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Coherence resource power 
of isocoherent states
Marcelo Losada1*, Gustavo M. Bosyk2,3, Hector Freytes3 & Giuseppe Sergioli3

We address the problem of comparing quantum states with the same amount of coherence in terms 
of their coherence resource power given by the preorder of incoherent operations. For any coherence 
measure, two states with null or maximum value of coherence are equivalent with respect to that 
preorder. This is no longer true for intermediate values of coherence when pure states of quantum 
systems with dimension greater than two are considered. In particular, we show that, for any value of 
coherence (except the extreme values, zero and the maximum), there are infinite incomparable pure 
states with that value of coherence. These results are not peculiarities of a given coherence measure, 
but common properties of every well-behaved coherence measure. Furthermore, we show that for 
qubit mixed states there exist coherence measures, such as the relative entropy of coherence, that 
admit incomparable isocoherent states.

Quantum coherence, which is a consequence of the superposition principle, is one of the fundamental aspects of 
the quantum theory. It has practical relevance in numerous fields of quantum physics, particularly in quantum 
information  processing1. Furthermore, within the paradigm of quantum resource  theories2, quantum coherence 
is considered as a quantum resource that can be converted, consumed and  quantified3,4.

As any resource theory, the resource theory of coherence is built from three basic concepts: free states, resources 
and free operations. Since coherence is a basis-dependent notion, these three elements are defined in terms of a 
fixed basis, called incoherent basis. The free states of the theory, called incoherent states, are quantum states with 
diagonal density matrix in the incoherent basis. The rest of the states are resources and they are called coherent 
states. Regarding the free operations of the theory, there is no single definition and each proposal leads to a dif-
ferent resource theory for coherence, see e.g.1 and references therein. In this work, we follow the definition of 
an incoherent operation (IO) introduced  in3, which has the property that coherence can not be created from an 
incoherent state, not even in a probabilistic way.

The resource-theoretic formulation allows us to introduce a preorder between quantum states induced by 
the incoherent operations: one state is more or equally coherent than other if the former can be converted into 
the later by means of incoherent operations. This preorder is useful for studying coherence transformations and 
classifying the set of quantum states according to its coherence resource power. Given any pair of quantum states, 
they can be classified as: (i) IO-comparable, when one state can be transformed into the other by means of IO, 
(ii) IO-equivalent, when both states can be transformed into the other, and (iii) IO-incomparable, when neither 
state can be transformed into the other.

Another way to capture operational aspects of coherence is by means of coherence quantifiers. There are 
several coherence quantifiers and most of them can be studied from an axiomatic point of view. More precisely, 
any bonafide coherence measure has to vanish only for incoherent states, to be strong monotone and  convex3 
and to be maximal for maximal coherent sates as discussed  in5. Examples of coherence measures are the relative 
entropy of  coherence3, the ℓ1-norm of  coherence3 and the coherence of  formation6, among  others7–13.

Clearly, each coherence measure induces a total order on the quantum states. In general, these total orders are 
different. For instance, the total order induced by the relative entropy of coherence and by ℓ1-norm of coherence 
do not  coincide14. This result motivates the comparison among other total orders induced by different coherence 
measures (see e.g.15–20).

In this work, we address a related but different problem concerning the ordering of quantum states with 
respect to coherence. In particular, we focus on quantum states with a fixed value of coherence and we ask for 
their coherence resource power in terms of the preorder induced by the incoherent operations. First, we observe 
that all quantum states with null coherence are IO-equivalent. Similarly, all quantum states with maximum 
coherence are also IO-equivalent. However, this is not true in general. In particular, in the case of pure states, 
we show that, for any value of coherence (except the extreme values, zero and the maximum), there are infinite 
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IO-incomparable pure states with that value of coherence, provided that the dimension of the quantum systems 
is greater than two. These results are not peculiarities of a given coherence measure, but common properties of 
every well-behaved coherence measure. Furthermore, for qubit mixed states, we show that there are coherence 
measures, such as the relative entropy of coherence, that admit incomparable isocoherent states. In this way, our 
work complements other  works14–20 about ordering of quantum states with coherence.

The paper is organized as follows. First, we review the main aspects of the resource theory of coherence, 
including the definition of incoherent states, incoherent operations and coherence measures, among other rel-
evant results. Then, we provide our main results regarding the comparison of states with the same amount of 
coherence in terms of their coherence resource power. Finally, we summarize our results and discuss their 
roots and links with related problems. For the sake of readability all proofs and auxiliary results are given in the 
“Methods”.

