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Schizophrenia is characterized by major sleep/wake disturbances including increased vigi-

lance and arousal, decreased slow wave sleep, and increased REM sleep drive. Other arousal-

related symptoms include sensory gating deficits as exemplified by decreased habituation of

the blink reflex. There is also dysregulation of gamma band activity, suggestive of distur-

bances in a host of arousal-related mechanisms. This review examines the role of the reticular

activating system, especially the pedunculopontine nucleus, in the symptoms of the disease.

Recent discoveries on the physiology of the pedunculopontine nucleus help explain many of

these disorders of arousal in, and point to novel therapeutic avenues for, schizophrenia.

& 2015 Brazilian Association of Sleep. Published by Elsevier B.V. This is an open access article

under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Sleep wake dysregulation in schizophrenia

Schizophrenia is a heterogeneous disorder marked by psychotic
symptoms such as delusions and hallucinations, as well as
attentional impairment, emotional withdrawal, apathy, and
cognitive impairment [1]. The symptoms of schizophrenia are
typically separated into two categories, positive symptoms and
negative symptoms. Positive symptoms include hallucinations,
ep. Published by Elsevier
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dulin-dependent prot

ory postsynaptic potentia

euronal calcium sensor

scicular nucleus; PGO, p

id eye movement; SubCD
nal Neuroscience, Depart
1 West Markham St., Litt
u (E. Garcia-Rill).
an Association of Sleep.
delusions, thought disorder, and agitation, while negative
symptoms include lack of affect, anhedonia, and withdrawal.
In addition, there are cognitive symptoms. Cognitive symptoms
include poor executive function, lack of attention, and disturbed
working memory. In addition, abnormal movements have been
described. Equally varied causes have been advanced to explain
the disease, including cortical atrophy, catecholaminergic
abnormalities, and early brain injury [1].
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However, schizophrenia is characterized by severe abnorm-
alities in sleep/wake control, including hypervigilance,
decreased slow wave sleep (SWS) especially deep sleep stages,
increased rapid eye movement (REM) sleep drive, and fragmen-
ted sleep [2–6]. These abnormalities basically reflect the pre-
sence of increased vigilance and increased REM sleep drive,
that is, they reflect an overactive reticular activating system
(RAS) output. For this reason, it is important to assess the role
in schizophrenia of one of the RAS centers that modulates
arousal and REM sleep, the peedunculopontine nucleus (PPN).
The increased REM sleep drive in schizophrenia has been
proposed to represent REM sleep intrusion during waking, that
is, in eliciting hallucinations [7,8]. The sleep/wake disturbances
in schizophrenia are correlated better with negative rather than
positive symptoms [9]. Other studies emphasized the relation-
ship between negative symptoms in schizophrenia and
increased cholinergic output [10,11], including increased output
from the cholinergic arm of the RAS, the PPN [12].

There are also postural and motor abnormalities [13,14], as
well as eye movement dysregulation [15,16] in schizophrenia.
These findings are in keeping with the modulation of motor
control by the RAS [17,18]. In addition, these patients suffer
from sensory gating deficits determined using habituation of
the blink reflex [19]. One of the first studies using the
midlatency auditory evoked P50 potential in clinical condi-
tions showed that habituation of the P50 potential using a
paired stimulus paradigm was decreased in schizophrenia
[20]. The P50 potential is a midlatency auditory evoked
response present during waking and REM sleep but absent
during slow wave sleep, that is, it is related to arousal states
[21]. The P50 potential, as established in human and animal
studies, is generated by the PPN and is manifested at the
vertex [21,22]. These sensory gating deficits demonstrate a
lack of inhibition of responses to repetitive stimuli, which
have been found in patients with schizophrenia and in some
clinically unaffected first-degree relatives [23].

