, 1981). The annual potential evapotranspiration is between 
900 and 1000 mm and its monthly values generally exceed precipita
tion, particularly between May and October (Houspanossian et al., 
2016). 

The forests of the Dry Chaco are xerophytic and semideciduous. The 
mature forest is characterized by an upper stratum formed by the red 
quebracho (Schinopsis lorentzii (Griseb.) Engl.) and the white quebracho 
(Aspidosperma quebracho-blanco Schtdl.), exceeding 20 m height. Other 
important species in these forests are shorter and include the mistol 
(Ziziphus mistol Griseb.), the palo cruz (Tabebuia nodosa (Griseb.) Gri
seb.) and many species of the Prosopis, Senegalia and Vachellia genera, 
some of which have value for forestry and livestock raising (Torrella and 
Adámoli, 2006). 

Fig. 1. Study area corresponding to a portion of the Dry Chaco Ecoregion in the northeast of Santiago del Estero Province, Argentina. Pink points indicate the 
locations where vegetation surveys were conducted (one point in the centre of each 3-km-radius landscape). Remaining forest (dark green) is surrounded by pastures 
or agricultural fields with high photosynthetic rate (reddish colours) or bare soil or recently sown agricultural fields (blue colours). The inset in the top left shows the 
location of the Dry Chaco Forests Ecoregion (light grey) in South-America (inset at the bottom left). (For interpretation of the references to colour in this figure 
legend, the reader is referred to the web version of this article.) 
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2.2. Data gathering 

We identified the forest cover by classifying a mosaic of two Landsat 
5 and Landsat 8 images from March and April 2017 and 2009 (LC08 and 
LC05, Path 229 / Row 78 and Path 228 / Row 78) through a Linear 
Spectral Unmixing algorithm using CLASlite 3.2 (Asner, 2009). We used 
these dates because in 2009 there was a deforestation peak, and there
fore the changes in habitat amount and fragmentation were the highest; 
our field sampling took place in 2017. This algorithm decomposes each 
pixel of the Landsat mosaic into three constituent components, Photo
synthetic Vegetation (PV), Non-Photosynthetic Vegetation (NPV) and 
Bare Soil (BS) from the comparison of their spectral signals with a 
spectral library of PV, NPV and BS built from field data (Asner, 2009). 
The resulting classification had the proportion of each pixel occupied by 
the components (PV, NPV and BS) which together reach 100 % of the 
pixel coverage. We considered a pixel with >70 % of PV and <20 % of 
BS as forest and the remaining pixels as non-forest (Camba Sans et al., 
2021). To eliminate some pixels belonging to agricultural plots that met 
the proposed thresholds, we masked the resulting map with an actual 
version of the deforestation database for the study region elaborated by 
Vallejos et al. (2015). 

On the classified image of 2017, we located the landholdings where 
we could get access and conduct fieldwork and established a circular 
area of 4 km radius around their central points (5000 ha). Within each 
circular area, we quantified the proportion of the landscape occupied by 
forests (habitat amount) and the number of forest patches (fragmenta
tion per se). Subsequently, we selected the circular areas where the 
ranges for both metrics were maximized. In this way, there were four 
types of landscapes, each of them representing one of the following 
situations: landscapes with a high amount of forest distributed in a few 
large patches (Af), landscapes with low amount of forest distributed in a 
few large patches (af), landscapes with a high amount of forest distrib
uted in many small patches (AF), and landscapes with low amount of 
forest distributed in many small patches (aF) (Fig. 2). We selected two 

landscapes within each type, making a total of eight sampled landscapes. 
Although we categorized the landscapes for site selection purposes, 
Habitat amount and Fragmentation ‘per se’ were analyzed as continuous 
variables, not categorical variables. We used Fragstats v. 4.2.1. for 
calculating the patch and landscape metrics (McGarigal and Marks, 
1995). 

Within each landscape, in July 2017 we surveyed woody vegetation 
in 2–4 plots (24 plots total) separated by a minimum distance of 600 m. 
Plots were always within forest patches at a fixed distance of 200 m from 
forest edge. We used plots of 50 m × 10 m (500 m2) for identifying and 
counting trees with a diameter at breast height (DBH) >10 cm and plots 
of 50 m × 2 m (100 m2) for the rest of the woody vegetation (trees and 
shrubs <10 cm DBH). We measured the DBH of all trees that exceeded 
10 cm. 

