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Heat engines with single-shot deterministic work extraction
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We introduce heat engines working in the nanoregime that allow one to extract a finite amount of deterministic
work. Using the resource theory approach to themodynamics, we show that the efficiency of these cycles is
strictly smaller than Carnot’s, and we associate this difference with a fundamental irreversibility that is present
in single-shot transformations. When fluctuations in the extracted work are allowed there is a trade-off between
their size and the efficiency. As the size of fluctuations increases so does the efficiency and optimal efficiency
is attained for unbounded fluctuations, while a certain amount of deterministic work is drawn from the cycle.
Finally, we show that when the working medium is composed of many particles, by creating an amount of
correlations between the subsystems that scale logarithmically with their number, Carnot’s efficiency can also
be approached in the asymptotic limit along with deterministic work extraction.
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I. INTRODUCTION

Since its formulation, thermodynamics has become one of
the cornerstones of physics. Originally motivated by the study
of macroscopic thermal machines like steam engines, it has
now been pushed well outside its original scope into the limit
of a small number of systems in the quantum realm [1–3].
Pursuing the identification of the limitations and advantages
of these devices that operates in the nanoregime, an extensive
deal of work has been devoted to the study for instance of
cycles analogous to Carnot’s [4–11] or Otto’s [12–17], the
performance of quantum refrigerators [18–21], heat engines
that exploit the quantumness nonclassical reservoirs [22–24],
or quantum measurements [25–29]. Like in the standard sce-
nario, most of these analyses were focused on the study of
average work extraction. This assumption is well justified
in the macroscopic limit due to the fact that the amount of
fluctuations decreases with the number of particles. However,
in small systems work fluctuations dominate and may be even
greater than the mean value of work. Therefore, it becomes
relevant to understand limitations of heat engines in single
realizations with controlled, or bounded, fluctuations of work
in this regime.

Among the different approaches that have been developed
to characterize single-shot thermodynamic transformations of
nanoscale systems in contact with a thermal bath, a recent
framework that gained a lot of interest is the so-called resource
theory of thermodynamics [30–51]. Within this framework,
a detailed account of every energy exchange between sys-
tem and heat bath imposes severe restrictions to the allowed
thermodynamic transformations that go beyond the standard
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second law [31–34]. In fact, this set of restrictions determines
that, in general, the minimum amount of deterministic work
yielded in a given transformation is greater than the maximum
work that can be drawn from the reverse process [31–34].
Remarkably, the emergence of this fundamental notion of
irreversibility is absent in the standard scenario, where the free
energy difference determines both the work that can be ex-
tracted from a given transformation and the work that needs to
be invested to generate it. Thus, naturally, one expects poorer
performance for heat engines working in such a regime. How-
ever, the existing results seem to suggest that it is not even
possible to design a cycle able to extract a finite amount of
deterministic work in the single-shot regime [31,39,52,53].

Here we show that in fact one can define such heat engines
in the single-shot regime. We introduce thermodynamic cycles
that allow one to extract a deterministic amount of work from
a nanoscale system (working medium) in contact with two
thermal baths. These cycles can be described in two ways:
either in terms of the collection of equilibrium states that the
working medium reaches at the end of each stroke when it is
subjected to a driving or in terms of a set of nonequilibrium
states through which the working medium passes after the
different strokes with fixed Hamiltonian. We show that the
efficiency of these engines is strictly smaller than Carnot for
determinist work extraction. These two types of engines also
allow us to analyze the influence of fluctuations of work and
the size of the working medium on the efficiency. Indeed, we
show that the efficiency of these engines can be enhanced
either by allowing fluctuation in the extracted work or by
increasing the size of the working medium.

II. SINGLE-SHOT SCENARIO

Let us start by setting up the scenario we will consider.
The fundamental components of an ordinary heat engine are
two thermal baths at different temperatures Thot and Tcold (with
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FIG. 1. Pictorial representation of thermodynamic cycles for de-
terministic work extraction. For the cycles connecting equilibrium
states, the transformations A → B or C → D are defined through the
initial and final Hamiltonians. For the engines operating between
nonequilibrium states, the states at A and B are identified by the
support on the energy eigenbasis, which uniquely determines these
states. The strokes A → B and C → D are reversible processes even
in the single-shot regime, while the two other strokes involve an
irreversible thermalization.

Tcold < Thot) and a working medium S that undergoes a cyclic
transformation. We assume that the working medium is an
arbitrary finite dimensional quantum system and we have
at our disposal two infinite heat baths in thermal states τB.
Work will be quantified by considering an additional degree of
freedom that acts as a battery [32,33]. The battery is modeled
as quantum system W with its own Hamiltonian HW that,
in a deterministic (fluctuation free) transformation, starts and
ends up in a pure energy eigenstate of HW . Thus, if the
initial state of the battery is an eigenstate with energy E1,
and after a given transformation it ends up in an eigenstate
with energy E2, we will then say that an amount of deter-
ministic work W = E2 − E1 (if E2 > E1) has been drawn or
it has been yielded (if E2 < E1) in the transformation. For
deterministic work extraction, a two-level system will be
enough.