Gamma oscillations appear to participate in sensory percep-
tion, problem solving, and memory [24–29], and coherence at
these frequencies may occur at cortical or thalamocortical
levels [30,31]. Indeed, synchronous gamma band activation
among thalamocortical networks [32], is thought to contribute
to the merger, or “binding”, of information originating from
separate regions that leads to perception [33]. Conversely,
gamma oscillation deficits have been suggested as a pathophy-
siologic feature of diseases like schizophrenia [34–37]. In addi-
tion, aberrant gamma band activity and coherence during
cognitive tasks or attentional load have been reported in
schizophrenic patients reviewed in Ref. [38]. These results
suggest that the generation and maintenance of gamma band
activity may be abnormal in schizophrenia. In addition, schizo-
phrenic patients suffer from hypofrontality, or low frontal lobe
blood flow [39] which may contribute to the sensory gating
deficits, but also to the lack of critical judgment.

The results of electroencephalographic (EEG), reflex, and
P50 potential testing all point to increased arousal and
increased REM sleep drive. That is, the PPN, as the cholinergic
arm of the RAS, is overactive in schizophrenia, but it is
overactive in a specific manner. Responses to repetitive
stimuli are increased and reflexes are exaggerated suggesting
that phasic responses to brief stimuli are dysregulated. For
example, exaggerated fight-or-flight responses in response to
sudden stimuli are present in schizophrenia with devastating
consequences [40]. However, the decreased and interrupted
gamma band activity also suggests that gamma oscillations
are not properly maintained on a tonic basis. This may have
the effect of disturbing processes that depend on continuous
gamma oscillations such as sensory perception, problem
solving, and memory. This combination of short-term hyper-
excitability and long-term diminution of RAS activity is
functionally devastating. This is in agreement with findings
described above showing that anticholinergic agents appear
to alleviate some of the negative symptoms of schizophrenia
[10,11], although further work is needed in this area.
2. Role of the reticular activating system (RAS)

The two most important advances on the physiology of the
RAS in the last 10 years were, (a) the discovery of electrical
coupling in some cells of certain RAS nuclei [41], and (b) the
finding that every cell in the same nuclei manifests intrinsic
membrane gamma oscillations [17]. The first advance helps
explain how these brain centers maintain the coherence
necessary to maintain neuronal membrane oscillations at
both low and high frequencies. The second advance helps
explain how these nuclei induce and maintain gamma band
activity necessary for the process of remaining awake and
maintaining REM sleep. We will briefly touch on the former,
and discuss the latter discovery at length.

Two major elements determining the activity of large
assemblies of neurons such as in the EEG are coherence
and frequency. Coherence is the term for how groups of
neurons, firing in coordination, can create a signal that is
mirrored instantaneously and precisely by other groups of
neurons across the brain. These transient episodes of coher-
ence across different parts of the brain may be an electrical
signature of thought and action. Our recent discovery demon-
strated the presence of electrical coupling in three nuclei of
the RAS, a mechanism that allows groups of neurons to fire
synchronously [41–43]. Briefly, the stimulant modafinil is
used for the treatment of narcolepsy. Modafinil increases
electrical coupling and, since most coupled neurons in the
RAS are GABAergic, the coupling decreases input resistance,
decreasing activity in these cells and reducing GABA release,
thus disinhibiting other cell types. This disinhibition leads to
overall higher frequency in activity, i.e. during sleep and
arousal, in the RAS [41,42,44], and thalamocortical systems
[45]. In other words, because increased coupling in GABAergic
neurons will lead to decreased GABA release, the tendency
will be to increase coherence and also disinhibit other
transmitter systems, leading to increased excitation, espe-
cially during waking. That is, since modafinil increases
electrical coupling, it should enable better coherence at all
frequencies, during waking and even after its effects are
waning, during sleeping. That is why modafinil is also useful
in regulating coherence during sleep. Conversely, the most
fast-acting anesthetics known, inhaled halothane or injected
propofol, both block gap junctions, and both put us to sleep
very rapidly [41,42]. That is, the control of gap junctions can
determine if we are asleep or awake.
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We described the presence of dye and electrical coupling
in the RAS, specifically in the intralaminar parafascicular
nucleus (Pf), the PPN, and the subcoeruleus dorsalis (SubCD),
which modulates REM sleep [42–44]. We also found that the
stimulant modafinil decreased the resistance of PPN, Pf, and
SubCD neurons [42], in keeping with results in the cortex,
reticular thalamus, and inferior olive [45].
3. Pedunculopontine physiology and gamma
frequency activity

