Asociación Argentina

de Mecánica Computacional

Mecánica Computacional Vol XXXVII, págs. 199-208 (artículo completo) A. Cardona, L. Garelli, J.M. Gimenez, P.A. Kler, S. Márquez Damián, M.A. Storti (Eds.) Santa Fe, 5-7 Noviembre 2019

COMPORTAMIENTO DINÁMICO DE VIGAS AFG TIMOSHENKO EMBEBIDAS EN UNA FUNDACIÓN TIPO WINKLER-PASTERNAK

DYNAMIC BEHAVIOUR OF AFG TIMOSHENKO BEAMS EMBEDDED IN WINKLER-PASTERNAK FOUNDATION

Gonzalo J. Gilardi ^{a,b}, Diana V. Bambill ^{a,b} y Carlos A. Rossit ^{a,b}

^a Departamento de Ingeniería (UNS), Instituto de Ingeniería-II-UNS (UNS-CIC), Universidad Nacional del Sur (UNS), Avenida Alem 1253,8000 Bahía Blanca, Argentina, http://www.uns.edu.ar

^b Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina. gonzalo.gilardi@uns.edu.ar, dbambill@criba.edu.ar, carossit@criba.edu.ar

Palabras clave: Viga Timoshenko, Vigas AFG, Vibración de vigas, Rayleigh-Ritz, Winkler-Pasternak.

Resumen. En el presente trabajo se investiga el comportamiento dinámico de vigas ahusadas y constituidas por material funcionalmente graduado, que se encuentran embebidas en un medio elástico. Las propiedades del material se consideran que varían en la dirección axial (AFG, de acuerdo con sus siglas en inglés), mientras que la fundación elástica se asume como lineal, homogénea e isótropa y su reacción sobre la viga se describe mediante el modelo de Winkler-Pasternak con dos parámetros. El comportamiento flexional de la viga se describe a través del modelo de Timoshenko, que tiene en cuenta la deformación por corte y la inercia rotatoria. El problema se resuelve aplicando el método aproximado de Rayleigh-Ritz. Se analizan diferentes casos numéricos para vigas simplemente apoyadas, variando los parámetros geométricos y del material en la viga, así como los parámetros que caracterizan a la fundación elástica. Los resultados numéricos se comparan satisfactoriamente con casos particulares del modelo propuesto disponibles en la literatura técnica calificada.

Keywords: Timoshenko beam, AFG beams, Vibration of beams, Rayleigh-Ritz, Winkler-Pasternak.

Abstract. In the present work, the dynamic behavior of axially functionally graded (AFG) tapered beams embedded in an elastic medium is investigated. The beam model is based on the Timoshenko beam theory, which takes into account the shear deformation and the rotational inertia. The Winkler-Pasternak model with two elastic parameters is used to simulate the elastic foundation of the beams. The foundation medium is assumed to have linear, homogeneous and isotropic behavior. A variety of numerical examples are presented for simply supported boundary conditions at both ends of the beam. The beam cross area, the material properties and the elastic medium can vary along the beam axis. Approximated solutions for the title problem are obtained by means of the Rayleigh-Ritz method. Numerical results are compared successfully with particular cases available in technical literature.