The cycles we will introduce can be described by a four
stroke process as depicted in Fig. 1. At the beginning of each
cycle the system, battery, and baths start uncorrelated in a
product state, and during each stroke the system interacts with
only one of the baths. As we are interested in work extraction
in small systems we will take into account all sources of
energy transfer [32–34]. Thus we also assume that during each
stroke the components interact through an energy-preserving
unitary transformation U , such that [U, HS + HW + HB] =
0, where HS is the Hamiltonian of the system S and HB is
the Hamiltonian of the corresponding bath B. This is a strict
energy conservation requirement, analogous to the first law,
and ensures that the unitary transformation is not injecting
energy. Thus all energy exchanges with the battery come
from the bath and/or the system (working medium). In this
way, an initial state η (system + battery) can be transformed
into a final one σ after tracing over the degrees of freedom
of the bath: σ = trB[U (η ⊗ τB )U †]; this is called a thermal
transformation and will be denoted as η → σ [33,34].

In this way, we can generically describe each stroke by a
thermal transformation. Let us consider a finite dimensional
system with Hamiltonian HS = ∑

E E �E , where �E are
projectors over the energy subspace E , in an initial block-
diagonal state ρ = ∑

E ,g λE ,g|E , g〉〈E , g| (g accounts for the
degeneracy of the energy levels). Then, the maximum amount
of deterministic work Wext that can be extracted in contact with
a reservoir at temperature T is given by

Wext(ρ) = F0(ρ) − F (τS ), (1)

where F0(ρ) = −β−1ln
∑

E∈supp(ρ) e−βE , β = (kBT )−1 with
kB the Boltzmann constant, supp(ρ) is the support of the state
ρ, and F (τS ) = −β−1lnZS is the standard free energy of the
thermal state τS = e−βHS/ZS . This is called the extractable
work and is obtained by maximizing W over the thermal
transformation ρ ⊗ |0〉〈0|W → τS ⊗ |W 〉〈W |W , with HW =
W |W 〉〈W |W . Notice that, to be able to extract a nonzero de-
terministic amount of work, the state cannot have full support
in the energy eigenbasis. The inverse transformation, where
a nonequilibrium state ρ is created out of an initial thermal
state, requires a minimum amount of deterministic work

Wform(ρ) = F∞(ρ) − F (τS ), (2)

where F∞ = β−1ln maxE ,g{λE ,geβE }; this is the so-called
work of formation. Remarkably, Wform(ρ) � Wext(ρ) and the
inequality is strict except for very specific cases that we
will discuss later. This reflects a fundamental irreversibility
that exists in the single-shot regime [33,34]. Under all these
assumptions, in the following we will present a set of micro-
scopic heat engines that allow deterministic work extraction.

III. CYCLES IN TERMS OF EQUILIBRIUM STATES

As it is usual in standard thermodynamics we will start
by defining cycles in terms of thermal states of the working
medium. In this way, one can notice from Eq. (1) that a
stroke where the working medium starts in a thermal state is
useless for deterministic work extraction if the Hamiltonian is
constant during the process since, in this case, no deterministic
work can be extracted from full rank states. However, we
can overcome this issue by introducing a driving, where the
Hamiltonian of the working medium changes from H1 to H2.
This thermal transformation can be modeled by introducing an
auxiliary two-level system C with trivial Hamiltonian that acts
as a clock [33,34]. Then, by defining the Hamiltonian of the
working medium as HSC = H1 ⊗ |0〉〈0| + H2 ⊗ |1〉〈1|, with
{|0〉, |1〉} an orthonormal basis of C, the above work extraction
process can be formally expressed as

τS,1 ⊗ |0〉〈0|C ⊗ |0〉〈0|W → τS,2 ⊗ |1〉〈1|C ⊗ |W 〉〈W |W ,

(3)

where τS,i is the thermal equilibrium state of S with
Hamiltonian Hi. This type of transformation resembles the
classical isothermal transformation of a gas. Thus it is easy to
show now that the maximum deterministic work W that can
be extracted after this transformation is simply equal to the
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standard free energy difference W =	F = F (τS,2) − F (τS,1).
Notably, this transformation holds an important property: it
is reversible, meaning that the amount of work yielded in the
inverse transformation is also equal to W .