Preliminaries: resource theory of coherence, IO preorder and coherence measures
We will focus on quantum systems with finite dimension. The Hilbert space of the system is denoted by H and 
its dimension by d = dimH . The set of all quantum states of H is denoted by S (H) and the subset of pure 
states is denoted by P (H).

Without loss of generality we choose the computational basis B = {|i�}d−1
i=0  as the incoherent basis. In this 

way, incoherent states, are quantum states with diagonal density matrix in the computational basis. More pre-
cisely, ρ is an incoherent state if and only if ρ =

∑d−1
i=0 �i|i��i| , with �i ≥ 0 and 

∑d−1
i=0 �i = 1 . We denote the set 

of incoherent states as I.
The incoherent operations introduced  in3, which have the property that coherence can not be created from 

an incoherent state, not even in a probabilistic way, are defined as follows. A completely positive trace-preserving 
map � : S (H) → S (H) is an incoherent operation (IO) if it admits a representation in terms of Kraus opera-
tors {Kn}Nn=1 such that KnρK

†
n/Tr(KnρK

†
n ) ∈ I for all 1 ≤ n ≤ N and ρ ∈ I.

Interesting enough, incoherent operations induce a preorder among quantum states in terms of their coher-
ence resource power:

Definition 1 We say that the state ρ is more or equally coherent than σ if it is possible to transform the former 
into the latter by means of an incoherent operation. We denote this by ρ →

IO
σ.

In other words, ρ →
IO

σ if there is an incoherent operation � such that σ = �(ρ) . This defines a preorder on 
the set S (H) , since it satisfies the two conditions: 

1. Reflexivity: ρ →
IO

ρ for all ρ ∈ S (H).
2. Transitivity: If ρ →

IO
ω and ω →

IO
σ , then ρ →

IO
σ for all ρ,ω, σ ∈ S (H).

Property 1 follows from the fact that doing nothing, i.e., applying the identity operator, is an IO, whereas prop-
erty 2 follows from the fact that the composition of IOs is an IO.

Furthermore, we classify the states as follows. We say that two states ρ and σ are IO-comparable when ρ →
IO

σ 
or σ →

IO
ρ . In particular, if both of these transformations are possible, we say that they are IO-equivalent, and we 

denote that as ρ ↔
IO

σ . On the contrary, if neither of these transformations are possible, we say that the states are 
IO-incomparable, and we denote that as ρ �

IO
σ.

We recall that, in this resource theory of coherence, there exist maximally coherent states (MCSs), which are 
states that can be transformed into any other state by means of IO. The canonical MCS is a pure state of the form 
ρmcs = |ψmcs

d ��ψmcs
d |3, with

Any MCSs can be obtained from the state ρmcs by applying a unitary incoherent operations of the form 
UIO =

∑d−1
i=0 eıθi |π(i)��i| , where π is a permutation acting on the set {0, 1, . . . , d − 1} and θi ∈ R5.

In addition, we recall that for pure states the preorder induced by IO is equivalent to the majorization pre-
order of the corresponding coherence vectors  (see7,8,21–23). More precisely, given |ψ� ∈ H , its coherence vector 
is defined as the vector

Notice that  ψ ∈ �d  ,  where �d  is  the set  of  d-dimensional  probabi l ity vectors,  i .e. , 
�d = {ψ = (ψ0, . . . ,ψd−1) ∈ Rd : ψi ≥ 0,

∑d−1
i=0 ψi = 1}.

Given two probability vectors ψ = (ψ0, . . . ,ψd−1) and φ = (φ0, . . . ,φd−1) , we say that ψ is majorized by φ , 
and we denote it by ψ � φ ,  if24

(1)|ψmcs
d � =

1
√
d

d−1
∑

i=0

|i�.

(2)ψ =
(

|�0|ψ�|2, . . . , |�d − 1|ψ�|2
)

.

(3)
k

∑

i=0

ψ
↓
i ≤

k
∑

i=0

φ
↓
i ∀ 0 ≤ k ≤ d − 2,
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where ↓ indicates that the entries of ψ and φ are sorted in non-increasing order, i.e., ψ↓
i ≥ ψ

↓
i+1 and φ↓

i ≥ φ
↓
i+1 

for all 0 ≤ i ≤ d − 2.
As we say before, the majorization relation defines a preorder on the set of probability vectors �d . If ψ � φ or 

φ � ψ , we say that the probability vectors are comparable. If both relation are satisfied, ψ and φ are equal up to 
a permutation. In this case we say that the probability vectors are equivalent. For dimensions greater than  two24, 
there are cases in which neither ψ � φ nor φ � ψ are possible. When this is the case, we say that the probability 
vectors are incomparable.