1 INTRODUCCIÓN

El comportamiento del sistema estructura-suelo constituye uno de los problemas clásicos en la dinámica estructural. En particular, el análisis de vibraciones libres de vigas sobre una fundación elástica ha obtenido una especial trascendencia ya que existen aplicaciones, en variadas situaciones ingenieriles, que requieren obtener un diseño óptimo. La búsqueda de un modelo físicamente consistente que proporcione información confiable para la interacción estructura-suelo, ha sido el gran desafío investigativo por años. En este contexto, el modelo mecánico, basado en la suposición de un comportamiento elástico lineal, homogéneo e isotrópico para los suelos, emerge como una alternativa ampliamente utilizada en el diseño de estructuras (Selvadurai, 1979; Dutta y Roy, 2002; Aristazábal-Ochoa, 2004). El modelo precursor y más simple fue introducido por Winkler et al. (1867), el cual supone desplazamientos verticales en las vigas y considera una resistencia proporcional del suelo, representada por resortes lineales, elásticos e independientes. Su limitación reside en no poder representar a suelos con cohesión o capacidad cortante. Para superar esta falencia es que surgen los modelos de dos parámetros. En particular, el modelo de Pasternak (1954) incluye la cohesión del suelo mediante una capa de corte de espesor unitario, rígida verticalmente, que conecta a los resortes de la fundación Winkler y solo resiste el corte transversal puro. Además, representa la extensión más natural del modelo Winkler para fundaciones homogéneas, y es capaz de simular una gran variedad de tipos de suelo (Kerr, 1964). En lo que respecta al estudio dinámico de vigas Timoshenko (Timoshenko 1921,1922) homogéneas sobre fundaciones Winkler-Pasternak, se encuentran los trabajos de Eisenberger y Clastornik (1987); Yokoyama (1991); Franciosi y Masi (1993); De Rosa (1995); Naidu y Rao (1995); Wang et al. (1998); Chen et al. (2004); Civalek y Öztürk (2010); Obara (2014); Rahbar-Ranji y Shahbaztabar (2017); Rajesh y Saheb (2017), entre otros. En las últimas tres décadas, el diseño de aplicaciones en ingeniería estructural (vehículos espaciales, reactores de fusión de energía, etc.) con materiales funcionalmente graduados (FGM, por sus siglas en inglés) se ha incrementado producto tanto de sus características destacables de alta resistencia térmica y mecánica, como de su distribución óptima de peso. Los FGM, se obtienen de combinar dos o más materiales diferentes, cuyo contenido en porcentaje se hace variar mediante una ley distribución gradual, para obtener las propiedades requeridas en una o varias direcciones deseadas. El hecho de tener una única interfaz, les permite remediar algunas desventajas y debilidades de los materiales compuestos laminados, como lo son la delaminación y la concentración de esfuerzos (Koizumi, 1997). La bibliografía evidencia que existen numerosos estudios sobre el análisis de vibración de vigas sobre un medio elástico, asumiendo distintos modelos de fundación. Sin embargo, sobre la fundación Pasternak aún es limitado y para las vigas constituidas por FGM aún más. Sobre el estudio dinámico de vigas Timoshenko con FGM y propiedades variando en su espesor, aparecen los trabajos de Ying et al. (2008); Sahraee y Saidi (2009); Duy et al. (2014); Avcar y Mohammed 2018, etc. Mientras que para propiedades del material variando en la dirección axial (AFG), sólo se ha encontrado el trabajo de Calim (2019). El presente trabajo analiza la vibración libre de vigas simplemente apoyadas (SA-SA), embebidas en una fundación Winkler-Pasternak, por ser uno de los casos de más atención en la bibliografía. En particular, se analiza el efecto del material AFG, de la variación de la sección transversal y de los parámetros elásticos sobre los coeficientes de frecuencia fundamentales. La solución al problema se obtiene por medio del método energético de Rayleigh-Ritz (Ilanko et al, 2014).

2 GENERALIDADES DEL MODELO DE ANALISIS

Figura 1: Viga Timoshenko AFG SA-SA de sección variable embebida en fundación Winkler-Pasternak.

La Figura 1 presenta el modelo de viga Timoshenko AFG que se emplea para el desarrollo del presente análisis. En cuanto a su geometría, la sección transversal se considera de doble simetría (rectangular), definida por el ancho *b* y la altura *h*, cuyos parámetros se asumen variables en la dirección su directriz. Respecto al material, se compone por un material cuyas propiedades varían de forma funcionalmente graduada en la dirección axial (AFG). Para describir el comportamiento de la interacción entre la viga y el medio que la contiene, se emplea el modelo propuesto por Pasternak de dos parámetros, donde k_w es el módulo de la fundación Winkler y k_p es el módulo del medio elástico Pasternak. El movimiento oscilatorio de la viga se adopta referenciado respecto de un sistema de ejes coordenados. El eje \bar{x} , con origen en la sección transversal inicial de la viga, coincide con el eje de flexión (en la posición sin deformar) y es normal al eje \bar{y} en el baricentro de dicha sección. Cada parámetro geométrico y del material se identifica con un subíndice que indica el extremo de la viga al que se hace referencia, "0" para izquierdo y "*L*" para el derecho.

3 LEY DE VARIACIÓN PARA LA GEOMÉTRIA Y EL MATERIAL

Visto que la sección transversal de la viga es variable y está constituida por material AFG, resulta necesario proponer una expresión genérica que represente ambas configuraciones de variación. Se define así a:

$$R(\bar{x}) = R_0 f_R(\bar{x}) \tag{1}$$

que puede ser una característica geométrica o del material. La variación axil se produce desde un valor inicial: R_0 y sigue la ley distribución: $f_R(\bar{x})$. En particular:

$$E(\overline{x}) = E_0 f_E(\overline{x}), G(\overline{x}) = G_0 f_G(\overline{x}), \rho(\overline{x}) = \rho_0 f_\rho(\overline{x}), A(\overline{x}) = A_0 f_A(\overline{x}), I(\overline{x}) = I_0 f_I(\overline{x}); \quad (2)$$

donde *E* es el módulo de Young, *G* es el módulo de corte, ρ es la densidad, *A* es el área de la sección transversal e *I* es el momento de inercia respecto al eje de flexión. De la Ec. (2) para secciones rectangulares: $A_0 = b_0 \times h_0$ y $I_0 = (b_0 \times h_0^3)/12$. Además, como se asumen propiedades de material isótropo:

$$G(\overline{x}) = E(\overline{x})/2(1+\mu).$$
(3)

donde μ es el coeficiente de Poisson, y por lo tanto se cumple que $f_G(\bar{x}) = f_E(\bar{x})$.

