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Radiative thermalization in semiclassical simulations of light-matter interaction
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Prediction of the equilibrium populations in quantum dynamics simulations of molecules exposed to black-
body radiation has proved challenging for semiclassical treatments, with the usual Ehrenfest and Maxwell-Bloch
methods exhibiting serious failures. In this context, we explore the behavior of a recently introduced semi-
classical model of light-matter interaction derived from a dissipative Lagrangian [C. M. Bustamante, E. D.
Gadea, A. Horsfield, T. N. Todorov, M. C. González Lebrero, and D. A. Scherlis, Phys. Rev. Lett. 126, 087401
(2021)]. It is shown that this model reproduces the Boltzmann populations for two-level systems, predicting the
black-body spectra in approximate agreement with Planck’s distribution. In multilevel systems, small deviations
from the expected occupations are seen beyond the first excited level. By averaging over fast oscillations, a rate
equation is derived from the dissipative equation of motion that makes it possible to rationalize these deviations.
Importantly, it enables us to conclude that this model will produce the correct equilibrium populations provided
the occupations of the lowest levels remain close to unity, a condition satisfied at low temperature or small
excitations.
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I. INTRODUCTION

The ability of an electrodynamics approach to capture the
equilibrium quantum populations of electrons subject to a
radiation bath, in accordance with Planck’s law of black-body
radiation, is a fundamental feature that can be regarded as
a key test to assess the overall quality of a given theoreti-
cal model of light-matter interaction [1]. A number of such
models have been proposed in the framework of quantum
electrodynamics, with a quantized description of both the
electron and the photon degrees of freedom [2–6]. The enor-
mous numerical demand associated with the representation
of a quantum-mechanical electromagnetic field, however, en-
forces the use of truncations or approximations and limits
the applicability of these strategies to very few electrons
and photon modes. Interestingly, authors such as Boyer or
Rashkovskiy have shown that thermal radiation can be en-
tirely described within the context of classical physics without
quantum assumptions, for example, including electromagnetic
zero-point radiation in relativistic classical electrodynamics
[7,8], or with the augmentation of the Schrödinger equation in
the form of a nonlinear wave-equation [9,10].

In this work, we are interested in the semiclassical descrip-
tion of the light-matter interaction, which likely provides the
most convenient trade-off between accuracy and efficiency to
model the photophysics of atoms, molecules, and materials
outside the strong photon-electron coupling regime [11]. In
the realm of semiclassical approaches to the electron-radiation
interaction, the former are modeled quantum mechanically
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while the latter is treated as a classical field. The most promi-
nent examples of semiclassical schemes are the Ehrenfest
method [12] and the Maxwell-Bloch or, more generally, the
Maxwell-Liouville equations [13–17].

Very recently, we have proposed a distinct semiclassical
approach that considers the electromagnetic radiation of the
electron charge density as originating from a classical dipole,
allowing for a first-principles Lagrangian derivation of a dis-
sipative equation of motion where emission is cast in closed
form as a unitary single-electron theory [18]. This formalism,
which is directly suitable for ab initio implementations, quan-
titatively reproduces a number of experimental observations
including decay rates, natural broadening, and absorption
intensities. In the context of time-dependent density func-
tional theory simulations, it yielded excited state lifetimes
in atoms and ions with an accuracy within the error of ex-
periments [18]. Here we investigate its performance in the
description of thermal electromagnetic radiation. This prob-
lem has been addressed in two-level systems by Chen, Nitzan,
and Subotnik in a recent communication examining the
thermodynamic detailed balance with different semiclassical
treatments [1]. More specifically, they studied the electronic
populations produced by the Maxwell-Bloch, the Ehrenfest,
and the Ehrenfest+R methods, to benchmark these three
approaches according to their capability to reproduce the
Boltzmann distribution. The Ehrenfest+R methodology is an
ad hoc modification to Ehrenfest electron-photon dynamics
that introduces a relaxation term to accelerate the decay rate
in agreement with spontaneous emission [19]. In Ref. [1], the
authors see that, among all three, it is only this heuristically
amended Ehrenfest scheme that predicts the correct quantum
populations in a two-level system in a radiation bath.
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In the present article we conduct a similar analysis to
explore the behavior of our dissipative equation of motion. We
find that it closely approximates the Planck radiation law, in
the form of Rashkovskiy’s distribution [10]. We show, further,
that the two schemes correspond to the same radiation field,
in two different gauges. Inasmuch as Rashkovskiy’s radiation
field corresponds to the radiation-reaction force, we infer that
radiation reaction is responsible for most of the Planck distri-
bution, the remaining piece coming from vacuum fluctuations
or charge-field correlations, depending on one’s point of view.