Taking into account these definitions, we can state the following result that connects both preorders 
 (see7,8,21–23).

Theorem 1 Let |ψ� and |φ� be two pure states. Then,

According to this theorem, two pure states |ψ� and |φ� are IO-comparable (or IO-incomparable) if and only 
if their corresponding coherence vectors are comparable (or incomparable).

In general, for mixed states, a finite number of conditions are not sufficient to fully characterize coherent 
 transformations25. From a generalized notion of coherence vector, it can be obtained a necessary condition in 
terms of a majorization  relation13. However, qubit transformations under incoherent operations are completely 
 characterized26,27.

Theorem 2 Let ρ and σ be two qubit states with Bloch vectors r1 = (x1, y1, z1) and r2 = (x2, y2, z2) , respectively. 
Then, ρ →

IO
σ if and only if

with r1 =
√

x21 + y21  and r2 =
√

x22 + y22 .

In addition to the comparability notions between states, it is relevant to quantify the coherence amount of 
quantum states. In this paper, we mainly follow the axiomatic formulation for coherence measures.

Definition 2 A coherence measure C is a real function defined on S (H) , satisfying the following conditions: 

1. Vanishing only on incoherent states: C(ρ) = 0 if and only if ρ ∈ I.
2. Strong monotonicity under IO: C(ρ) ≥

∑

i piC(σi) , where {pi , σi} is an ensemble obtained from the state ρ 
by means of IO.

3. Convexity: C
(
∑

i piρi
)

≤
∑

i piC(ρi).
4. Maximum coherence: argmaxρ∈S (H) C(ρ) coincides with the set of maximally coherent states.

It can be shown that conditions 2 and 3 imply monotonicity under IO, that is, C(ρ) ≥ C(�(ρ)) for any inco-
herent operation � and any state ρ . The relevance of condition 4 is discussed  in5. In particular, this condition 
excludes some problematic cases as the one given in Ex. 4  of28.

An interesting result is that any coherence measure restricted to pure states can be expressed in terms of a 
real, symmetric and concave functions defined on �d . More precisely, given the set

we have the following  result7,8.

Theorem 3 Let C be a coherence measure. Then, there exists a function fC ∈ F , such that the restriction of C to 
the set of pure states, denoted by C|P (H) , satisfies

where ψ is the coherence vector of |ψ�.

By abuse of notation, we will use C(|ψ�) when evaluating the restriction of the measure C on a pure state, 
instead of C|P (H)(|ψ��ψ |) . In particular, we will focus on functions of F that are also strictly Schur-concave. 
Namely, a real function f defined on �d is said to be Schur-concave, if f (ψ) ≥ f (φ) whenever ψ � φ . If, in 
addition, f (ψ) > f (φ) whenever ψ � φ and ψ  = �φ , with � a permutation matrix, then f is said to be strictly 
Schur-concave (see Def. A.1  in24). We note that any function f ∈ F is Schur-concave, since they are symmetric 
and concave (see Prop. C.2  in24), but they are not necessarily strictly Schur-concave. The condition that fC be 

(4)|ψ� →
IO

|φ� ⇐⇒ ψ � φ.

(5)r1 ≥ r2,

(6)
1− z21
r21

≤
1− z22
r22

,

(7)

F =
{

f : �d → [0, 1] : f is symmetric and concave, f (1, 0, . . . , 0) = 0, and arg max
ψ∈�d

f (ψ) = (1/d, . . . , 1/d)
}

,

(8)C|P (H)(|ψ��ψ |) = fC(ψ),
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strictly Schur-concave is not so restrictive, since the most used coherence measures satisfy it, including the rela-
tive entropy of coherence, the ℓ1-norm of coherence, and the coherence of formation.

Now, we review some relevant coherence measures. The first one is the relative entropy of coherence Cre , 
defined as

where S(ρ||σ) = Tr(ρ(ln ρ − ln σ)) . Alternatively, the relative of coherence can be expressed as 
Cre(ρ) = S(ρdiag )− S(ρ) , where ρdiag =

∑d−1
i=0 �i|ρ|i�|i��i| and S(ρ) = −Tr(ρ ln ρ) is the von Neumann 

entropy. Accordingly, the associated function fCre ∈ F of the relative of coherence is the Shannon entropy, i.e., 
fCre (ψ) = H(ψ) = −

∑d−1
i=0 ψi lnψi , which is also strictly Schur-concave. The relative entropy of coherence has 

a particular operational interpretation. It coincides with the distillable coherence, that is, the maximal number 
of maximally coherent single-qubit states |ψmcs

2 � which can be obtained per copy of a given state ρ by means of 
incoherent operations in the asymptotic  limit6.