4 MÉTODOS DE RAYLEIGH RITZ

En el presente estudio, se considera que la viga vibra según uno de sus modos normales en la determinación de sus coeficientes de frecuencia. Es por eso que el desplazamiento vertical $v(\bar{x},t)$ de los puntos de la superficie media de la viga en la dirección del eje \bar{y} y el giro normal $\psi(\bar{x},t)$ de la sección transversal durante la deformación, pueden escribirse como:

$$v(\overline{x},t) = \overline{V}(\overline{x})\cos(\omega t) \quad ; \quad \psi(\overline{x},t) = \overline{\Psi}(\overline{x})\cos(\omega t) \tag{4}$$

donde *t* es la variable temporal, ω es la frecuencia natural circular de vibración transversal de la viga, $\overline{V}(\overline{x})$ y $\overline{\Psi}(\overline{x})$ son las amplitudes del desplazamiento y del giro, respectivamente.

Para el desarrollo de los cálculos, se considera la adimensionalización global de la coordenada espacial \overline{x} y de las amplitudes, respecto de la longitud *L* de la viga.

$$x = \overline{x} / L \quad ; \quad V(x) = \overline{V}(\overline{x}) / L \quad ; \quad \Psi(x) = \overline{\Psi}(\overline{x}) \tag{5}$$

Seguidamente, se presenta en la Ec. (6) al funcional de energía J del problema de vibraciones en vigas, el cual se expresa en términos de la energía de deformación máxima $U_{máx}$ y de la energía cinética máxima $T_{máx}$ (Laura, 1995):

$$J[V(x),\Psi(x)] = U_{máx} - T_{máx}.$$
(6)

La expresión de U_{max} , en su forma adimensionalizada, para una viga AFG Timoshenko embebida en una fundación elástica viene dada por la suma de dos términos:

$$U_{máx} = U_{máx(1)} + U_{máx(2)}.$$
(7)

El primer término corresponde a la energía de deformación propia de la viga:

$$U_{max(1)} = \frac{1}{2L} \int_0^1 \left[E(x) I(x) (\Psi'(x))^2 + \kappa G(x) A(x) (V'(x) - \Psi(x))^2 \right] dx, \qquad (8)$$

donde κ el factor de corrección de corte, que para el caso de la viga de sección transversal rectangular y maciza se adopta el clásico valor $\kappa = 5/6$, y () representa a la derivada respecto a variable espacial x. El segundo término es debido al medio elástico:

$$U_{max(2)} = \frac{k_w L^3}{2} \int_0^1 (V(x))^2 dx + \frac{k_p L}{2} \int_0^1 (V'(x))^2 dx.$$
(9)

La primera integral se relaciona a los resortes de fundación Winkler y la segunda a la capa cortante de Pasternak. La Ec. (9) evidencia que k_w y k_p se asumen constantes para el análisis.

La expresión de $T_{máx}$ en su forma adimensionalizada e independizada del tiempo es:

$$T_{max} = \frac{\omega^2 L}{2} \int_0^1 \rho(x) \Big[A(x) (V(x))^2 L^2 + I(x) (\Psi(x))^2 \Big] dx \,. \tag{10}$$

Luego, para aplicar el método de Rayleigh-Ritz, es necesario aproximar a las componentes espaciales de la solución de la siguiente forma:

$$V(x) \cong V_a(x) = \sum_{i=1}^{N_p} C_i p_i(x) \; ; \; \Psi(x) \cong \Psi_a(x) = \sum_{j=1}^{N_q} D_j q_j(x) \tag{11}$$

donde C_i y D_j son las constantes arbitrarias que multiplican a las $p_i(x)$ y $q_j(x)$ funciones coordenadas, respectivamente. N_p y N_q son el número de términos a sumar, y se adoptan iguales $(N_p = N_q)$. Para las vigas SA-SA se emplean las siguientes funciones aproximantes:

$$p_i(x) = (x-1)x^i; q_j(x) = x^j.$$
(12)

A continuación, considerando las Ecs. (2), (3), (8), (9), (10) y (11) el funcional de energía (Ec. (6)) puede escribirse como:

$$J[V_{a}, \Psi_{a}] = \frac{E_{0}I_{0}}{2L} \int_{0}^{1} f_{E}f_{I} \left(\Psi_{a}''\right)^{2} dx + \frac{\kappa G_{0}A_{0}}{2} \int_{0}^{1} f_{G}f_{A} \left(V_{a}' - \Psi_{a}\right)^{2} dx + \frac{k_{w}L^{3}}{2} \int_{1}^{1} V_{a}^{2} dx + \frac{k_{p}L}{2} \int_{0}^{1} \left(V_{a}'\right)^{2} dx - \frac{\omega^{2}\rho_{0}A_{0}L^{3}}{2} \left[\int_{0}^{1} f_{\rho}f_{A}V_{a}^{2} dx + \frac{I_{0}}{A_{0}L^{2}} \int_{0}^{1} f_{\rho}f_{I}\Psi_{a}^{2} dx\right]$$
(13)