For multilevel systems, our treatment recovers the Boltz-
mann distribution for the lowest electronic states, with
deviations appearing at very high temperatures in the most
energetic levels. We derive the rate equations for our model,
which explain the origin of these deviations and enable us to
visualize the assets and limitations of our radiative scheme.

II. METHODOLOGICAL PRELIMINARIES

Throughout this study, we consider a one-dimensional
tight-binding (TB) model of M sites and a chosen number of
electrons, with M implicit orthonormal basis functions (one
per atom). Interactions are limited to first neighbors, with
Hamiltonian matrix elements defined as Hi j = β if i = j ± 1
and Hi j = 0 in any other case, where β is the hopping pa-
rameter. (The sole exception to this rule is made in the case
of the 12-level system, where second-neighbor interactions
are added to break the degeneracies between energy-level
spacings.) In this representation the position operator matrix
is diagonal, with elements given by the interatomic distances
l , Xi j = l × (i − M+1

2 ) if i = j, and Xi j = 0 otherwise.
The density matrix is evolved in time according to the

semiclassical dissipative equation of motion, truncated at first
order, introduced in Ref. [18]:

h̄
∂ρ̂

∂t
= −i[Ĥ, ρ̂] − μ0

6π h̄c
μ̈[[μ̂, Ĥ ], ρ̂] + i[μ̂E (t ), ρ̂], (1)

where μ is the dipole moment, c the speed of light, and
μ0 the magnetic permeability. The last term on the right ac-
counts for the incoming electric field E (t ), which represents
a frequency continuum modeled with a superposition of N
single-frequency waves with randomly generated phases:

E (t ) =
N∑

j=1

E0(ω j ) cos(ω jt + 2πu j ). (2)

Here uj is a uniformly distributed random number, u j ∈ (0, 1].
A constant separation between frequencies, �ω = ω j+1 − ω j ,
was implemented in the sum, so that ω j = j�ω. A convenient
way to express the magnitude of �ω is in units of the peak

width γ = 2ω3
0

3h̄c3 l2. Both the values of �ω and N were checked
for convergence with respect to the equilibrium population
of an irradiated two-level system (with energy gap h̄ω0),
finding that �ω = γ and N = 1.3 ω0

�ω
were good enough for

the purpose of modeling continuum radiation. Regarding the
dependence of E0 on the frequency, the incoming field can be
chosen to simulate black-body radiation according to Planck’s

law,

U (ω) = h̄ω3

π2c3

1

exp( h̄ω
kT ) − 1

, (3)

where U (ω) is the energy density. In the case of the discrete
representation of the field in Eq. (2), the energy density can
be related to the amplitude of the polarized monochromatic
waves as follows:

U (ω) = 3

2

ε0

�ω
E2

0 (ω). (4)

Owing to the oscillatory behavior of the system in the station-
ary state, all properties must be extracted as time-averaged
values. Alternatively, Rashkovskiy’s formula of black-body
emission [10] was also considered:

U (ω) = h̄ω3

π2c3

1[
exp

(
h̄ω
kT

) − 1
][

exp
(− h̄ω

kT

) + 1
] . (5)

It must be noted that, at variance with other semiclassical
methods as Ehrenfest or Maxwell-Bloch, the present model
does not require the explicit computation and propagation of
the emitted field. This feature may become an advantage for
certain applications where the focus is on the matter system.

III. RESULTS

A. Thermalization of two-level systems

A set of six different two-level systems, each with a sin-
gle electron and energy gaps h̄ω0 from 2 to 7 kT with
T = 60 000 K, were thermalized at this temperature using an
electric field as defined in Eq. (2). To achieve this, for a
given frequency, different simulations were performed vary-
ing the magnitude of E0, seeking to reproduce the theoretical
Boltzmann distribution at the target temperature, i.e., ρ22 =
exp(− h̄ω0

kT )/[1 + exp(− h̄ω0
kT )]. From the value of E0 found for

each case, the energy density can be computed according
to Eq. (4). An analytical relation between the excited-state
population ρ22 and the field amplitude can be obtained from
the combination of Eqs. (4) and (5),

E2
0 (ω) = 2

3

h̄ω3�ω

π2c3ε0

[
1

1 − exp
(− h̄ω

kT

)]
ρ22. (6)

In practice, it turns out to be equivalent to obtain E0 from the
simulations or from the formula above. In our simulations
the field has a random component in the phase so that the
agreement with the formula is observed upon time-averaging.