Gamma oscillations emerge from the dynamic interaction
between intrinsic

Neuronal and synaptic properties of thalamocortical net-
works [34]. Cortical gamma band generation can be influenced
by subcortical structures like the hippocampus and cerebel-
lum [46,47]. The neuronal networks behind such activity
include inhibitory cortical interneurons with intrinsic mem-
brane potential oscillatory activity in the gamma band range
[30,48,49], many of which are electrically coupled [50], as well
as rhythmically bursting pyramidal neurons (also electrically
coupled) [51]. At the thalamic level, thalamocortical excitatory
neurons have intrinsic properties needed to generate sub-
threshold gamma band membrane potential oscillations [52].
Cortical interneurons can generate membrane potential
gamma oscillations through the activation of voltage-depen-
dent, persistent sodium channel-dependent subthreshold
oscillations [51], and metabotropic glutamate receptors [53].
In thalamocortical neurons, the mechanism responsible for
gamma band activity involves high threshold P/Q-type
voltage-gated calcium channels located in the dendrites [52].

In addition to the cortex and thalamus, the hippocampus,
cerebellum, and basal ganglia have all been described as
manifesting gamma band activity [54–59]. It was reported
that gamma band activity in the motor cortex lags behind
coherent activity in subcortical structures [60,61]. This led to
the suggestion that motor cortex gamma synchronization
reflects a momentary arousal-related event for enabling the
initiation of movement [62–64]. That is, structures such as the
RAS and thalamus may play an early permissive role in the
control of movement.

The PPN is most active during waking and REM sleep [65],
and modulates ascending projections through the thalamus
(modulating arousal), and descending projections through
the pons and medulla (modulating REM sleep and posture
and locomotion). The PPN is made up of non-overlapping
populations of cholinergic, glutamatergic, and GABAergic
neurons [66]. The PPN contains three cell types based on
in vitro intrinsic membrane properties [67–69]. Recordings of
PPN neurons in vivo identified multiple types of thalamic-
projecting PPN cells distinguished by their firing properties
relative to ponto-geniculo-occipital (PGO) wave generation
[70]. Some neurons exhibited low spontaneous firing frequen-
cies (o10 Hz), but most showed high rates of tonic firing in
the beta/gamma range (20–80 Hz). In other in vivo studies, PPN
neurons increased firing during REM sleep and were labeled
“REM-on” cells, or during both waking and REM sleep and
were called “Wake/REM-on” cells, and also during waking
only and were called “Wake-on” cells [71–73]. Stimulation of
the PPN will potentiate the manifestation of fast (20–40 Hz)
oscillations in the cortical EEG, outlasting stimulation by 10–
20 s [74]. These results suggest that PPN cells do fire at
gamma band frequencies in vivo, and that its outputs can
indirectly induce gamma band activity in its targets.

We were the first to report that all PPN cells fired maxi-
mally at gamma band frequency when depolarized using
current steps [75]. This is the only property shared by every
cell in the PPN, regardless of transmitter type or electrophy-
siological type. Further results demonstrated that both
voltage-dependent N- and P/Q-type calcium channels mediate
the depolarizing phase of gamma band oscillations in the PPN.
Voltage clamp results suggested that calcium channels are
located distally to the cell body, probably in PPN dendritic
compartments [76], as has been determined in thalamic
neurons [52]. We then confirmed using fast imaging techni-
ques that PPN calcium channel-mediated oscillations are due
to P/Q- and N-type channels, and revealed the fact that these
channels are distributed along the dendrites of PPN cells [77].