Multiplicando ambos miembros de la Ec.(12) por $(2L)/(E_0I_0)$ y reagrupando, se obtiene:

$$\frac{2L}{E_0 I_0} J \left[V_a, \Psi_a \right] = \int_0^1 f_E f_I \left(\Psi_a'' \right)^2 dx + \frac{S^2}{\lambda} \int_0^1 f_E f_A \left(V_a' - \Psi_a \right)^2 dx + K_W \int_0^1 V_a^2 dx + K_F \int_0^1 \left(V_a' \right)^2 dx - \Omega^2 \int_0^1 \left[f_\rho f_A V_a^2 + \frac{f_\rho f_I}{S^2} \Psi_a^2 \right] dx$$
(14)

siendo $\lambda = 2(1 + \mu)/\kappa$, $\Omega = \omega L^2 \sqrt{(\rho_0 A_0)/(E_0 I_0)}$ los coeficientes de frecuencia naturales, $S = L \sqrt{A_0/I_0}$ el coeficiente de esbeltez, $K_w = (k_w L^4)/(E_0 I_0)$ y $K_p = (k_p L^2)/(E_0 I_0)$ los parámetros de los medios elásticos Winkler y Pasternak, respectivamente.

Luego, el funcional J es minimizado respecto de cada constante arbitraria:

$$\partial J [V_a, \Psi_a] / \partial C_j = 0, i = 1, 2, ..., N_p; \quad \partial J [V_a, \Psi_a] / \partial D_j = 0, j = 1, 2, ..., N_q;$$
(15)

dando origen al siguiente sistema de ecuaciones lineales, en su forma matricial simbólica:

$$\mathbf{R} \begin{cases} C_i \\ D_j \end{cases} = \{0\} \operatorname{con} \mathbf{R} = \mathbf{K} - \Omega^2 \mathbf{M}$$
(16)

donde K es la matriz de rigidez, y la cual se encuentra constituida por elementos k_{ij} :

$$\mathbf{K} = \begin{bmatrix} S^{2} \lambda^{-1} \int_{0}^{1} f_{E} f_{A} p_{i}' p_{i}' dx + K_{W} \int_{0}^{1} p_{i} p_{i} dx + K_{P} \int_{0}^{1} p_{i}' p_{i}' dx & -S^{2} \lambda^{-1} \int_{0}^{1} f_{E} f_{A} p_{i}' q_{j} dx \\ -S^{2} \lambda^{-1} \int_{0}^{1} f_{E} f_{A} q_{j} p_{i}' dx & \int_{0}^{1} f_{E} f_{I} q_{j}' q_{j}' dx + S^{2} \lambda^{-1} \int_{0}^{1} f_{E} f_{A} q_{j} q_{j} dx \end{bmatrix}$$
(17)

y M es la matriz de masa, compuesta por los correspondientes elementos m_{ij} :

$$\mathbf{M} = \begin{bmatrix} \int_{0}^{1} (f_{\rho} f_{A} p_{i} p_{j}) dx & 0\\ 0 & S^{-2} \int_{0}^{1} (f_{\rho} f_{I} q_{j} q_{j}) dx \end{bmatrix}$$
(18)

Para resolver el problema de autovalores basta cumplir con la condición de no-trivialidad,

es decir, igualar el determinante de \mathbf{R} (Ec. (15)) a cero. Por lo tanto, se puede escribir:

$$\left|\mathbf{K}\mathbf{M}^{-1} - \Omega^{2}\mathbf{I}\right| = \left|\mathbf{B} - \beta \mathbf{I}\right| = 0$$
(19)

donde $\beta = \Omega^2$ son los autovalores de la matriz **B** e **I** la matriz identidad.

5 RESULTADOS NUMÉRICOS

5.1 Caso de comparación

Se compara con un caso resuelto por Çalim (2019) que, mediante el método de funciones complementarias (CFM, sus siglas en inglés), obtuvo los coeficientes de frecuencia fundamental de una viga simplemente apoyada de sección transversal constante sobre una fundación elástica Winkler-Pasternak. El material funcionalmente graduado que constituye a la viga se compone de zirconia (ZrO_2) y aluminio (Al), cuyas propiedades son:

$$E_{\text{ZrO}_2} = 200 \text{ GPa}, \rho_{\text{ZrO}_2} = 5700 \text{ kg/m}^3; E_{\text{Al}} = 70 \text{ GPa}, \rho_{\text{Al}} = 2702 \text{ kg/m}^3; \mu_{\text{ZrO}_2} = \mu_{\text{Al}} = 0,3$$
 (20)

y que varían de acuerdo con la siguiente ley axial asimétrica:

$$R(x) = R_{\text{ZrO}_2} + (R_{\text{AI}} - R_{\text{ZrO}_2})x^n \text{ con } n \ge 0 \text{ y } x \in [0,1].$$
(21)

El exponente *n* es el parámetro de heterogeneidad del material. La Tabla 1 muestra los resultados, para distintas combinaciones de K_w y K_p . La correlación es satisfactoria sobre todo para esbelteces altas de la viga. Se considera $N_p = 20$ en la Ec. (11).