2.3. Data analysis 

2.3.1. Testing the habitat amount hypothesis 
For testing the habitat amount hypothesis, we followed the approach 

of Fahrig (2013). This requires one to (i) empirically identify the size of 
the local landscape associated with each plot, by assessing the distance 
from the sample plots within which forest amount has the strongest 
effect on species richness, (ii) assess whether, at this spatial extent, there 
was sufficient independence between forest amount and the size and 
isolation of the patches where the plots were located to evaluate their 
relative effects, and (iii) compare the effects of forest amount to the 
effects of patch size and isolation on species richness in the sample plots, 
i.e. species density. Note the habitat amount hypothesis does not make 
any predictions about the overall magnitude of the habitat amount ef
fect. It just predicts that its effect is stronger than the effects of patch size 
and patch isolation. 

For the first step above, we estimated forest amount within various 
distances, from 1 to 8 km, of each plot, and calculated the correlation 
between forest amount at each spatial extent and species richness at the 

Fig. 2. Examples of the four landscape types selected a priori in this study. Each image has high (Af, AF) or low (af, aF) amount of remaining forest (dark green), 
distributed in a few large patches (Af, af) or several small patches (AF, aF), surrounded by pastures or agricultural fields with high photosynthetic rate (reddish 
colours) or bare soil or recently sown agricultural fields (blue colours). Two landscapes were selected within each type. (For interpretation of the references to colour 
in this figure legend, the reader is referred to the web version of this article.) 
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sample plots. The strongest correlation occurred for forest amount 
measured within 3 km of sampling plots (Appendix 1). For all analyses 
we therefore measured forest amount (“HAB”) and fragmentation as the 
number of forest patches (“FRAG”) in circular areas within 3 km of the 
sample plots. Thus, while for site selection (Section 2.2) we measured 
forest amount and fragmentation per se within each of eight 4-km radius 
landscapes, for data analysis we had 24 local landscapes of 3-km radius 
each, one for each sample plot (Appendix 2). 

For the second step, we explored the Pearson correlation between 
HAB and the area of the patch containing the sample plot (“AREA”), and 
between HAB and the shortest distance (edge-to-edge) from the patch 
containing the sample plot to the next nearest patch (“DIST”). Both 
correlations were low (HAB-AREA, r = 0.34; HAB-DIST, r = − 0.11), 
confirming the suitability of the sites selected to test the habitat amount 
hypothesis. 

Finally, we used Generalized Linear Models to test the habitat 
amount hypothesis, i.e. whether the fit of a model of species richness in 
sample plots on only the predictor HAB was at least as good as a model 
on either AREA or DIST, or the combination of both. For this we 
compared the R2 values of the four models (Smith et al., 2009). 

2.3.2. Assessing the effects of forest amount and fragmentation per se on 
species richness and composition 

We assessed the floristic composition of each plot by Detrended 
Correspondence Analysis (DCA), calculating the Bray-Curtis similarity 
index (Hill and Gauch, 1980) on the plots × species frequency matrix 
[24 × 25]. Regarding plant traits, for each species we gathered data on 
leaf area (data available for 18 species), wood density (available for 19 
species) and seed dry mass (available for 6 species) from the TRY 
database at www.try-db.org/TryWeb/Data.php (Appendix 4). To 
calculate trait densities when these values were not available for all 
species, we did not consider these missing values. There were not 
enough data of maximum height at maturity in the TRY database, so we 
used plant growth form (tree or shrub) as an approximation for 
maximum height, assuming trees are taller than shrubs. We assigned a 
value of 1 to trees and 0.5 to shrubs and multiplied these values by the 
variable “Plant Growth Form Consensus” from the TRY dataset (DataID 
6544) compiled by Engemann et al. (2016). These authors developed a 
decision framework to assign each species to a single “consensus growth 
form”, which is the number of sources agreeing on the classification 
divided by the total number of sources with growth form information on 
the species. We used these traits to interpret DCA axes using Pearson 
correlations. 

We used Generalized Linear Models to test for effects of HAB and 
FRAG on species richness, species composition and plant traits. 
Response variables were species richness, the logarithm of the co
ordinates of the DCA axes for each plot (species composition), and the 
logarithm of the density of plant traits in each transect. This last variable 
was calculated by multiplying the number of individuals of each species 
in each transect by the trait value of each species. We used a Poisson 
distribution for species richness models after checking for over
dispersion. Note that we did not include patch metrics AREA and DIST in 
these models, because we were not testing the habitat amount hypoth
esis here. 