Another relevant coherence measure is given in terms of the off-diagonal elements of ρ . More precisely, the 
ℓ1-norm of coherence Cℓ1 is defined as

In this case, the associated function fCℓ1
∈ F is given by fCℓ1

(ψ) =
(

∑d−1
i=0

√
ψi

)2
− 1 , which is also strictly 

Schur-concave. We remark that the ℓ1-norm of coherence is useful for characterizing quantum interference and 
obtaining complementarity relations between coherence and path information in multipath  interferometers29–31.

Finally, we recall that there are different ways to extend a coherence measure defined on pure states to mixed 
 states7,8,12,13. The most common way is the convex roof method. For any f ∈ F the convex roof measure of coher-
ence Ccr

f  is given  by7,8

where D (ρ) =
{

{

qk , |ψk�
}M

k=1
: ρ =

∑M
k=1 qk|ψk��ψk|

}

 is set of all pure state decompositions of ρ . For 
instance, choosing the function f ∈ F as the q-Tsallis  entropy32, i.e., f Tq (ψ) =

(

1−
∑d−1

i=0 ψ
q
i

)

/(q− 1) for 
q ∈ (0, 1) ∪ (1,+∞) , leads to the q-Tsallis coherence of formation CT

q  . Notice that f Tq  is strictly Schur-concave33 
and CT

1 (ρ) = limq→1 C
T
q (ρ) = CCoF(ρ) , recovering the coherence of formation. This measure coincides with 

the coherence cost, that is, the minimal number of maximally coherent single-qubit states |ψmcs
2 � required to 

produce a given state ρ by means of incoherent operations, in the asymptotic  limit6.

Results
We are interesting in comparing states with the same amount of coherence. For a given coherence measure C 
and a non-negative number α , we introduce the set of isocoherence states EC,α as follows

On the one hand, from the condition 1 of definition 2, it follows EC,0 = I . Thus, as a consequence of that all 
incoherent states are IO-equivalent (see Observation 1), the states belonging to EC,0 are all IO-equivalent. On 
the other hand, from condition 4 of definition 2, it follows that the set EC,MC , with MC = C(ρmcs) , is formed 
by maximally coherent states. Thus, the states belonging to EC,MC are all IO-equivalent. Therefore, as one might 
expect, all isocoherent states with an extreme value of coherence have the same coherence resource power. 
Moreover, this is also true for pure isocoherent states of qubit systems for any value of coherence.

Proposition 1 For any function f ∈ F strictly Schur-concave, pure isocoherent states of qubit systems are 
IO-equivalent.

A natural question that arises from the previous observations is: In higher dimensional systems, do isocoher-
ent pure states with an intermediate value of coherence have the same coherence resource power? In other words, 
for systems with d > 2 , we are asking if states of EC,α , with α ∈ (0,MC) , are IO-equivalent.

We will show that this is not the case. More precisely, we will prove that for each value of coher-
ence α in the interval (IC ,MC) , there are infinite IO-incomparable pure states with that amount 
of coherence, where IC = infψ∈ri(�d) fC(ψ) with ri(�d) the relative interior of the set �d , i.e., 
ri(�d) = {ψ ∈ Rd : ψi > 0,

∑d−1
i=0 ψi = 1}.

Proposition 2 Let d > 2 and let C : S (H) → R be a coherence measure such that its restriction to pure states 
has an associated function fC ∈ F strictly Schur-concave. For any α ∈ (IC ,MC) , there are infinite pure states 
{|ψ(i)��ψ(i)|}i∈I ⊆ EC,α (with I a set of index), such that |ψ(i)� �

IO
|ψ(i′)� for all i  = i′ ∈ I.

(9)Cre(ρ) = min
σ∈I

S(ρ||σ),

(10)
Cℓ1(ρ) =

d−1
∑

i, i′ = 0
i �= i′

|�i|ρ|i′�|.

(11)Ccr
f (ρ) = min

{qk ,|ψk�}Mk=1∈D (ρ)

M
∑

k=1

qkf (ψk),

(12)EC,α = {ρ ∈ S (H) : C(ρ) = α}.
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Another condition that coherence measures usually satisfy is the continuity condition, that is 

5.  Continuity: C is continuous on S (H).

 If a coherence measure also satisfies the continuity condition (5 ), we have that for any possible value of coher-
ence (except the extreme cases zero and the maximal value MC ) there are an infinite number of IO-incomparable 
pure states with that amount of coherence.