$\frac{L}{h}$	n	$K_W = 0$			$K_{W} = 10^{2}$			$K_{W} = 10^{3}$				
		K _p			K _p			K _P			Solución	
		0	1	10	0	1	10	0	1	10		
5	1	8,735	9,464	14,42	14,48	14,93	18,45	37,10	37,28	38,84	M.R-Ritz	
	1	8,738	9,321	13,02	14,47	14,83	17,41	37,05	37,21	38,43	Çalim (2019)	
	2	8,931	9,553	13,93	14,43	14,82	18,01	34,86	35,03	36,46	M.R-Ritz	
		8,934	9,419	12,67	13,97	14,29	16,62	34,82	34,96	36,06	Çalim (2019)	
	1	9,263	9,967	14,85	14,91	15,35	18,88	37,78	37,96	39,51	M.R-Ritz	
15		9,266	9,948	14,65	14,92	15,35	18,73	37,82	37,99	39,49	Çalim (2019)	
15	2	9,496	10,09	14,38	14,43	14,82	18,01	35,45	35,61	37,04	M.R-Ritz	
	Ζ	9,499	10,07	14,20	14,43	14,82	17,88	35,49	35,64	37,02	Çalim (2019)	
	1	9,336	10,04	14,91	14,97	15,41	18,94	37,88	38,05	39,60	M.R-Ritz	
120	1	9,333	10,04	14,92	14,96	15,41	18,94	37,88	38,06	39,61	Çalim (2019)	
120	2	9,575	10,17	14,44	14,49	14,89	18,07	35,53	35,69	37,12	M.R-Ritz	
	2	9,573	10,17	14,44	14,49	14,89	18,07	35,53	35,70	37,12	Çalim (2019)	

Tabla 1: Coeficientes Ω_1 para la viga AFG SA-SA sobre fundación Winkler-Pasternak.

5.2 Casos propuestos

Se estudia la vibración libre de vigas AFG simplemente apoyadas, con sección transversal

ahusada y embebidas en un medio elástico Pasternak. Se emplea el material propuesto por Su et al. (2013), el cual está compuesto acero (Ac) y alúmina (Al₂O₃), y cuyas propiedades son:

$$E_{\rm Ac} = 210 \,\text{GPa}, \rho_{\rm Ac} = 7800 \,\text{kg/m}^3; E_{\rm Alum} = 390 \,\text{GPa}, \rho_{\rm Alum} = 3960 \,\text{kg/m}^3, \mu_{\rm Ac} = \mu_{\rm Alum} = 0, 3. (22)$$

Los coeficientes Ω_1 para distintas combinaciones de K_w y K_p , y relaciones de esbeltez L/h, se presentan en las Tablas 2 y 3 para las vigas homogéneas y en las Tablas 4 y 5 para las vigas AFG. Se utilizan $N_p = 20$ términos de polinomios para la precisión de los resultados.

L/h			5			15		25			
K_P / π^2		0	1	2,5	0	1	2,5	0	1	2,5	
	0	9,27403	13,4834	18,0002	9,79634	13,8935	18,4017	9,84298	13,9344	18,4415	
	10	9,78483	13,8045	18,2418	10,2923	14,2476	18,6705	10,3379	14,2882	18,7103	
K_{W}	10^{2}	13,5407	16,6781	20,5022	13,9861	17,1077	20,9348	14,0269	17,1475	20,9752	
	10^{3}	32,5378	33,9613	35,9906	33,0516	34,4887	36,5385	33,0996	34,5378	36,5894	
	10^{4}	98,5400	99,0068	99,7026	100,301	100,783	101,503	100,418	100,902	101,622	
L	'n		50			75		120			
K_P / π^2		0	1	2,5	0	1	2,5	0	1	2,5	
K _w	0	9,86292	13,9519	18,4586	9,86663	13,9551	18,4618	9,86846	13,9567	18,4633	
	10	10,3573	14,3056	18,7274	10,3609	14,3089	18,7306	10,3627	14,3105	18,7322	
	10^{2}	14,0444	17,1645	20,9926	14,0476	17,1677	20,9958	14,0492	17,1693	20,9974	
	10^{3}	33,1202	34,5590	36,6114	33,1241	34,5630	36,6155	33,1260	34,5649	36,6175	
	10^{4}	100 469	100 952	101.673	100 478	100.962	101.683	100.483	100.966	101.687	

Tabla 2: Coeficientes Ω_1 para la viga homogénea SA-SA con sección uniforme ($\alpha = 0$) embebida en fundación Winkler-Pasternak.