2.3.3. Assessing time-lag responses of species richness and composition to 
past landscape configuration 

To test for delayed responses to forest loss and fragmentation, we fit 
the above models to HAB and FRAG separately for 2009 and 2017. We 
considered that delayed responses to forest loss and fragmentation 
occurred if the AIC of the model using HAB and FRAG from 2009 was 
more than two units lower than the AIC of the model using HAB and 
FRAG from 2017 (Anderson and Burnham, 2004; Zuur et al., 2009). In 
all models, the predictor variables were standardized and the validity of 
the statistical assumptions was assessed through residual distribution 
analysis. We used the packages vegan (Oksanen et al., 2022), FD 

(Laliberté et al., 2022) and lme4 (Bates et al., 2015) in the software R for 
the above-mentioned analyses. 

3. Results 

3.1. Testing the habitat amount hypothesis 

Consistent with the habitat amount hypothesis, the model of species 
richness that contained only HAB had a better fit (higher R2) than the 
models with only AREA or only DIST, or both AREA and DIST (Table 1). 
These results support the habitat amount hypothesis for woody plants in 
dry Chaco forests. 

3.2. Effects of forest amount and fragmentation per se on species richness, 
composition and plant traits 

The correlation between forest amount and fragmentation per se 
(number of patches) within 3 km of the sample sites was − 0.21 in 2017 
and 0.28 in 2009 (Appendix 3). Consistent with the results from the test 
of the HAH above, the coefficient for the effect of fragmentation per se on 
species richness was very close to zero. The effect of forest amount was 
larger than the effect of fragmentation per se, but still small, which is 
consistent with the low R2 value in Table 1 (Fig. 3A, Appendix 5). The 
coefficients were positive for both forest amount and fragmentation per 
se, indicating higher species richness in plots surrounded by a larger 
amount of forest divided into many small patches. 

The first two axes of the Detrended Correspondence Analysis 
together explained 42 % of the variation among plots in plant compo
sition (Fig. 4; Appendix 6). In contrast to the results for species richness, 
the effect of forest fragmentation per se on species composition was 
stronger than the effect of forest amount (Fig. 3A). This is seen in Fig. 4 
where the sampling plots belonging to AF and aF (forest distributed in 
many patches: open symbols in Fig. 4) were located mainly in the upper 
half of either axis on the ordination plot. In contrast, the sampling plots 
of landscapes with high or low amount of forest (HAB) were more ho
mogeneously distributed in the ordination plot, suggesting a weaker 
effect of forest amount on species composition. 

The effects of HAB and FRAG on species composition were reflected 
in shifts in some species traits (Fig. 3, Appendix 5). Forest amount fav
oured tree species with higher wood density and higher leaf area. Forest 
fragmentation per se favoured tree species with higher wood density, 
smaller leaves and lower seed dry mass. 

3.3. Time-lag responses 

The comparison of standardized coefficients for models using pre
dictors measured in 2009 vs. in 2017 suggested some lag effects of HAB 
(Fig. 3, Appendix 5). Most obvious was the stronger positive effect 
(difference of two AIC units between models) of HAB on species richness 
when HAB was measured in 2009 than in 2017. The same was true for 
the effect of HAB on wood density. The effect of HAB on species 

Table 1 
Results of the linear models relating plant species richness (log R) to forest 
amount (HAB) and patch size (AREA) and isolation (DIST). HAB is the amount of 
forest within 3 km of a sample plot (n = 24), AREA is the area of the forest patch 
containing a sample plot, and DIST is the distance from the edge of the patch 
containing a sample plot to the edge of the nearest forest patch, all measured in 
2017.   

Std Estimate SE AIC R2 

Null model    118.730  0.000 
HAB  0.038  0.058  120.330  0.040 
AREA  − 0.010  0.058  120.730  0.002 
DIST  0.001  0.058  120.760  0.000 
AREA +

DIST  
− 0.012 
0.005  

0.063 
0.062  

122.720  0.018  
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composition was negative when HAB was measured in 2017 but positive 
when it was measured in 2009 (Fig. 3: DCA2). Finally, the effect of HAB 
on seed mass was neutral when HAB was measured in 2017 but negative 
when it was measured in 2009. For other responses and predictors, 
including all responses to FRAG, the standardized coefficients were 
similar whether the predictor was measured in 2009 or 2017 (Fig. 3, 
Appendix 5). 