Figure 1 displays the time-dependent occupancies resulting
from these simulations. It can be seen that the populations
thermalize after about 600 fs, exhibiting fast oscillations as-
sociated with the random phases of the applied field. The
spectral energy density obtained from this analysis is pre-
sented in Fig. 2, where each data point corresponds to the
field required to induce an electronic population consistent
with the theoretical occupation at 60 000 K. These results
are confronted with the profiles arising from Planck’s and
Rashkovskiy’s formulas.

It is observed that the simulations reproduce the qualitative
features of black-body radiation, exhibiting a high accuracy
for the highest frequencies. As the energy gap in the two-level
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FIG. 1. Occupations as a function of time in two-level systems
of characteristic frequencies 2, 3, 4, and 5 kT/h̄, evolved according
to the equation of motion (1), while illuminated with a continuum
electromagnetic field. This field was adjusted to reproduce in each
case the occupations corresponding to the Boltzmann distribution at
60 000 K. The strong oscillatory behavior reflects the random phases
of the incoming light. The thick lines depict the response averaged
over the fast oscillations.

FIG. 2. Emission from a set of two level-systems thermalized
with a continuum electromagnetic field at 60 000 K, obtained from
time-dependent simulations with Eq. (1) (blue dots). The black-body
spectra expected from Planck’s law and from Rashkovskiy’s expres-
sion are also shown.

FIG. 3. Emitted (blue) and absorbed (red) energy as a function
of time for a two-level system irradiated with an external field.
The black line shows the sum of these two contributions plus the
electronic energy. Thick lines represent for each case the average
over the fast oscillations.

system approaches kT ; however, the prediction becomes less
accurate with respect to Planck’s law. In that regime, our
results are in line with those of the Rashkovskiy case.

Energy conservation can be verified in thermal equilib-
rium if both the power absorbed and the power dissipated
are integrated in time and summed to the electronic energy.
The calculation of the radiated power is straightforward from
the second derivative of the dipole moment using the Larmor
formula [18], whereas the rate of energy absorbed from the
external field can be calculated as

Pabs = d〈Ĥ〉
dt

= 1

ih̄
〈[Ĥ, μ̂E (t ) + Ĥ ]〉

= − E (t )

ih̄
Tr(ρ̂[μ̂, Ĥ ]), (7)

where it was assumed that the dissipation does not affect the
rate of energy absorbed. Figure 3 displays the temporal evo-
lution of the emitted and absorbed energies computed as the
integrals of the corresponding powers, for a two-level system
subject to the incoming radiation. The thick lines represent the
average over the fast oscillations. There is a transient of nearly
250 fs before the system thermalizes and reaches a stationary
state. The black line depicts the sum of these two contribu-
tions plus the electronic energy. It can be seen that, beyond
the fast oscillations, the energy is conserved throughout the
simulation.

B. Thermalization of multilevel systems

Employing the equation of motion (1), a four-level sys-
tem with one electron was illuminated and equilibrated with
black-body radiation, or, more specifically, with a continuum
of electromagnetic frequencies [Eq. (2)] with energy den-
sity U (ω) defined according to Planck’s or to Rashkovskiy’s
emission spectra [Eqs. (3) and (5)] at 60 000 K, which
amounts to h̄ω/kT = 2.63 [taking h̄ω as the highest occu-
pied molecular orbital–lowest unoccupied molecular orbital
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FIG. 4. Occupations as a function of time in a four-level sys-
tem while illuminated with a continuum electromagnetic field at
60 000 K. The fast oscillations arising from the random phases of
the incident radiation are averaged out in the thick traces.