Corollary 1 Let d > 2 and let C : S (H) → R be a coherence measure satisfying condition ( 5 ) and such that its 
restriction to pure states has an associated function fC ∈ F strictly Schur-concave. For any α ∈ (0,MC) , there are 
infinite pure states {|ψ(i)��ψ(i)|}i∈I ⊆ EC,α (with I a set of index), such that |ψ(i)� �

IO
|ψ(i′)� for all i  = i′ ∈ I.

In particular, we remark that, Propositions 1 and 2, and Corollary 1 are valid for the relative entropy of coher-
ence Cre and the ℓ1-norm of coherence Cℓ1.

Finally, for the three-dimensional case, we provide an example of a family of IO-incomparable pure states 
with the same value of the relative entropy of coherence. For each a ∈ [0, 1] , we define the curve

where u = (1/3, 1/3, 1/3) , v = (1, 0, 0) and w = (0,−1/3, 1/3) . For each a ∈ [0, 1] and t ∈ [0, 1] , ψ(a)(t) is a 
probability vector sorted in a non-increasing way. Moreover, it can be proved that different curves do not have 
equivalent probability vectors in common, except the extreme vectors u and v.

For some α ∈ (0,MC) (with MC = ln 3 ) and for each a ∈ [0, 1] , we consider the intersection of the contour 
plot Cr(|ψ�) = −

∑2
i=0 ψi lnψi = α with the curve ψ(a) . We denote this intersection by ψ(a)(t∗a ) , with t∗a ∈ (0, 1) . 

In Fig. 1, we depict the curves ψ(a) , for a ∈ {0.2, 0.6, 1} (solid lines), and the contour plots Cr(|ψ�) = α , for 
α ∈ {0.2, 0.4, 0.6, 0.8, 1} (dashed lines).

We consider the family of probability vectors {ψ(a)(t∗a )}a∈[0,1] , and the corresponding family of pure states 
{|ψ(a)�}a∈[0,1] , where

Then, we have Cr(|ψ(a)�) = fCr (ψ
(a)(t∗a )) = α for all the states of the family. Since Shannon entropy is strictly 

Schur-concave, then the family of probability vectors only has equivalent or incomparable pairs of vectors. 
Moreover, since different curves do not have pairs of equivalent vectors (except the extreme vectors), the family 
of probability vectors does not have pairs of equivalent vectors. This implies that all probability vectors of the 
family {ψ(a)(t∗a )}a∈[0,1] are mutually incomparable. We conclude that all the states of the family {|ψ(a)�}a∈[0,1] are 
mutually IO-incomparable. In this way, we have found a family of mutually IO-incomparable pure states with 
relative entropy of coherence equal to α.

Regarding qubit mixed states, we can distinguish two situations depending on the coherence measure. An 
arbitrary coherence measure for a qubit state ρ , with Bloch vector r = (x, y, z) , can be expressed in terms of 
r =

√

x2 + y2 and z, i.e., C(ρ) = C(r, z) . For measures that do not depend on z and are strictly increasing on r, 
it is easy to see that there are no pair of incomparable isocoherent states. More precisely, let ρ and σ be two 

(13)
{

ψ(a) : [0, 1] → �
↓
d

ψ(a)(t) = u+ t(v − u)+ at(t − 1)w,

(14)|ψ(a)� =
d−1
∑

i=0

√

(

ψ(a)(t∗a )
)

i
|i�.

Figure 1.  The big triangle is the set of three-dimensional probability vectors �3 . The gray triangle is the subset 
of ordered probability vectors �↓

3 . We depict the curves ψ(a) , defined in Eq. (13), for a ∈ {0.2, 0.6, 1} (solid 
lines) and the contours plot of −

∑

2

i=0
ψi lnψi = α for α ∈ {0.2, 0.4, 0.8, 1} (dashed lines). The intersection of a 

given contour plot with the curves ψ(a) gives a family of incomparable probability vectors. From this family and 
Eq. (14), we obtain a family of mutually IO-incomparable pure states with relative entropy of coherence equal to 
α.
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isocoherent states, with Bloch vectors r1 = (x1, y1, z1) and r2 = (x2, y2, z2) respectively. Then, since the coherence 
measure only depends on r, and it is strictly increasing, we have that r1 = r2 . Finally, from Theorem 2, we con-
clude that, if |z1| ≤ |z2| , then σ →

IO
ρ , and if |z2| ≤ |z1| , then ρ →

IO
σ . In other words, the isocoherent states ρ and 

σ are IO-comparable . In particular, the ℓ1-norm of coherence is an example of this kind of coherence measures: 
Cℓ1(ρ) = r.