4. Discussion 

4.1. Species richness 

Our results for species richness of woody plants in the Chaco Dry 
Forest support the habitat amount hypothesis (HAH) (Fahrig, 2013), 
adding to the empirical research that supports the HAH (Watling et al., 
2020). Our results also support the common finding that effects of 
habitat amount on species richness are stronger than effects of habitat 
fragmentation per se (Fahrig, 2003). In addition, the fragmentation ef
fect, though weak, was positive, i.e. species richness increased very 
slightly with fragmentation per se, which is also consistent with most 

previous results across taxa (Fahrig, 2017). 
Our study supports previous evidence of higher plant species rich

ness in landscapes where there is more habitat (Cagnolo et al., 2006). 
This is consistent with the sample area effect as described in Fahrig 
(2013)A larger sample area (more habitat) contains more individuals 
and, for a given abundance distribution, this implies more species. 
Although our sample plots were all the same size, a larger amount of 
forest in the surrounding landscape “samples” more individuals and 
therefore a larger number of potential species from the ecoregion's 
species abundance distribution. This leads to a larger potential number 
of species immigrating into the sample plot, producing more species in 
sample plots in landscapes with more habitat than in those with less 
habitat. We are unaware of other studies testing the habitat amount 
hypothesis for woody species richness in subtropical dry forests but our 
results are consistent with studies of plant species diversity in other 
ecosystems (e.g., Brazilian canga - Gastauer et al., 2021; Northern 
American savannas - Alofs et al., 2014). 

We emphasize here that, although habitat fragmentation usually 
results from a process of habitat loss (Haila, 1999, 2002; Villard and 
Metzger, 2014), as is the case in Chaco forests (Carranza et al., 2015), 

Fig. 3. Standardized estimates and confidence intervals of the relationships between plant species richness, species composition, and density of four plant traits vs. 
forest amount (HAB, black) and fragmentation per se (FRAG, grey) measured in 2017 (left panel) and in 2009 (right panel). HAB and FRAG were measured within 3 
km of forest-interior plant sampling plots (n = 24). 

Fig. 4. Detrended Correspondence Analysis biplot of the 24 
plots × 25 species matrix. Different colours refer to the 
degree of forest fragmentation per se, FRAG, measured as 
the number of forest patches within 3 km of the sampling 
plot (black, a few patches; white, many patches). Different 
symbols refer to the amount of forest within 3 km of the 
sample plots, HAB (circles, high forest amount; triangles, 
low forest amount). The four species with the highest pos
itive and negative scores on both axes are shown.   
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the same degree of habitat loss can lead to very different degrees of 
habitat fragmentation (number of patches). Therefore, the independent 
effects of habitat amount and fragmentation can be evaluated by 
selecting sample landscapes such that the amount and fragmentation of 
habitat are uncorrelated. Thus, our sampling design does not confound 
the effects of habitat amount with the effects of fragmentation as many 
previous studies have done, and adds to the scarce literature that con
trols for both factors (Fahrig, 2003). However, due to the inherent costs 
of sampling multiple landscapes across a large area (Povak, 2012; Tor
rella et al., 2013), as usually occurs with landscape-scale studies, we had 
a relatively low sample size (24 landscapes, of which 8 were truly 
spatially independent landscapes), which precluded performing more 
complex statistical analyses. McGarigal and Cushman (2002) acknowl
edge this difficulty and recommend a general approach for handling this 
problem of low replication by using GIS queries and existing landscape 
analysis software. We used these techniques when selecting the land
scapes studied and due to the high heterogeneity of biophysical vari
ables in the Chaco region it was not possible to increase the number of 
landscapes at a meaningful spatial scale. Thus, the results obtained here 
are informative for the region studied but should not be directly 
extrapolated to other regions. 