L/h			5			15		25			
K_P / π^2		0	1	2,5	0	1	2,5	0	1	2,5	
	0	6,86711	13,3418	19,2457	7,09176	13,5521	19,4911	7,11076	13,5704	19,5127	
	10	7,78190	13,8278	19,5831	7,99316	14,0394	19,8307	8,01122	14,0579	19,8525	
K_{W}	10^{2}	13,4366	17,6003	22,3886	13,6356	17,8301	22,6562	13,6529	17,8502	22,6797	
	10^{3}	36,5936	38,3391	40,7700	37,0932	38,8140	41,2435	37,1356	38,8550	41,2847	
	10 ⁴	106,924	108,270	110,028	110,600	111,702	113,178	110,882	111,958	113,405	
L/h			50			75		120			
			50			10			1=0		
K_{P}	$/\pi^2$	0	1	2,5	0	1	2,5	0	1	2,5	
K _P	π^2	0 7,11883	1 13,5782	2,5 19,5219	0 7,12033	1 13,5796	2,5 19,5236	0 7,12106	1 13,5804	2,5 19,5245	
K _P	π^{2} 0 10	0 7,11883 8,01890	1 13,5782 14,0657	2,5 19,5219 19,8618	0 7,12033 8,02033	1 13,5796 14,0672	2,5 19,5236 19,8635	0 7,12106 8,02102	1 13,5804 14,0679	2,5 19,5245 19,8643	
K_P	π^{2} π^{2	0 7,11883 8,01890 13,6602	1 13,5782 14,0657 17,8587	2,5 19,5219 19,8618 22,6898	0 7,12033 8,02033 13,6616	1 13,5796 14,0672 17,8603	2,5 19,5236 19,8635 22,6917	0 7,12106 8,02102 13,6623	1 13,5804 14,0679 17,8611	2,5 19,5245 19,8643 22,6926	
K _P	$/\pi^2$ 0 10 10 ² 10 ³	0 7,11883 8,01890 13,6602 37,1537	1 13,5782 14,0657 17,8587 38,8726	2,5 19,5219 19,8618 22,6898 41,3023	0 7,12033 8,02033 13,6616 37,1570	1 13,5796 14,0672 17,8603 38,8758	2,5 19,5236 19,8635 22,6917 41,3056	0 7,12106 8,02102 13,6623 37,1587	1 13,5804 14,0679 17,8611 38,8774	2,5 19,5245 19,8643 22,6926 41,3072	

Tabla 3: Coeficientes Ω_1 para la viga homogénea SA- SA con sección ahusada ($\alpha = 0.5$) embebida en fundación Winkler-Pasternak.

Para el estudio se considera la composición Ac-Alum-Ac por ser más eficiente, desde el punto de vista de la rigidización dinámica, frente a la de Alum-Ac-Alum (Gilardi et al., 2016). Las propiedades del material varían mediante la siguiente ley de variación axial simétrica:

G.J. GILARDI, D.V. BAMBILL, C.A. ROSSIT

$$R(x) = R_{\rm Ac} + 4(R_{\rm Alum} - R_{\rm Ac})(x - x^2) \text{ con } x \in [0, 1].$$
(23)

En x = 0 y x = 1 la sección transversal es constituida por el acero, mientras que en x = 0.5 lo es por la alúmina. En cuanto a la geometría, se considera sección transversal ahusada con ancho *b* constante y altura *h* variando linealmente. La ley de variación adoptada es:

$$A(x) = A_{01}(1 - \alpha x) ; I(x) = I_{01}(1 - \alpha x)^{3} \text{ con } 0 \le \alpha < 1 \text{ y } x \in [0, 1];$$
(24)

 α es el coeficiente que indica la relación de estrechamiento.

L	/h		5			15		25		
K_{P}/π^{2}		0	1	2,5	0	1	2,5	0	1	2,5
	0	15,8432	20,3748	25,7148	16,9892	21,3951	26,6725	17,0949	21,4913	26,7643
	10	16,3649	20,7830	26,0393	17,4921	21,7966	26,9956	17,5963	21,8922	27,0873
K_{W}	10^{2}	20,4692	24,1473	28,7954	21,4944	25,1220	29,7451	21,5909	25,2150	29,8368
	10^{3}	43,8694	45,7052	48,3250	44,9412	46,7855	49,4229	45,0455	46,8910	49,5303
	10^{4}	127,044	128,020	129,329	131,506	132,234	133,298	131,857	132,570	133,615
L	/h		50			75		120		
K_{P}	$/\pi^2$	0	1	2,5	0	1	2,5	0	1	2,5
	0	17,1402	21,5326	26,8039	17,1486	21,5403	26,8113	17,1527	21,5441	26,8149
	10	17,6410	21,9334	27,1269	17,6493	21,9410	27,1342	17,6534	21,9448	27,1378
K _w	10^{2}	21,6324	25,2550	29,8763	21,6401	25,2625	29,8837	21,6439	25,2661	29,8873
	10^{3}	45,0906	46,9366	49,5768	45,0990	46,9451	49,5855	45,1031	46,9493	49,5897
	10^{4}	132,008	132,714	133,753	132,036	132,741	133,779	132,049	132,754	133,791

Tabla 4: Coeficientes Ω_1 para la viga AFG SA-SA con sección uniforme ($\alpha = 0$) embebida en fundación Winkler-Pasternak.