(HOMO-LUMO) energy gap). Figure 4 presents the evolution
of the populations with respect to time. In the case of systems
with more than two levels, the electronic temperature cannot
be directly assessed from the population of a single excited
state. One possible way to estimate the temperature is from
the (inverse of the) slope of the logarithm of the occupations
plotted versus the energy of the levels. Figure 5 presents such
a plot for a four-level system. Regardless of the parameters
and the kind of black-body radiation used, it is found that
the density distribution does not obey Boltzmann statistics;
only the first two levels fall on the expected trend. The highest
occupations tend to be systematically larger than the ones cor-
responding to 60 000 K. In considering these results it must be
noted, however, that the occupations of the two highest levels
are at least an order of magnitude smaller than the populations
of the first excited state. In particular, the deviations manifest
in the logarithmic plots of Fig. 5 are, in absolute value, no
larger than 10−4.

These positive deviations in the excited-state populations
can be equally observed in a single-electron system of 12
levels (Fig. 6). Again, only the occupations of the ground
state and the first excited state are aligned with the slope
corresponding to the Boltzmann distribution at 20 000 K (the
temperature of the black body used in this case, equivalent
to h̄ω/kT = 0.485 if ω is the frequency associated with the
HOMO-LUMO gap), whereas the rest of the data points are
shifted to larger populations.

In the presence of five electrons, a shift toward larger
occupations with respect to the Fermi-Dirac distribution is
observed, but in this case the deviations are seen for the
highest four levels, with the lowest eight remaining close
to the theoretical trend. Given the small magnitude of the

FIG. 5. Logarithm of the steady-state populations as a function
of the energy, for a set of four-level systems with one electron
thermalized with Planck’s (blue dots) or Rashkovskiy’s (red squares)
black-body radiation at 60 000 K. The dotted line indicates the
expected trend according to Boltzmann statistics.

deviations, in a graph of the occupations as a function of the
energy [Fig. 7(a)], the curve corresponding to the simulations
can hardly be distinguished from the Fermi-Dirac distribution
at that temperature; the deviations become evident only in
the logarithmic plot [Fig. 7(b)], for energies exceeding ω0 by
more than 1.5h̄.

When the number of levels was increased further, simu-
lations with many electrons exhibited additional deviations.
This behavior was attributed to the degeneracies inherent to
multilevel systems arising from a first-neighbor TB model,
which lead to self-excitation and the stabilization of subra-
diant states (see discussion in the next section).

C. Rate equations

Under a few assumptions, Eq. (1) can be used to get an
expression for the populations as a function of time. We treat
the dissipative term and the term involving the applied field
as perturbations and consider, in the interaction picture, the
rates of change of the occupations of the eigenstates of the
unperturbed Hamiltonian, with energies h̄ωi. For these rates
of change perturbation theory gives

dρ j j

dt
=

∑
k

[
4π2|μk j |2

3h̄2 (ρkk − ρ j j )U (ωk j ) + 2γk j |ρ jk|2
]
,

(8)

where γi j = 2ω3
i j

3h̄c3 |μi j |2 and we have chosen units in which
4πε0 = 1. Moreover, in the absence of a field, the derivatives
of the off-diagonal elements of the density matrix take the

042201-4



RADIATIVE THERMALIZATION IN SEMICLASSICAL … PHYSICAL REVIEW A 105, 042201 (2022)

FIG. 6. Logarithm of the steady-state populations as a function
of the energy, for a 12-level system with one electron thermalized
with Planck’s black-body radiation at 20 000 K. Simulations were
based on the equation of motion (1). The dotted line indicates the
expected trend according to Boltzmann statistics at that temperature.

following form:

dρi j

dt
|i �= j =

∑
k

ρikρk j (γki + γk j ). (9)

A full derivation of these expressions is presented in the
Appendix.

We observe that these rate equations agree with those
produced by the Rashkovksiy theory [10] and lead to the
Rashkovskiy distribution for a two-level system. This agree-
ment is an important reality check. The dissipative term in our
theory was shown in the Supplemental Material of Ref. [18]
to correspond to the vector potential in Eq. (33) therein. This
vector potential produces the same electric field as that cor-
responding to Rashkovskiy’s dissipative term, in turn equal
to the radiation-reaction field corresponding to the Abraham-
Lorentz force.

For two level and one electron systems, these rate equa-
tions reproduce closely the dynamics obtained by direct
integration of the equation of motion (1). Figure 8 presents
the temporal evolution of the energy for two different initial
states.