Our analyses of species richness also indicated a lagged relationship 
between habitat amount and species richness, as species richness in 
2017 was more strongly related to habitat amount in 2009 than to 
habitat amount in 2017. This suggests a gradual loss of species in 
response to habitat loss, as has been shown for Libidibia paraguariensis 
and Schinopsis lorentzii (two highly valued species), which respond to 
forest amount with almost a decade-long lag (Appendix 7). Notably, 
there was no time-lag response to forest fragmentation per se, with 
standardized coefficients almost identical for the two time periods. 
Therefore, the lack of fragmentation effects on species richness in our 
results is not due to insufficient time since the patches were created 
through habitat loss. Note that the same result was found for a variety of 
taxa and systems in Fahrig (2020). 

The best models of species richness explained approximately 22 % of 
the variance, pointing to additional (unmeasured) variables influencing 
biodiversity of woody vegetation in Chaco forests. In particular, varia
tion in local site conditions such as land use history, soil type and con
ditions, and topography, affecting seed germination, plant growth, and 
pollination likely play a large role in explaining the variability among 
sites. In addition, variables influencing the persistence of the seed bank 
such as seed coat dormancy may be important (Khurana and Singh, 
2001). 

4.2. Species composition and trait density 

Perhaps the most novel aspect of this study is our finding of much 
stronger evidence for effects of fragmentation per se on species compo
sition than on species richness. Based on the correlations of species with 
landscape metrics (Appendix 7), some species such as A. quebracho 
blanco, C. coccinea, L paraguariensis, M. salicifolia and S. lorentzii are 
highly correlated with the amount of forest, while others such as 
M. tweedianna, S. balansae, S bumelioides and S. praecox are positively 
correlated with the number of patches. Interestingly, J. rhombifolia and 
M. tweediana are more likely to occur in forest plots in landscapes with 
scarce forest cover (Appendix 7). Hertzog et al. (2019) found effects on 
plant species composition of an index that combines habitat amount and 
fragmentation. However, ours is the first study to evaluate effects on 
plant species composition of fragmentation per se, i.e., measuring frag
mentation at a landscape scale and controlling for the effect of habitat 
amount (see Echeverría et al. (2007) for patch-scale studies). Some of 
our findings may be due to different species thriving in forest edges than 
those in forest interiors. Although all of our sample sites were in forest 
interiors, fragmented landscapes with many small patches have more 
forest edge, and so there may be more immigration of edge-related 
species into forest interior plots in landscapes with many small 

patches than in landscapes with a few large patches. This might explain 
our observed negative effect of fragmentation per se on leaf and seed 
size. Edge species typically have smaller seeds (Tabarelli et al., 2010), 
and a hotter environment at edges may favour species having small 
leaves and therefore less water loss (Zambrano et al., 2019). 

Contrary to our prediction, we found a higher abundance of trees 
with high wood density in landscapes with more small patches. As our 
predictions were based on common attributes of forest edge species, it 
seems that the increase in wood density in response to fragmentation per 
se is related to some mechanism other than edge effects. A possible 
explanation for this finding is that small forest fragments usually remain 
within large properties where access for timber and charcoal extraction 
is restricted. Thus, after many years without logging, hardwood tree 
species can recover in small fragments within large agricultural prop
erties. Torrella et al. (2013) also found taller species in more fragmented 
landscapes, which is consistent with this explanation. We also note that 
wood density is the only species composition or trait density response 
showing a time lag, in this case to habitat amount. The positive response 
of wood density to habitat amount was much stronger when habitat 
amount was measured in 2009 than when it was measured in 2017.We 
suggest that further work will be needed to shed light on these responses 
of wood density to habitat amount and fragmentation per se. 

Overall our results suggest that while habitat fragmentation per se 
does not reduce species richness, it favours an assemblage of species that 
have different characteristics than those in landscapes with few large 
patches. This could then influence ecosystem function, as suggested by 
Hertzog et al. (2019), and thereby possibly alter ecosystem services 
(Conti et al., 2018). For example, shrub species with smaller leaves 
favoured by fragmentation per se might indicate lower primary pro
ductivity (Ordway and Asner, 2020). The increase in smaller-seeded 
species, typically wind-dispersed, might imply less food resources for 
animal species with increasing fragmentation per se (Wunderle, 1997). 
Finally, the higher wood density in landscapes with higher fragmenta
tion per se suggests that such landscapes may provide higher carbon 
storage than landscapes with few large forest patches. 

We found no evidence for lag effects of fragmentation per se on 
species composition or plant traits. We note that this was not due to a 
smaller change in habitat fragmentation per se than in habitat amount 
over time (Appendix 9). In fact, the median increase in fragmentation 
per se between 2009 and 2017 was 21 %, while the median decline in 
habitat amount was 8 %. 