L/h			5			15		25			
K_{P} / π^{2}		0	1	2,5	0	1	2,5	0	1	2,5	
	0	11,7560	19,1851	26,5442	12,2473	19,6359	27,0423	12,2898	19,6758	27,0871	
	10	12,7052	19,7749	26,9698	13,1802	20,2263	27,4711	13,2215	20,2663	27,5161	
K_{W}	10^{2}	19,2317	24,4416	30,5289	19,6690	24,9124	31,0605	19,7076	24,9543	31,1083	
	10^{3}	48,8657	51,0743	54,2059	49,7807	51,9868	55,1290	49,8591	52,0671	55,2117	
	10^{4}	132,505	134,603	137,462	140,671	142,394	144,778	141,462	143,141	145,463	
L	'h		50			75		120			
K_{P}	π^2	0	1	2,5	0	1	2,5	0	1	2,5	
	0	12,3080	19,6928	27,1062	12,3113	19,6960	27,1097	12,3130	19,6975	27,1115	
	10	13,2391	20,2834	27,5353	13,2424	20,2865	27,5389	13,2440	20,2881	27,5406	
K _w	10^{2}	19,7240	24,9722	31,1288	19,7271	24,9755	31,1326	19,7286	24,9771	31,1345	
	10^{3}	49,8925	52,1014	55,2472	49,8987	52,1078	55,2538	49,9018	52,1109	55,2570	
	10^{4}	141,808	143,467	145,762	141,873	143,529	145,819	141,904	143,559	145,846	

Tabla 5: Coeficientes Ω_1 para la viga AFG SA-SA con sección ahusada ($\alpha = 0.5$) embebida en fundación Winkler-Pasternak.

Los parámetros de la fundación elástica elegidos fueron implementados por Yokoyama (1991). De acuerdo con la rigidez de la fundación Winkler, la viga se comporta como rígida

206

para $K_w < 10$, semi-rígida para $10 \le K_w < 10^2$ y flexible para $K_w \ge 10^2$ (Selvadurai, 1979).

6 CONCLUSIONES

El análisis ratifica que los coeficientes de la primera frecuencia de las vigas incrementan, cuando éstas se consideran embebidas en un medio elástico. Esto se justifica en que la fundación elástica aporta energía de deformación al sistema, por ende, cuando los parámetros elásticos de la fundación $K_w y K_p$ aumentan, los coeficientes de frecuencia también lo hacen.

De las Tablas 2 a 5, se evidencia que el efecto de la fundación Pasternak sobre los coeficientes es más notorio para valores pequeños de K_w , mientras que cuando la fundación Winkler aumenta su rigidez el efecto de la capa cortante de Pasternak es mucho menor.

En cuanto al efecto de la esbeltez sobre la fundación elástica, se aprecia que para las vigas esbeltas $(L/h \ge 120)$ las fundaciones Winkler y Pasternak presentan menor diferencia en los coeficientes de frecuencia, incluso esta diferencia es menor cuando se incorpora el material AFG. En cambio para vigas poco esbeltas, la diferencia entre los coeficientes aumenta. Esto se debe a que la influencia de la inercia rotatoria es más significativa y por ende hace que aumente la importancia de la capa de corte de Pasternak.

En lo que hace al objetivo de evaluar la influencia de la utilización de materiales funcionalmente graduados sobre el valor de la frecuencia fundamental, se hace notar que es más marcada para valores bajos de las rigideces de las fundaciones, de hecho la influencia mayor es en ausencia del vínculo elástico. Si bien las vigas AFG presentan valores mayores de su frecuencia fundamental en todos los casos, el efecto rigidizador, en general, se atenúa conforme aumentan los valores de K_W y K_P .

Asimismo, queda demostrado que el método de Rayleigh-Ritz, convenientemente utilizado, es una herramienta eficiente y precisa para obtener resultados en esta clase de problemas.

AGRADECIMIENTOS

El presente trabajo a la Universidad Nacional del Sur (UNS), al Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) y a la Comisión de Investigaciones Científicas de la Provincia de Buenos Aires (CIC). El mismo se llevó a cabo en el Departamento de Ingeniería y en el Instituto de Ingeniería de la UNS.