For coherence measures that also depend on z, there are examples of isocoherent states which are incompa-
rable. For instance, for the relative entropy of coherence, which can be expressed as 
Cre(ρ) = h

(

1+z
2

)

− h
(

1+
√
r2+z2

2

)

 with h(x) = −x ln x − (1− x) ln(1− x) , we show in Fig. 2 an example of two 
incomparable and isocoherent states.

Discussions
In this work, we have considered the subset of quantum states formed by those states with a fixed value of coher-
ence for a given coherence measure. We have analyzed its coherence resource power in terms of the preorder 
induced by the incoherent operations.

First, we have observed that, as one might expect, isocoherent states with an extreme value of coherence 
have the same coherence resource power in terms of the incoherent preorder. Second, we have shown that pure 
isocoherent states of qubit systems with arbitrary value of coherence are IO-equivalent (Proposition 1).

Third, we have proved that, in higher dimensional systems ( d > 2 ), pure isocoherent states are not necessarily 
IO-equivalent. In particular, for any value of coherence, we have shown that there are infinite IO-incomparable 
pure states with that value of coherence (Proposition 2 and Corollary 1). The essence of these results is that, in 
general, the coherence measures do not fully preserve the preorder structure of the quantum states induced by 
incoherent operations. Indeed, coherence measures map the set of quantum states to the positive real numbers, 
which is a total order set. In this way, the quantum states go from being pre-ordered by IO to being totally ordered 
by the coherence measure. Our results Proposition 2 and Corollary 1 arise as a consequence of this discrepancy. 
Another related consequence is the fact that different coherence measures induce different total orders on the set 
of quantum states, as it was observed  in14,16–18. In this way, our work complements these studies about ordering 
quantum states with coherence.

Regarding qubit mixed states, we have distinguished two situations depending on the coherence measure. 
For measures that do not depend on z and are strictly increasing on r, we have shown that there are no pair of 
incomparable isocoherent states. In particular, the ℓ1-norm of coherence is an example of this kind of coherence 
measures. For coherence measures that also depend on z, we have shown that there are examples of isocoher-
ent mixed states which are incomparable. In particular, we have considered the case of the relative entropy of 
coherence.

Finally, we remark that we have focused on the resource theory of coherence to illustrate these observations 
due to its topicality and practical  relevance1. However, as our proofs are posed in a wider and simpler context 
based on majorization  theory24, the results can be easily extended to any majorization-based quantum resource 
 theory34, such as entanglement  theory35 and  nonuniformity36,37. In fact, the observations made for the entangle-
ment entropy  in38, namely there are infinite incomparable bipartite pure states with a fixed value of entanglement 
entropy, can be extend to any entanglement  monotone39 by exploiting similar majorization arguments to those 
given in our proofs. The reason behind this generality is again that the preorder induced by the free operations 
of the resource theory and the total order induced by the measures are not isomorphic.

Figure 2.  Projection of the Bloch sphere on the z − r plane. The black dots represent two qubit states: ρ (upper 
dot, with r1 = 0.69135, z1 = 0.5 ) and σ (lower dot, with r2 = 0.732828, z2 = 0 ). The red and blue regions 
represent the projection of the sets {ρ′ : ρ →

IO
ρ′} and {ρ′ : σ →

IO
ρ′} on the z − r plane, respectively. The dotted 

black curve represents the set {ρ′ : Cre(ρ
′) = 0.3} projected on the z − r plane. From the figure, it can be 

observed that ρ and σ are IO-incomparable, and Cre(ρ) = Cre(σ ) = 0.3.
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Methods
First, we provide a proof of the following intuitive result: all incoherent states have the same coherence resource 
power. Indeed, for any quantum resource theory that admits a tensor product structure, like the quantum coher-
ence resource theory considered here, it is valid that the free states are interconvertible by means of the free 
operations of the  theory2. For the sake of completeness, we provide a directly proof of the Observation 1, giving 
an explicit incoherent operation that allows to transform an arbitrary incoherent state into another arbitrary one.

Observation 1 All incoherent states are IO-equivalent.

Proof Let us prove that any incoherent state ρ is IO-equivalent to the state |0��0| . By definition, ρ =
∑d−1

i=0 �i|i��i| , 
with �i ≥ 0 and 

∑d−1
i=0 �i = 1.