4.3. Conclusions and implications 

Consistent with the habitat amount hypothesis, we found that forest 
amount increased plant species richness while forest fragmentation per 
se did not. In addition, species richness showed a delayed response to 
declining forest amount, suggesting an even greater effect of forest loss 
on plant species richness than would be inferred from comparing species 
richness to current forest levels. In contrast, fragmentation per se was a 
stronger determinant of species identity (composition) than forest 
amount, and we found no evidence for a time lag in this response. 

Our results challenge the assumption that small forest patches in 
human-dominated landscapes have low conservation value. Various 
stakeholders (researchers, farmers, policy-makers) argue that such small 
patches have lost their conservation value and therefore should be 
“sacrificed” (i.e. cleared) to increase land-use intensity (e.g. Edwards 
et al. (2012)). In fact, a forest conservation law in Argentina has clas
sified most forest patches in human-dominated landscapes as areas 
where deforestation is allowed (Aguiar et al., 2018; Camba Sans et al., 
2018). Contrary to such policies, our results add to growing evidence for 
the conservation value of small forest fragments (Riva and Fahrig, 2022; 
Torrella et al., 2013; Wintle et al., 2019) and emphasize the need for 
conserving the most forest possible regardless of patch sizes. 
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Appendix A

Appendix 1. Determination of the size of the local landscape for testing the habitat amount hypothesis in Chaco dry forests. The relationship between species 
richness of woody plants and habitat amount is strongest when habitat amount is measured within a radius of 3 km from the sample plots.  
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Appendix 2. Location of the 24 sample points. Dotted black circles represent local landscapes around each sample point.  

Appendix 3. Relationship across the 24 sites between forest amount and fragmentation per se (number of patches) in 2009 and 2017. Correlation coefficient was 
0.28 in 2009 and -0.21 in 2017.  

Appendix 4 
Trait values for leaf area, wood density, growth form and seed dry mass of 23 species sampled. Second line specifies trait ID in the TRY database.  

Trait Leaf area (mm2) Stem Specific Density (g/cm3) Growth form Growth form consensus Seed dry mass (g) 

Trait ID (TRY database)  3113  4 42  6544  26 
Aspidosperma quebracho blanco  127.99  0.73 Tree  0.97  2.00 
Castela coccinea  675.00  Shrub  0.71  
Celtis pallida  675.00  0.60 Shrub   17.60 
Jodina rhombifolia  116.54  0.61 Tree   
Libidibia paraguariensis  17.00  1.05 Tree   166.67 
Maytenus spinosa  71.66  0.71 Shrub  0.70  
Mimosa detinens   Tree  1.71  
Morisonia atamisquea  5.23  0.80 Shrub  1.00  

(continued on next page) 
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Appendix 4 (continued ) 

Trait Leaf area (mm2) Stem Specific Density (g/cm3) Growth form Growth form consensus Seed dry mass (g) 

Morisonia retusa  675.00  0.61 Shrub   
Morisonia speciosa   0.66 Shrub  0.67  
Morisonia tweediana   Shrub  0.82  
Parkinsonia praecox  521.71  0.52 Tree   27.23 
Prosopis kuntzei   1.09 Tree  1.00  
Prosopis nigra  18.32  0.76 Tree  0.93  1.00 
Prosopis torquata  3.00  0.74 Shrub  1.00  
Sarcomphalus mistol  675.00  0.87 Tree  0.98  
Schinopsis balansae  675.00  1.03 Tree  1.00  
Schinopsis lorentzii  225.21  0.90 Tree  1.00  
Senegalia gilesii  576.85  0.81 Tree   
Senegalia praecox  11.32  0.76 Tree   
Solanum argentinum   Shrub  0.71  
Vachellia aroma  981.00  0.74 Tree   
Ximenia americana  1316.19  0.84 Tree  0.68  732.27   

Appendix 5 
Parameters of the models of the relationships between species richness, species composition, or density of traits and habitat amount (HAB) and fragmentation per se 
(FRAG) measured in 2009 and 2017.  