It has been suggested that consciousness is associated
with “continuous” gamma band activity rather than an inter-
rupted pattern of activity [78,79]. The original description of
the RAS specifically suggested that it participates in “tonic or
continuous” arousal, and that lesions of the RAS eliminated
“tonic” arousal [80,81]. RAS structures like the PPN, in which
every cell manifests gamma band activity, and in which a
subgroup of cells are electrically coupled, then becomes a
“gamma-making machine”. We hypothesized that it is the
activation of the RAS during waking and REM sleep that
induces coherent activity (through electrically coupled cells)
and high frequency oscillations (through P/Q-type calcium
channel and subthreshold oscillations). This leads to the
generation of the background of gamma activity necessary
to support a state capable of reliably assessing the world
around us on a continuous basis. That is, these mechanisms
may underlie the process of preconscious awareness [82,83].
4. Two states, two pathways

Injections of glutamate into the PPN of the rat were found to
increase both waking and REM sleep, but injections of NMDA
increased only waking, while injections of kainic acid (KA)
increased only REM sleep [84–87]. Thus, the two states of
waking and REM sleep appear to be independently activated
by NMDA vs KA receptors. Moreover, the intracellular path-
ways mediating the two states are different. For example, the
CaMKII activation inhibitor, KN-93, microinjected into the
PPN of freely moving rats (in vivo) resulted in decreased
waking but not REM sleep [88]. We showed that beta/gamma
band oscillations in PPN neurons recorded in vitro were
blocked by superfusion of KN-93 [89], suggesting that some
cells manifest their oscillations via the CaMKII pathway.
Moreover, the effects of the stimulant modafinil, which are
mediated by increased electrical coupling, are modulated by
the CaMKII pathway since KN-93 inhibits the action of
modafinil [41,42,45,90]. These findings suggest that waking
in vivo may be modulated by the CaMKII pathway, while REM
sleep may be modulated by the cAMP pathway in the PPN
[18,83,90]. In addition, it appears that the cAMP-dependent
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pathway phosphorylates N-type calcium channels [90], while
CaMKII regulates P/Q-type calcium channels [91]. Therefore,
the presence of P/Q-type calcium channels is related to
CaMKII and waking, while the presence of N-type calcium
channels is more related to cAMP and REM sleep [89].

We have preliminary findings showing that in some PPN
cells (50%), the N-type calcium channel blocker ω-conotoxin-
GVIA (ω-CgTx) reduced gamma oscillation amplitude, while
subsequent addition of the P/Q-type blocker ω-agatoxin-IVA
(ω-Aga) blocked the remaining oscillations. Other PPN cells
(20%) manifested gamma oscillations that were not signifi-
cantly affected by the addition of ω-CgTx, however, ω-Aga
blocked the remaining oscillations. In the rest of the cells
(30%), ω-Aga had no effect on gamma oscillations, while ω-
CgTx blocked them. Similar results were found during record-
ings of voltage-dependent calcium currents. These results
confirm the presence of cells in the PPN that manifest gamma
band oscillations through only N-type, only P/Q-type, and
both N- and P/Q-type calcium channels. This new cell type
classification suggests that some PPN neurons fire only
during REM sleep (“REM-on”, N-type only), only during wak-
ing (“Wake-on”, P/Q-type only), or during both waking and
REM sleep (“Wake/REM-on”, N-typeþP/Q-type) [92].

These results point to the presence of an intracellular
“waking” pathway and a separate intracellular “REM sleep”
pathway, each modulated by different calcium channel types.
Armed with this information, we can now attempt to selec-
tively modulate waking by affecting P/Q-type calcium chan-
nels and/or the CaMKII pathway, or REM sleep by affecting
the N-type calcium channels and/or the cAMP pathway.
5. Neuronal calcium sensor protein 1 (NCS-1)
in schizophrenia and bipolar disorder

Human postmortem studies reported increased expression of
neuronal calcium sensor protein (NCS-1) in the brains of
some bipolar disorder and schizophrenic patients compared
to normal controls and major depression patients [93,94]. The
distribution of levels of NCS-1 suggest that some patients
have a 50% increase in expression, while others fall within
the normal range. That is, gamma band activity is reduced or
disrupted [95–97] in precisely the same disorders that show
brain NCS-1 over expression. However, some studies suggest
that other patients show increased gamma band activity [98].
We tested the hypothesis that NCS-1 modulates calcium
channels in PPN neurons that generate gamma band oscilla-
tions, and that excessive levels of NCS-1, as would be
expected with over expression, reduce or block gamma band
oscillations in these cells [99].