In a four-level system, however, it can be seen that the
dynamics produced by the rate equations do not relax beyond
the lower level that formed the departing coherent mixture
(Fig. 9), whereas the direct integration of Eq. (1) leads to
the ground state through a sequence of deexcitations. In these
simulations the initial state consists of a linear combination of
the third and fourth eigenfunctions, with the majority compo-
nent coming from the latter, thus representing an almost pure
excited state (the mixture is necessary to induce dissipation in
Eq. (1), see Ref. [18]). Interestingly, when a second electron is

FIG. 7. Populations as a function of energy, for a 12-level system
with five electrons thermalized with Planck’s black-body radiation at
20 000 K are shown with blue dots. The populations corresponding
to the Fermi-Dirac distribution at the same temperature are indicated
with dotted lines. Direct and logarithmic plots are depicted in panels
(a) and (b), respectively.

added in the lowest level, energy dissipation is stalled, as can
be seen in Fig. 9(b). In the systems examined in Figs. 9(a) and
9(b) the energy gaps between levels are degenerate. When this
degeneracy is broken, as in the model explored in Fig. 9(c),
the equation of motion (1) recovers energy dissipation. For all
three cases considered in Fig. 9, the physical evolution of the
electronic state is well described by the equation of motion (1)
(blue curves), as is discussed in the next section where these
observations are interpreted.

IV. DISCUSSION

In the presence of a single electron in a pure state, the
dissipative term in Eq. (8) can be written in terms of the
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FIG. 8. Electronic energy as a function of time, for a one-electron
two-level system evolved with the equation of motion (1) (blue line)
and the rate equation (8) (dashed red line). (a) Initial state prepared
as a coherent mixture of the two levels. (b) Initial state induced by
excitation with an electric pulse.

diagonal elements of the density matrix,

Dj j = 2
∑

k

γk j |ρ jk|2 = 2
∑

k

γk jρ j jρkk . (10)

In particular, for an electron in a two-level system in the
absence of an incoming field, the rate equation assumes the

FIG. 9. Electronic energy as a function of time for four-level
systems evolved with the equation of motion (1) (blue line) and
the rate equation (8) (dashed red line), starting with an electron in
the highest energy level. (a) One-electron system with degenerate
energy gaps. (b) Two-electron system with degenerate energy gaps.
(c) Two-electron system with nondegenerate energy gaps.

following form:

dρ22

dt
= −dρ11

dt
= 2γ12ρ22ρ11 = 2γ12

(
ρ22 − ρ2

22

)
. (11)

For small excitations ρ11 ≈ 1, and the equation above repro-
duces the Fermi golden rule:

dρ22

dt
≈ 2γ12ρ22. (12)

According to this result, Eq. (1) yields exponential decays for
small perturbations, while the dissipation rate is decelerated
when the occupation of the excited state is significant, by
virtue of the quadratic term. This behavior has, in fact, been
reported in Ref. [18].

Figure 2 indicates that the field amplitude E0 needed to
reach the Boltzmann population in the two-level system is
smaller than the field calculated from Planck’s law. Conse-
quently, one can expect that for a given temperature, ρ22

exceeds the value corresponding to the Boltzmann distribu-
tion. This is manifest in Fig. 10, which displays the excited
population versus h̄ω0/kT as obtained from the simulations
and from Eq. (6). If this system were thermalized accord-
ing to Rashkovskiy’s expression for black-body emission, the
simulations would reproduce the Boltzmann distribution, con-
sistently with the agreement visible in Fig. 2.

Figure 10 also includes the data from Ehrenfest simula-
tions reported for this system in Ref. [1], showing that the
overestimation is more severe in comparison with the cur-
rent model, in particular, when the energy of the transition
is of the order of kT . The reason why these two models
predict different behaviors, and, more specifically, why one
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FIG. 10. Excited-state population as a function of temperature
for a two-level system. The continuous curve depicts the Boltzmann
distribution, the red dots show the results from the simulations using
the present model, and the dashed gray line corresponds to Eq. (6).
Also shown are results from Ehrenfest simulations extracted from
Ref. [1] (blue squares).

seemingly outperforms the other, is not obvious to us. Even
if both are mean-field semiclassical approaches based on
the dipolar approximation, they address the same problem
from two different perspectives. In Ehrenfest, the density os-
cillations are damped by virtue of the interaction with the
scattered field, or a self-interaction. This self-interaction is
not explicitly introduced in the dissipative equation of motion,
though it may be present as the result of the “friction” in
the Liouville–von Neumann equation rooted in the Larmor
formula. An algebraic comparison with Ehrenfest and with
the self-interaction therein is part of ongoing work.