Predictor variable Response variable Intercept Estimate Std Error Confidence Interval (95 %) R2 AIC Std Error 

Species richness   2.540       118.760   
HAB 2009   0.094  0.059  − 0.002  0.193  0.220  118.210  0.059  
FRAG 2009   0.021  0.057  − 0.074  0.115  0.011  129.620  0.057  
HAB 2017   0.038  0.058  − 0.057  0.134  0.036  120.330  0.058  
FRAG 2017   0.015  0.058  − 0.081  0.110  0.006  120.69  0.058 

Species composition (DCA1)   − 0.029       51.016   
HAB 2009   0.059  0.139  − 0.171  0.288  0.008  52.822  0.139  
FRAG 2009   0.152  0.136  − 0.072  0.376  0.053  51.700  0.136  
HAB 2017   0.057  0.139  − 0.172  0.287  0.0075  52.834  0.139  
FRAG 2017   0.149  0.136  − 0.075  0.374  0.051  51.750  0.136 

Species composition (DCA2)   0.049       38.151   
HAB 2009   0.078  0.106  − 0.095  0.253  0.024  39.553  0.106  
FRAG 2009   0.267  0.090  0.118  0.417  0.282  32.178  0.090  
HAB 2017   − 0.118  0.104  − 0.290  0.053  0.055  38.784  0.104  
FRAG 2017   0.287  0.088  0.142  0.432  0.326  30.662  0.088 

Wood density   1.972       − 8.627   
HAB 2009   0.069  0.037  0.008  0.131  0.135  − 10.123  0.037  
FRAG 2009   0.048  0.039  − 0.016  0.112  0.064  − 8.227  0.039  
HAB 2017   0.001  0.040  − 0.065  0.067  0.0001  − 6.627  0.040  
FRAG 2017   0.056  0.038  − 0.007  0.119  0.087  − 8.828  0.038 

Growth form   2.083       − 17.079   
HAB 2009   0.009  0.033  − 0.045  0.065  0.0038  − 15.172  0.033  
FRAG 2009   0.032  0.033  − 0.021  0.087  0.042  − 16.126  0.033  
HAB 2017   0.006  0.033  − 0.049  0.062  0.167  − 15.119  0.033  
FRAG 2017   0.021  0.033  − 0.033  0.077  0.018  − 15.528  0.033 

Leaf area   4.732       − 21.501   
HAB 2009   0.045  0.029  − 0.003  0.093  0.096  − 21.931  0.029  
FRAG 2009   − 0.045  0.029  − 0.093  0.002  0.098  − 21.987  0.029  
HAB 2017   0.042  0.029  − 0.006  0.091  0.085  − 21.650  0.029  
FRAG 2017   − 0.054  0.028  − 0.102  − 0.007  0.142  − 23.186  0.028 

Seed dry mass   2.719       42.955   
HAB 2009   − 0.061  0.117  − 0.255  0.132  0.012  44.657  0.117  
FRAG 2009   − 0.166  0.113  − 0.352  0.019  0.089  42.708  0.113  
HAB 2017   0.017  0.118  − 0.177  0.212  0.001  44.932  0.118  
FRAG 2017   − 0.168  0.113  − 0.354  0.017  0.091  42.640  0.113   

Appendix 6 
Species scores of the first two axes of the Detrended Correspondence 
Analysis (DCA) calculated using the Bray-Curtis similarity index (Hill 
and Gauch, 1980) on the plots × species frequency matrix [24 × 25].   

Axis 1 Axis 2 

A. quebracho blanco  0.244  − 0.308 
C. coccinea  − 0.239  0.384 
C. pallida  0.674  − 0.086 
J. rhombifolia  0.772  − 1.588 
L. paraguariensis  1.619  − 2.447 
M. atamisquea  − 1.436  − 1.537 

(continued on next page) 
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Appendix 6 (continued )  

Axis 1 Axis 2 

M. detinens  1.279  − 0.789 
M. retusa  − 0.947  0.638 
M. salicifolia  1.771  1.495 
M. speciosa  − 1.406  0.930 
M. spinosa  − 1.044  − 0.921 
M. tweediana  − 0.012  1.769 
P. kuntzei  1.469  − 0.162 
P. nigra  1.431  1.247 
P. praecox  2.626  0.858 
P. torquata  − 0.755  1.110 
S. argentinum  1.080  − 0.384 
S. balansae  − 1.077  2.825 
S. bumelioides  0.898  − 0.332 
S. gilesii  − 2.779  0.021 
S. lorentzii  − 1.129  − 1.372 
S. mistol  − 1.479  − 0.857 
S. praecox  0.231  1.322 
V. aroma  2.027  0.986 
X. americana  0.745  − 1.464   