Recordings in PPN neurons using 1 μM NCS-1 were found
to increase the amplitude and frequency of ramp-induced
oscillations within �25 min of diffusion into the cell. Fig. 1 is
a representative example of ramp-induced membrane poten-
tial oscillations in a PPN neuron in the presence of synaptic
blockers and tetrodotoxin. Shortly after patching, the ramp
typically induced low amplitude oscillations in the beta/
gamma range. After 10 min of recording, some increase in
the oscillation amplitude and frequency was present. After
25 min of recording, NCS-1 at 1 μM significantly increased the
amplitude and frequency of oscillations. Control cells
recorded without NCS-1 in the pipette manifested no sig-
nificant changes in amplitude or frequency throughout the
30 min recording period. These values were not significantly
different from each of the 0 min recordings using pipettes
with NCS-1, that is, before NCS-1 induced significant effects,
so that the 0 min recordings are an accurate representation of
control levels.

We then carried out a study to determine the effects of
NCS-1 concentration on PPN cell ramp-induced oscillations.
When using 10 μM NCS-1, the oscillation amplitude immedi-
ately increased to four times the levels and but then gradu-
ally decreased until it was significantly reduced by 30 min.
These effects suggest an immediate increase in amplitude by
very high levels of NCS-1 that ultimately led to blockade.
Based on these results, 1 μM NCS-1 seems to be the most
critical concentration for promoting gamma oscillations,
while 10 μM blocked oscillations, in keeping with the effects
of NCS-1 over expression [89,99]. Fig. 2 is a diagram of the
intracellular pathways at play, showing the NCS-1 may
normally stimulate gamma oscillations through P/Q-type
calcium channels.

The postmortem results previously described [79] suggest
that only some patients with schizophrenia may suffer from
significant over expression of NCS-1, which may be mani-
fested as decreased gamma band activity only in a subpopu-
lation of patients. No human study has measured gamma
band activity and correlated it with NCS-1 levels. Unfortu-
nately, serum sampling does not reflect brain levels and, in
fact, NCS-1 levels in leukocytes are actually decreased in
schizophrenic patients [100]. However, future clinical trials in
drug naïve patients with schizophrenia or bipolar disorder
may benefit from determination of a significant decrease in
gamma band activity prior to pharmacotherapy, which may
also help address the heterogeneity of schizophrenia and
facilitate the process of identifying more homogeneous
groups within the syndrome [101]. It is to those patients that
pharmacological targeting to increase gamma band activity
may be of benefit. We have preliminary evidence suggesting
that the stimulant modafinil may indeed compensate to
some extent for excessive amounts of NCS-1. We found a
partial return of gamma oscillations after exposure to mod-
afinil that had been suppressed by high levels of NCS-1 [89].
6. One mechanism behind lithium’s action

Serendipitously, the mood disturbances in bipolar disorder
(but not schizophrenia) were treated effectively using lithium,
an ion that remains one of the best treatment options,
although it is limited by side effects [102]. Lithium has also
been proposed as a neuroprotective agent. Lithium was
proposed to act by inhibiting the interaction between NCS-1
and inositol 1,4,5-triphosphate receptor protein (InsP) [103],
and, as we saw above, NCS-1 is over expressed in bipolar
disorder and schizophrenia [93,94]. NCS-1 is known to
enhance the activity of InsP [104], which is present in the
PPN [105]. Our preliminary studies show that lithium at low
concentration (1 μM) reduces the effect of NCS-1 on gamma
band oscillations, while high levels of lithium have no effect