In the case of multilevel systems with one electron, the
derivative of the occupations is

dρ j j

dt
= 2

∑
k

γk jρ j jρkk . (13)

Again, the dynamics of the first excited state is determined by
the product γ12ρ22ρ11, plus the contribution of terms involving
the populations of the higher levels, which will, in general,
be negligible with respect to those of the two lowest states
except for high temperatures. In this way, the decay from the
first excited state will still be mostly exponential. On the other
hand, the occupancy of this first excited state will enter the
dynamics of the third and higher levels.

It can be seen from Eq. (11) [and also from Eq. (13)] that
when a given level becomes fully populated (i.e., ρ j j ≈ 1 and
ρkk ≈ 0 for all k �= j), its time derivative goes to zero and
emission is quenched. This explains the results illustrated in
Fig. 9(a). The integration of the original model, the equa-
tion of motion (1), does not suffer from this artifact, thanks
to the terms that couple nonresonant frequencies and that are
able to destabilize pure or close-to-pure states. These terms
coupling fluctuations of different frequencies are eliminated
when the fast oscillations are averaged out.

The lack of dissipation observed for our model in the
case of two electrons in the four-level system of Fig. 9(b)
can be interpreted with the assistance of Fig. 11(a), which
presents the occupancies as a function of time for this system.
Here, the degeneracy between all the accessible transitions
provokes the self-excitation of the molecule: the decay from

FIG. 11. Populations as a function of time in a four-level system
with two electrons and degenerate gaps. In the initial state, the elec-
trons occupy the lowest and highest levels, respectively. (a) Evolution
according to the equation of motion (1). (b) Evolution according to
the rate equation (8).

level 4 to level 3 induces the promotion of the other electron
from the first level to the second level. In this way the system
evolves to a stationary state where all four levels are partially
occupied and where the individual dipoles of each particle
resonate in counterphase, canceling each other to switch off
energy dissipation. The dynamics remains trapped in this
state without emitting for the whole length of the simulation,
provided that it is not perturbed. This kind of behavior in
which the system equilibrates in an excited state storing opti-
cal energy has been characterized in the literature as “limited
superradiance” or “subradiance” [20]. Not long ago, this elu-
sive phenomenon was experimentally measured in cold-atom
samples [21]. Its occurrence in nature is not readily observable
because it is the outcome of a delicate equilibrium which is
easily deactivated through thermal coupling or other deco-
herence processes associated with the environment. The fast
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oscillations seem to play a role in stabilizing this state, since
it is not captured by the simpler rate equation [Fig. 11(b)].
In this case the electron in the highest level relaxes to the
next one down, to remain trapped there as already seen for the
single-electron example of Fig. 9(a). When the degeneracy is
broken [Fig. 9(c)], the subradiance effect is destroyed and our
model predicts the expected cascade.

It is interesting to note that in the context of the Dicke
model, subradiance can be represented through the con-
struction of Lindblad dissipators and the population of the
so-called dark states of the Hamiltonian, which are character-
ized by their inability to decay through a collective interaction
[22–24]. Our semiclassical Hamiltonian captures the same
effect thanks to the dynamical coupling of the dipoles of
the fluctuating electronic charges. The case study proposed
by Piñeiro Orioli and Rey [24] provides a nice example to
compare these two descriptions, based on the dark states and
on the semiclassical emission, respectively. Those authors
considered in that work a lattice of two-level systems with
two fermionic particles per site. In their simplest model, a
single lattice site with an internal level structure consisting
of two-degenerate ground states and two-degenerate excited
states, there is only one dark state [24]. In the framework
of our tight-binding electronic Hamiltonian, such a dark-state
can be identified with a two-level system of two electrons in
the singlet state (with spin 1/2 and −1/2, respectively) with
one particle in the ground state and the other one excited. In
analogy with the quantum Dicke model analyzed in Ref. [24],
the evolution of our two-electron system leads to a subradiant
solution where both particles remain trapped in a partially
excited state, and in which the dipole moments of the two par-
ticles interfere destructively. These two treatments can thus be
regarded as two sides of the same coin. Further investigations
on the induction of subradiant and superradiant states with the
present model are in progress [25].