Firstly, let us consider the quantum operation �1 with Kraus operators Ki = |0��i| , for i = 0, . . . , d − 1 . It is 
easy to see that �1 is an incoherent operation. Moreover, �1(ρ) = |0��0| . Therefore, for all ρ ∈ I , ρ →

IO
|0��0|.

Secondly, let define the quantum operation �2 with Kraus operators Ki =
√
�i|i��0| , for i = 0, . . . , d − 1 and 

G = I − |0��0| . Again, it is easy to see that �2 is an incoherent operation, and �2(|0��0|) = ρ . Then, for all ρ ∈ I , 
|0��0| →

IO
ρ.

Both results imply that, for all ρ ∈ I , |0��0| ↔
IO

ρ . Then, we can conclude that all incoherent states are 
IO-equivalent.

  �

Proof of Proposition 1

Proof Let |ψ� and |φ� be two pure isocoherent states of a qubit system, and let ψ↓ = (ψ
↓
0 , 1− ψ

↓
0 ) and 

φ↓ = (φ
↓
0 , 1− φ

↓
0 ) be their ordered coherence vectors.

In this case, Theorem 1 reduces to |ψ� →
IO

|φ� ⇐⇒ ψ
↓
0 ≤ φ

↓
0  . Therefore, ψ and φ are comparable or, equiva-

lently, |ψ� and |φ� are IO-comparable.
Moreover, since fC(ψ) = fC(φ) and fC is strictly Schur-concave, we have that ψ and φ are equivalent. There-

fore, |ψ� and |φ� are IO-equivalent.
  �

For the proof of Proposition 2 we need the following lemma.

Lemma 1 Let C : S (H) → R be an coherence measure and fC its associated function. 

 (i) fC  i s  continuous  on ri(�d) ,  where  ri(�d) i s  the  relative  inter ior  of  �d  ,  i .e . , 
ri(�d) = {ψ ∈ Rd : ψi > 0,

∑d−1
i=0 ψi = 1},

 (ii) If C satisfies condition ( 5 ), then fC is continuous on �d.
 (iii) IC ≡ infψ∈ri(�d) fC(ψ) = limn→∞ fC(vn) , with vn = (1− 1/n, 1/[n(d − 1)], . . . , 1/[n(d − 1)]) . In par-

ticular, if fC is continuous on �d , IC = 0.

Proof 

 (i) Since fC is a concave function on �d , −fC is a convex function on the same domain. We consider the 
following extension of fC over all Rd : 

 The function gC is convex on Rd , therefore it is continuous on ri(dom g) (see Th. 10.1  in40). Since 
ri(dom gC) = ri(�d) , gC is continuous on ri(�d) . Finally, we conclude that fC is continuous on ri(�d).

 (ii) We consider the continuous map h : �d �→ H , given by 

 We can express the function fC in terms of C and h as follows, 

 Therefore, if C is continuous, then fC is also continuous.
 (iii) The probability vectors vn = (1− 1/n, 1/[n(d − 1)], . . . , 1/[n(d − 1)]) satisfy vn ≺ vn+1 for all n > 1 . 

Then, since fC is a bounded Schur-concave function, {fC(vn)}n∈N>1 is a bounded and monotonic decreas-
ing sequence. Therefore, there exists L = limn→∞ fC(vn) , and L ≤ fC(vn) for all n > 1.

gC(ψ) =
{

−fC(ψ) if ψ ∈ �d

+∞ if ψ /∈ �d

(15)h(ψ) =
d−1
∑

i=0

√

ψi|i�.

fC(ψ) = C(h(ψ)).
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   Let ψ ∈ ri(�d) . Since limn→∞ vn = (1, 0, . . . , 0) , we have that there is some nψ ∈ N , such that 
ψ � vnψ . Then, fC(ψ) ≥ fC(vnψ ) ≥ L . Therefore, for all ψ ∈ ri(�d) , fC(ψ) ≥ L , which implies 
IC = infψ∈ri(�d) fC(ψ) ≥ L.

   On the other hand, for all ψ ∈ ri(�d) , IC ≤ fC(ψ) . In particular, IC ≤ fC(vn) for all n ∈ N . This implies, 
IC ≤ limn→∞ fC(vn).

   Summing up, IC = limn→∞ fC(vn) . In particular, if fC  is continuous on �d  , we have 
IC = limn→∞ fC(vn) = fC(1, 0, . . . , 0) = 0.

  �

Proof of Proposition 2.