Fig. 1 – Effects of NCS-1 on gamma oscillations in PPN neurons. (A) Representative 1 s long current ramp-induced oscillations
in a PPN neuron in fast synaptic blockers and tetrodotoxin in the extracellular solution and 1 μM NCS-1 in the recording
pipette (left record, light gray). After 10 min of NCS-1 diffusing into the cell, the oscillatory activity increased slightly (middle
record, dark gray). However, after 25 min of NCS-1 diffusion both oscillation amplitude and frequency were increased (right
record, black). (B) Power spectrum of the records shown in (A) showing the increased amplitude and frequency of oscillations
after 25 min exposure to 1 μM NCS-1. (C) Representative ramp-induced oscillations recorded during 1 s long current ramps in
the presence of fast synaptic blockers and tetrodotoxin and NCS-1 at 10 μM in the recording pipette (left record, light gray).
After 10 min of NCS-1 diffusing into the cell, the oscillation amplitude increased slightly (middle record, dark gray). However,
testing at 25 min showed a decrease in amplitude compared to both 0 min and 10 min recordings (right record, black). (D)
Power spectrum of the records shown in (C) demonstrating the slight increase in amplitude at 10 min, and the subsequent
decrease at 25 min.
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[106]. A diagram of these intracellular pathways appears in
Fig. 2. That is, lithium may reduce the effects of over
expressed NCS-1 in bipolar disorder, thereby normalizing
gamma band oscillations mediated by P/Q-type calcium
channels modulated by NCS-1. Therefore, the effects of over
expression of NCS-1 in bipolar disorder may be decreased by
lithium. We found that excessive NCS-1 decreased gamma
oscillations, therefore, lithium may prevent the down regula-
tion of gamma band activity and restore normal levels of
gamma band oscillations. These findings taken together
resolve the 60-year mystery of the physiology of lithium
action in bipolar disorder. An interesting observation is that
NCS-1 down regulates N-type calcium channels, at least in
some cell lines [107]. This may mean that under some
circumstances NCS-1 may inhibit N-type channel function,
while promoting P/Q-type channel function. While lithium
addresses the mood swings in bipolar disorder, it fails to
address the psychotic aspects of schizophrenia. Therefore, a
different therapeutic strategy is required for schizophrenia.
7. Dopamine

The dopamine (DA) theory of schizophrenia is a model that
draws evidence from the findings that antipsychotics have
DA blocking actions. Given the well-known role of DA in
schizophrenia, what is the relationship between the substan-
tia nigra and the PPN? Anatomically, the PPN is reciprocally
connected to the substantia nigra, with the nigral input being
inhibitory to PPN, mostly glutamatergic, neurons, and the



Fig. 2 – Intracellular pathways mediating NCS-1 modulation

of intracellular calcium and P/Q-type calcium channels.
Representation of effects of acetylcholine (ACh) activation of
a muscarinic 2 cholinergic receptor (M2R) acting through G
protein coupling to phospholipase C (PLC), that in turn
cleaves phospholipid phosphatidylinositol biphosphate
(PIP2) into inositol triphosphate (IP3). IP3 is released and
binds to IP3 receptors in the endoplasmic reticulum (ER) to
release calcium (Ca2þ). One of the intracellular pathways
activated involves NCS-1, which stimulates (þ) P/Q-type
calcium channels and somewhat inhibits (� ) N-type calcium
channels. NCS-1 at low concentrations increases gamma
oscillations while NCS-1 at high concentrations blocks them.
In addition, NCS-1 over expression is inhibited (� ) by
lithium (Liþ), removing the blockade of gamma oscillations
and restoring the maintenance of gamma band activity in
these cells.
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PPN input to nigra being excitatory and emanating from both
cholinergic and glutamatergic PPN neurons [108–110]. The
excitatory input to the nigra from the PPN may be responsible
for the activity manifested by nigral neurons, which are
active during waking and REM sleep [111,112]. That is, it is
likely that normal PPN activity during arousal states helps
drive firing in the substantia nigra. However, the hypervigi-
lance and increased REM sleep drive present in schizophrenia
suggest that the PPN may overdrive the substantia nigra,
thereby potentiating DA release in the striatum. Therefore, it
would seem that down regulation of PPN output to the nigra
may help alleviate some of the hyperarousal symptoms of
the disease.