The first term on the right-hand side in Eq. (8) accounts for
the incoming radiation. In thermal equilibrium, this term has
to be equal to the dissipation rate,

Dj j = −
∑

k

4π2|μk j |2
3h̄2 (ρkk − ρ j j )U (ωk j ). (14)

At the same time, U (ω) must be given by Planck’s law
[Eq. (3)], and the populations must follow the Boltzmann
distribution, ρnn = exp(− h̄ωn

kT )/Z . Then, from Eq. (14) it is
possible to write

Dj j = −
∑

k

4|μk j |2|ω jk|3
3h̄c3

1

exp
( h̄|ω jk |

kT

) − 1

×
[

exp

(
− h̄ωk

kT

)
− exp

(
− h̄ω j

kT

)]
1

Z
, (15)

which after some algebra yields

Dj j = 2
∑
k< j

γk jρ j j + 2
∑
k> j

γk jρkk . (16)

At low temperatures, when ρ11 ≈ 1 and ρ j j � ρ j+1, j+1, the
leading term for the first excited state in this expression will
be consistent with the prediction of the rate equation under
these conditions [Eq. (13)],

D22 ≈ γ12ρ22ρ11 ≈ γ12ρ22. (17)

Alternatively, in many-electron extended systems the
Fermi-Dirac distribution can be considered,

ρnn = 1

exp
( h̄ωn−μ

kT

) + 1
, (18)

in which case Eq. (14) adopts the following form:

Dj j = −
∑

k

4|μk j |2|ω jk|3
3h̄c3

1

exp
( h̄|ω jk |

kT

) − 1

×
(

1

exp
( h̄ωk

kT − μ
) + 1

− 1

exp
( h̄ω j

kT − μ
) + 1

)
, (19)

with μ being the Fermi level. Expression (19) can be further
rearranged to give

Dj j = 2
∑
k< j

γk jρ j j (1 − ρkk ) + 2
∑
k> j

γk jρkk (1 − ρ j j ). (20)

In this case only those terms involving partially filled levels
close to the Fermi energy will contribute to the dissipative
dynamics.

V. SUMMARY

This work scrutinizes the performance of a recent semi-
classical formalism for dissipative electron dynamics [18] to
model black-body thermal equilibrium. To this end, tight-
binding simulations were conducted in 2-, 4-, and 12-level
systems of one or more electrons thermalized with electro-
magnetic radiation. For 2-level systems the model reproduces
the Boltzmann populations corresponding to the incident
radiation temperature and quantitatively predicts Planck’s
black-body spectra with an accuracy that becomes better
the higher the frequencies, e.g., h̄ω > 4 kT . This result is
remarkable as far as no other parameter-free semiclassical
approaches have been shown to recover the correct distribu-
tion in thermal equilibrium [1]. For multilevel systems, the
model still provides the right populations of the two lowest
levels, but is less accurate for the rest. Electron dynamics
simulations initiated from an excited state exhibit the ex-
pected cascadewise relaxation in which the accessible levels
are consecutively populated in decreasing order. Interestingly,
in many-electron systems with degenerate energy gaps, this
cascade is interrupted by the emergence of a steady state
where emission ceases and electron levels remain partially
filled. This phenomenon, which is the consequence of the
self-excitation of the lowest-energy electrons and has been
termed “subradiance” in the theoretical literature [20], was
recently detected experimentally in an atomic cloud [21].

The dependence of the populations as a function of time
was derived analytically from the dissipative equation of mo-
tion by a perturbative argument. The rate equations obtained
in this way for one-electron systems indicate that the radia-
tive dynamics will follow FGR when the occupancy of the
ground-state level is not too different from unity, explaining
why the agreement is better for low temperatures and why
Planck’s black-body emission spectrum is more accurately
described in the high-frequency region. Hence, these rate
equations suggest that the present semiclassical model will be
less reliable at very high temperatures or in certain situations

042201-8



RADIATIVE THERMALIZATION IN SEMICLASSICAL … PHYSICAL REVIEW A 105, 042201 (2022)

far from equilibrium, as in the case of population inversion.
Moreover, the comparison of the simulations based on the rate
equations and on the original model evinces the importance of
the fast oscillations in the deexcitation dynamics, through the
coupling of nonresonant modes. The dynamics arising from
the rate equations will coincide with that of Eq. (1) provided
that the fast oscillations, which are averaged out in the deriva-
tion of the former, are not determinant. These fast oscillations
are important to induce relaxation from intermediate levels
during a cascade. They are also relevant to couple the indi-
vidual dipoles in degenerate transitions that lead to subradiant
states in multielectron systems. Therefore, the descriptions
will differ for cascades in multistate structures but also for
an ensemble of 2-level systems exhibiting degenerate states.