Proof On the one hand, MC = C(ρmcs) = fC(u) , with u = (1/d, . . . , 1/d) . On the other hand, due to Lemma 
1, IC = limn→∞ fC(vn) . Since, for all n ∈ N , u � vn , but vn � u , and fC is strictly Schur-concave, we have 
fC(vn) < fC(u) . Therefore, IC < MC.

Let α ∈ (IC ,MC) . Since α > IC = limn→∞ fC(vn) and {fC(vn)}n∈N>1 is monotonic decreasing, there is some 
nα > 1 , such that fC(vnα ) < c . Therefore, fC(vnα ) < α < fC(u).

Now, we construct a family of probability vectors, such that the value of fC on these vectors is equal to α . For 
each a ∈ [0, 1/d] , we define the curve

with vnα = (1− 1/nα , 1/[nα(d − 1)], . . . , 1/[nα(d − 1)]) and w = (0,−1/d, . . . ,−1/d, (d − 2)/d).
Notice that the entries of ψ(a)(t) are

Then, for t ∈ [0, 1] and a ∈ [0, 1/d] , all the entries are greater than zero, and 
∑d−1

i=0 ψ
(a)
i (t) = 1 . In other words, 

for each a ∈ [0, 1/d] , the curve ψ(a)(t) is formed by probability vectors. In addition, ψ(a)(t) ∈ ri(�d) for t ∈ [0, 1] 
and a ∈ [0, 1/d].

Next, we show that different curves do not have equivalent probability vectors in common, except u and vnα . 
First, we observe that their entries are decreasingly ordered:

This implies that two probability vectors ψ(a)(t) and ψ(a′)(t′) are equivalent if, and only if, their entries are the 
same. There are three cases: (i) t = t ′ = 0 , (ii) t = t ′ = 1 or (iii) t = t ′ and a = a′ . Therefore, different curves do 
not have equivalent probability vectors in common, except u and vnc.

Finally, we construct a family of IO-incomparable pure states with amount of coherence equal to c. 
From Lemma 1, we have that fC is continuous on ri(�d) . Moreover, ψ(a)(t) ∈ ri(�d) for t ∈ [0, 1] and 
a ∈ [0, 1/d] . Therefore, for each a ∈ [0, 1/d] , fC(ψ(a)(t)) is a continuous function of the variable t ∈ [0, 1] . 
Since fC(ψ(a)(0)) = fC(u) , fC(ψ(a)(1)) = fC(vnc ) and fC(vnc ) < c < fC(u) , there is a t∗a ∈ (0, 1) such that 
fC(ψ

(a)(t∗a )) = c . From the probability vectors ψ(a)(t∗a ) , we define the pure states |ψ(a)� = h(ψ(a)(t∗a )) , with 
map h as in Eq. (15).

All pure states of the family {|ψ(a)�}a∈[0,1/d] satisfy C(|ψ(a)�) = α . Moreover, since the probability vectors of 
the family {ψ(a)(t∗a )}a∈[0,1/d] are not mutually equivalent, then their respective states are not mutually IO-equiv-
alent. Now, let us prove that they are IO-incomparable. Given a, a′ ∈ [0, 1/d] , suppose that |ψ(a)� →

IO
|ψ(a′)� . 

Then, |ψ(a′)� �
IO

|ψ(a)� . In terms of the probability vectors this implies that ψ(a′) � ψ(a) , but ψ(a) � ψ(a′) . Then, 
α = fC(ψ

(a)) < fC(ψ
(a′)) = α , which is absurd. Therefore, the pure states of the family {|ψ(a)�}a∈[0,1/d] are mutu-

ally IO-incomparable.   �

Proof of Corollary 1.

Proof This result follows from Lemma 1 and Proposition 2.   �

Received: 1 December 2021; Accepted: 14 April 2022

ψ(a)(t) = u+ t(vnα − u)+ at(t − 1)w for t ∈ [0, 1],

ψ
(a)
1 (t) =

(1− t)

d
+

t(nα − 1)

nα
,

ψ
(a)
i (t) =

(1− t)

d
+

t

nα(d − 1)
+

at(1− t)

d
, for 2 ≤ i < d,

ψ
(a)
d (t) =

(1− t)

d
+

t

nα(d − 1)
−

at(1− t)(d − 2)

d
.

ψ
(a)
1 (t)− ψ

(a)
2 (t) = t −

td

nα(d − 1)
−

at(1− t)

d
≥ 0,

ψ
(a)
i (t)− ψ

(a)
i+1(t) = 0, for 2 ≤ i < d − 1,

ψ
(a)
d−1(t)− ψ

(a)
d (t) =

at(1− t)(d − 1)

d
≥ 0.
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