The first generation antipsychotics included chlorproma-
zine and haloperidol, which showed DA D2 receptor blockade
[113]. Due to limited clinical benefits and long-term side
effects such as tardive dyskinesia, new agents had to be
developed. A second generation antipsychotic named cloza-
pine was found to act on the same DA receptors in the
striatum to help decrease DA tone, but it was also found to
affect muscarinic cholinergic and serotonergic receptors. In
fact, clozapine was initially developed as an anti-muscarinic
cholinergic agent intended to balance the decrease in DA
present in Parkinson’s disease, i.e. by decreasing cholinergic
tone the idea was to rebalance the striatum [114]. Clozapine
thus appears to partially block muscarinic input to the nigra
as well as DA input to the striatum. In addition, clozapine
acts as a partial serotonin reuptake receptor blocker, thereby
increasing inhibition of the PPN, further down regulating the
raphe-PPN-nigra-striatum pathway. Despite the better bene-
ficial effects than early antipsychotics, clozapine also shows
major side effects, and fails to induce ameliorative effects in
many patients. Drug companies have attempted to eliminate
the side effects of clozapine, but only olanzapine has retained
anti-muscarinic properties, and is, in fact, the most widely
used third generation antipsychotic. This suggests that down
regulating the muscarinic activation of the nigra by the PPN
helps relieve the symptoms of the disease in at least some
patients.
8. Conclusion

The PPN simultaneously modulates cortical arousal as well as
posture and locomotion. Moreover, in response to sensory
inflow, the PPN generates and maintains gamma band activ-
ity during waking. These membrane oscillations are
mediated by voltage-dependent high threshold N- and P/Q-
type calcium channels. It appears that these two types of
channels with separate intracellular pathways are involved
in selectively controlling high frequency activity. P/Q-type
channels are modulated by CaMKII during waking, while N-
type channels are modulated by cAMP during REM sleep [89].
In addition to intrinsic membrane oscillations, the mainte-
nance of gamma band activity requires synaptic connectivity
within the nucleus and between regions of the brain. PPN
circuitry includes cholinergic, glutamatergic, and GABAergic
neurons. Some GABAergic cells are electrically coupled to
provide coherence [17], and the nucleus may include func-
tional cell clusters [89].

From the moment we awaken, the nucleus ensures that
the necessary background of activity is present in order to
preconsciously evaluate the world around us [17,18,82,83,89].
Therefore, this process is embedded in the formulation of our
perceptions and actions, and modulates higher-level gamma
processing through its projections to the intralaminar thala-
mus, basal ganglia, hypothalamus, and basal forebrain. That
is why it affects functions as disparate as waking and REM
sleep, mood and perception, and homeostatic regulation.
Consequently, dysregulation in PPN processing will be man-
ifested in motor disorders, psychiatric disorders, neurological
disease, all of which include sleep disturbances. These issues
are discussed at length in a recent book [114].

The implications of PPN dysregulation for schizophrenia
suggest that the sleep wake dysfunction in the disease arises
from the nucleus. In some patients, over expression of NCS-1
may down regulate high frequency oscillations, especially
those mediated by P/Q-type calcium channels. This would
lead to interrupted or decreased gamma band activity during
waking, disturbing the maintenance of the state of waking
and preconscious awareness. It is not clear whether NCS-1
over expression in some way releases N-type channel activity
to increase REM sleep drive, but it is worth investigating. In
summary, these recent discoveries provide novel therapeutic
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targets for alleviating some of the arousal and sleep wake
disturbances in this devastating disease.
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