We have, finally, demonstrated the close connection of the
present theory to that of Rashkovskiy [10]. We have argued
that this is because the two describe the same radiation field
in two different gauges. The conclusion is that the radiation
self-force that they capture (the Abraham-Lorentz force) leads
to the Rashkovskiy distribution, which in turn closely resem-
bles the Planck spectrum especially at high frequencies or low
temperatures. The difference between the two distributions,
then, is due to the remaining ingredient of charge-field in-
teraction, namely, the vacuum fluctuations or the charge-field
correlations, depending on one’s point of view.
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APPENDIX

The first term in Eq. (8) arises directly from Fermi’s golden
rule (FGR) applied to the transitions driven by E (t ). Indeed
the net particle current from state k into state j, under in-
teraction with a sinusoidal electric field of frequency ω and
amplitude E0(ω), according to FGR is


k→ j = 2π

h̄2

1

4
(ρkk − ρ j j )E

2
0 |μ jk|2[δ(ω jk + ω) + δ(ω jk −ω)].

(A1)

Now we assume that interactions with different frequencies
are independent (equivalent to saying that different frequency
components have uncorrelated phases and averaging over
these phases) and sum over frequency components. This gives


k→ j = 2π

h̄2

1

4
(ρkk − ρ j j )E

2
0 |μ jk|2d (|ω jk )], (A2)

where d (ω) is the density of states for the frequency compo-
nents of the field. From Eq. (4) it is given by

d (ω) = 2

3ε0

U (ω)

E2
0 (ω)

, (A3)

which then gives our desired result.

On the other hand, the dissipative contribution, Eq. (9) or
second term in Eq. (8), emerges directly from the radiative
term in the equation of motion (1) after expanding the wave
functions in an orthonormal basis and averaging over fast
oscillations. More specifically, the dissipative Schrödinger
equation introduced in Ref. [18] can be cast to first order
as

ih̄
dψa(r, t )

dt
= Ĥψa(r, t ) + 2α

i3c2

d2〈X 〉
dt2

[X̂ , Ĥ ]ψa(r, t ),

(A4)

where ψa are the electronic wave functions, α is the fine-
structure constant, α = μ0e2c

4π h̄ , and e is the electron charge.
If the wave functions are written in terms of an orthonormal
basis set {uk},

ψa(r, t ) =
∑

k

cak (t )uk (r) exp(−iωkt ), (A5)

it is possible to insert the last equality in Eq. (A4) to get

ih̄
∑

n

dcan

dt
un(r) exp(−iωnt )

= 2αh̄

i3c2

d2〈X 〉
dt2

∑
n

∑
k

ωncanuk (r) exp(−iωnt )Xkn

− 2αh̄

i3c2

d2〈X 〉
dt2

∑
n

∑
k

canuk (r)Xkn exp(−iωnt )ωk,

(A6)

where we have used Ĥuk (r) = ωkuk (r) and X̂ uk (r) =∑
n Xknun(r). After multiplying both members by u∗

j (r), and
integrating over space, the time derivative of the coefficients
takes the form:

ih̄
dcan

dt
= 2αh̄

i3c2

∑
k

cakωknXnkẌ exp(−iωknt ), (A7)

with

Ẍ = −
∑

b

∑
i

∑
j

ω2
jic

∗
bicb jXi j exp(−iω jit ) (A8)

and ωkn = ωk − ωn. The sum above involves products
of complex exponentials, of which only those associated
with the same frequency will survive when averaged over
time,

〈exp(−iωt ) × exp(iω′t )〉t

= lim
t0→∞

1

2t0

∫ +t0

−t0

exp[−i(ω − ω′)t]dt, (A9)

leading to

ih̄
dcan

dt
≈ 2i

3c3

∑
b

∑
k

c∗
bkcakcbn|μnk|2ω3

kn (A10)

(here we ignore degeneracies among the energy-level spac-
ings). The insertion of this result in the time derivative of the
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density matrix elements,

dρi j

dt
=

∑
a

{
dcai

dt
c∗

a j + dc∗
a j

dt
cai

}
, (A11)

produces the final outcome:

dρi j

dt
=

∑
k

ρikρk j
2ω3

ki

3h̄c3
|μki|2 +

∑
k

ρk jρik

2ω3
k j

3h̄c3
|μk j |2.

(A12)
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