REFERENCIAS

- Avcar, M. y Mohammed, W.K.M., Free vibration of functionally graded beams resting on Winkler-Pasternak foundation. *Arabian Journal of Geosciences*, 11(10), 2018.
- Aristazábal-Ochoa J.D., Estructuras de vigas sobre suelos elásticos de rigidez variable. *Rev. Int. de Desastres Naturales, Accidentes e Infraestructura Civil,* 3(2): 157–174, 2004.
- Çalim, F.F., Vibration Analysis of Functionally Graded Timoshenko Beams on Winkler– Pasternak Elastic Foundation. *Iranian Journal of Science and Technology, Transactions of Civil Engineering*, 1–20, 2019.
- Çetin, D. y Şimşek, M., Free vibration of an axially functionally graded pile with pinned ends embedded in Winkler-Pasternak elastic medium. *Struct. Eng. Mech.*, 40(4): 583–594, 2011.
- Chen, W.Q., Lü, C.F. y Bian, Z.G., A mixed method for bending and free vibration of beams resting on a Pasternak elastic foundation. *Appl. Math. Modelling*, 28:877–890, 2004.
- Civalek, Ö. y Öztürk, B., Free vibration analysis of tapered beam-column with pinned ends embedded in Winkler-Pasternak elastic foundation. *Geom. Eng.*, 2:45–56, 2010.

- De Rosa, M.A., Free vibrations of Timoshenko beams on two-parameter elastic foundation. *Computers and Structures*, 57(I): 151–156. 1995.
- Dutta, S. C. y Roy, R., A critical review on idealization and modelling for interaction among soil-foundation-structure system. *Computers and Structures*, 80:1579–1594, 2002.
- Duy, H.T., Van, T.N. y Noh, H.C. Eigen analysis of functionally graded beams with variable cross-section resting on elastic supports and elastic foundation. *Structural Engineering and Mechanics*, 52:1033–1049, 2014
- Eisenberger, M. y Clastornik, J., Beams on variable two-parameter elastic foundation. *ASCE J. Eng. Mech*, 113(EM10): 1454–1466, 1987.
- Franciosi, C. y Masi, A., Free vibrations of foundation beams on two-parameter elastic soil. *Computers and Structures*, 47: 419–26, 1993.
- Gilardi, G.J., Díaz Valdez I.H., Bambill, D.V., Rossit, C.A. y Romero, F., Comportamiento dinámico de vigas constituidas por material funcionalmente graduado. *V CAIM*, 2016.
- Ilanko, S., Monterrubio, L.E. y Mochida, Y., *The Rayleigh-Ritz Method for Structural Analysis*. Wiley & Sons, 2014.
- Kerr, A.D., Elastic and viscoelastic foundation models. J. Appl. Mech., 31:491-498, 1964.
- Koizumi M., FGM activities in Japan. Composites Part B, 28:1-4, 1997.
- Laura, P.A.A., Optimization of Variational Methods. Ocean Eng., 22(3):235-250, 1995.
- Naidu, N.R. y Rao, G.V., Vibrations of initially stressed uniform beams on a two-parameter elastic foundation. *Computers and Structures*, 57:941–943, 1995.
- Obara, P., Vibrations and stability of Bernoulli-Euler and Timoshenko beams on twoparameter elastic foundation. *Archives of Civil Engineering*, 60:421–440, 2014.
- Pasternak, P.L., On a new method of analysis of an elastic foundation by means of two foundation constants. Gos. Izd. Lip. po Strait i Arkh. Moscow, (in Russian) 1954.
- Rajesh, K. y Saheb, K.M., Free vibrations of uniform Timoshenko beams on Pasternak Foundation. *Mechanical Engineering*, LXIV (3): 359–373, 2017.
- Rahbar-Ranji, A. y Shahbaztabar, A., Free vibration analysis of beams on a Pasternak foundation using Legendre polynomials and Rayleigh-Ritz method. *Odessa Polytechnic University*, 3(53): 20–31, 2017.
- Sahraee, S. y Saidi, A.R., Free vibration and buckling analysis of functionally graded deep beam-columns on two-parameter elastic foundations using the differential quadrature method. *Proc. IME, Part C: J. Mech. Eng. Sci.*, 223:1273–1284, 2009.
- Su, H., Banerjee, J.R. y Cheung, C.W., Dynamic stiffness formulation and free vibration analysis of functionally graded beams. Composite Structures, 106:854–862, 2013.
- Selvadurai, A.P.S., *Elastic Analysis of Soil-Foundation Interaction*. Developments in Geotechnical Engineering, Vol. 17, Elsevier Science, 1979.
- Timoshenko, S.P., On the correction for shear of the differential equation for transverse vibration of prismatic bar. *Philosophical Magazine*, 41:744–746, 1921.
- Timoshenko, S.P., On the transverse vibrations of bars of uniform cross section. *Philosophical Magazine*, 43:125–131, 1922.
- Wang, C.M., Lam, K.Y. y He, X.Q., Exact Solutions for Timoshenko Beams on Elastic Foundations Using Green's Functions. *Mech. Struct. & Mach.*, 26(1):101–113, 1998.
- Winkler, E., Die Lehre von der Elastizität und Festigkeit. H. Dominicus, Prague, 1867.
- Ying, J., Lü, C.F. y Chen, W.Q., Two-dimensional elasticity solutions for functionally graded beams resting on elastic foundations. *Composite Structures*, 84:209–219, 2008.
- Yokoyama, T., Vibrations of Timoshenko beam-columns on two-parameter elastic foundations. *Earthquake Engineering and Structural Dynamics*, 20:355–370, 1991.