Appendix 7 
Pearson correlation coefficients between the abundance of each species in 2017 and the landscape and patch metrics measured in 2009 and 2017: HAB, forest amount 
within 3 km of the plant sample plots; FRAG, number of forest patches within 3 km of the plant sample plots; AREA, area of the forest patch containing the sample plot; 
DIST, distance of the patch containing the sample plot to the nearest other forest patch.   

a) 2009    b) 2017     

HAB FRAG AREA DIST HAB FRAG AREA DIST 

A. quebracho blanco  0.16  − 0.27  0.30  0.15  0.20  − 0.25  0.02  − 0.20 
C. coccinea  0.33  − 0.19  0.32  − 0.07  0.40  − 0.28  0.40  0.00 
C. pallida  0.10  − 0.08  0.16  0.11  0.14  − 0.09  − 0.16  − 0.18 
J. rhombifolia  − 0.38  0.06  − 0.14  0.28  − 0.30  0.13  − 0.19  0.11 
L. paraguariensis  0.31  − 0.04  − 0.07  − 0.21  0.49  − 0.12  − 0.06  − 0.21 
M. atamisquea  0.14  − 0.19  0.05  − 0.30  0.18  − 0.23  0.20  − 0.09 
M. detinens  0.20  − 0.21  0.22  − 0.06  0.32  − 0.20  0.10  − 0.12 
M. retusa  0.05  − 0.14  0.16  0.01  − 0.15  − 0.12  0.27  0.05 
M. salicifolia  0.28  0.08  0.23  − 0.06  0.02  0.22  0.04  − 0.09 
M. speciosa  0.11  − 0.06  − 0.18  − 0.17  0.13  − 0.12  − 0.13  − 0.11 
M. spinosa  0.25  − 0.17  0.05  − 0.08  0.41  − 0.33  0.21  − 0.05 
M. tweediana  − 0.02  0.33  − 0.22  0.20  − 0.26  0.29  − 0.32  − 0.13 
P. kuntzei  0.16  − 0.01  0.01  0.04  0.26  − 0.07  − 0.06  − 0.02 
P. nigra  0.03  − 0.11  0.04  0.16  − 0.02  − 0.02  0.24  0.54 
P. praecox  0.08  − 0.09  − 0.15  − 0.11  0.11  − 0.06  0.02  0.22 
P. torquata  0.05  − 0.21  0.40  0.07  − 0.02  − 0.12  0.41  0.17 
S. argentinum  − 0.12  0.04  0.09  0.27  − 0.08  0.10  − 0.16  − 0.11 
S. balansae  0.25  0.62  − 0.29  − 0.11  − 0.01  0.57  − 0.28  − 0.15 
S. bumelioides  0.26  0.35  − 0.18  − 0.13  0.36  0.29  − 0.17  − 0.23 
S. gilesii  0.07  − 0.30  0.37  − 0.11  0.12  − 0.35  0.53  − 0.01 
S. lorentzii  0.32  − 0.24  0.05  − 0.18  0.41  − 0.36  0.14  − 0.02 
S. mistol  0.03  − 0.09  − 0.02  − 0.08  0.10  − 0.15  0.15  0.05 
S. praecox  0.13  0.33  − 0.15  − 0.05  − 0.13  0.34  − 0.42  − 0.31 
V. aroma  0.19  − 0.01  0.03  − 0.21  0.23  0.01  0.00  − 0.13 
X. americana  − 0.08  − 0.06  − 0.07  0.13  − 0.10  − 0.08  − 0.14  − 0.15   
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Appendix 8. Relationship between forest amount in 2009 and 2017 and between forest fragmentation per se (number of forest patches) in 2009 and 2017. Both 
forest amount and fragmentation per se were measured in circular landscapes of radius 3 km surrounding 24 plant sample plots. 

Appendix 9. Change in forest amount (HAB: ha) and fragmentation per se (FRAG: number of patches) from 2009 to 2017.  
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Houspanossian, J., Giménez, R., Baldi, G., Nosetto, M., 2016. Is aridity restricting 
deforestation and land uses in the south american dry Chaco? J. Land Use Sci. 11, 
369–383. https://doi.org/10.1080/1747423X.2015.1136707. 
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