The four stroke cycles we define below (A → B → C →
D → A) are illustrated in Fig. 1. At the end of each stroke
the system is in a thermal state, so we will label these states
as (H, T ), indicating that the system is in equilibrium at
temperature T with Hamiltonian H . Let us analyze the cycle
in detail; as we said before S is a general finite dimensional
system. Initially, the system starts at A in equilibrium with
(H1, Thot ). The first stroke is such that the system is driven
from H1 → H2 in contact with the hot bath and ends up at B
in equilibrium with (H2, Thot ). The extracted work after this
step is equal to 	FAB = FA − FB, where F(·) is the standard
free energy of the equilibrium state at each point. During the
second stroke the system is brought in contact with the cold
bath and thermalizes; thus the state of the system at C is
(H2, Tcold). This transformation is achieved at no work cost
and an amount of heat QBC is dissipated in the cold bath. In
terms of the resource theory this is a consequence of the fact
that the thermal state is thermomajorized by all states [33].
In the third stroke, at a work cost equal to 	FDC = FD − FC ,
the system is driven from H1 → H2, still in contact with cold
bath, and ends up at D in a thermal state (H1, Tcold). Finally,
the system is brought again in contact with the hot bath and
thermalizes after receiving an amount of heat QDA, thus reach-
ing the initial state. In summary, after this cycle it is possible
to extract a deterministic amount of work equal to

Wcycle = FA − FB − FD + FC . (4)

Notably, the derivation is general, as we did not impose any
condition on the dimension of the system, Hamiltonians, or
temperatures. However, the work Wcycle drawn in the cycle of
course depends on these details.

Efficiency

The performance of any heat engine is evaluated by
computing their efficiency. In order to obtain the efficiency
of these cycles, we have to compute the amount of heat
exchanged with the baths. If a thermal operation has an asso-
ciated single-shot deterministic work cost W and the average
internal energy change of the system is 	E , then the heat Q
exchanged with the reservoir during the transformation is

Q = 	E − W. (5)

Due to the fact that the state of the system itself has a
probabilistic distribution of energy, heat will be a fluctuating
quantity; only if the system were in a pure state could we have
a definite value of internal energy and therefore of the heat
exchanged.

Now, the efficiency is defined as the ratio between the
extracted work and the heat exchange with the hot bath:

η = Wcycle

Qhot
= 1 − Qcold

Qhot

= 1 − Tcold[SC − SD] + EB − EC

Thot[SB − SA] + EA − ED
, (6)

where S(·) and E(·) are the entropy and average energy
of the system in each state, respectively. One can easily
check that this value is indeed strictly smaller than Carnot’s
efficiency,

η < ηCarnot = 1 − Tcold

Thot
. (7)

As we will see, this is related with the heat exchange dur-
ing the thermalization processes B → C and D → A, which
are irreversible in the single-shot regime. In fact, while the
transformation B → C can be done without investing work,
the inverse transformation C → B requires a finite amount of
work. This is due to the fact the state at B with H2 in contact
with the hot bath is a nonequilibrium state for the cold bath.
Hence one can show that the efficiency can be improved as
the heats QDA and QBC are reduced. In fact, as QBC → 0 and
QDA → 0, η → ηCarnot. This behavior is illustrated in Fig. 2
for a single-qubit heat engine. There, the Hamiltonians at A
and B are H1 = h̄ω1|1〉〈1| and H2 = h̄ω2|1〉〈1|, respectively,
where {|0〉, |1〉} is an orthonormal basis of S . In Fig. 2 we
can see the efficiency, work, and irreversible heat exchange
for this engine; thus for h̄ω2 � kBTcold and h̄ω1 	 kBThot the
irreversible heat is drastically reduced and Carnot efficiency
is approached. This is a consequence of the fact that the irre-
versible heat dissipated during the thermalization steps (both
QBC and QDA) is drastically reduced whenever the system gap
is much smaller or larger than the temperature of the heat bath
[as can be seen in Fig. 2(c)]. This cycle can be considered
as a generalization of the Stirling cycle [54], since they share
two strokes where work is extracted or yielded in contact with
heat baths and two strokes where there is only heat exchange
with the baths. The efficiency of the classical Stirling engine
can be increased through the interaction with a regenerator
that transfers the heat between the isochoric transformations.
Since the amount of heat that is absorbed and dissipated in
those strokes is equal, the efficiency of the classical cycle
could be as high as Carnot’s efficiency. As we will see bellow,
our cycle is such that, instead of using a regenerator to reach
Carnot’s efficiency, we can allow fluctuations in the ex-
tractable work.

As we said, there is a different way to approach Carnot’s
efficiency in this cycle. This is at the expense of allowing some
fluctuations in the work extraction. Single-shot transforma-
tions with bounded fluctuations of work have been thoroughly
studied in [39], where it was shown that if arbitrarily large
fluctuations are allowed it is possible to extract an average
work equal to the free energy difference. In particular, this
means that we can also extract some fluctuating work during
the thermalization steps (second and fourth), and actually if
we allow arbitrary large fluctuations the mean value of this
work equals the free energy difference: 〈WBC〉 = FB − FC and
〈WDA〉 = FD − FA. It is then straightforward to see that in
this limit the efficiency of our cycle is precisely Carnot, η =
ηCarnot. Notably, by allowing fluctuations we do not change
the deterministic work that is being drawn from A → B, since
over this stroke work is already equal to the free energy
difference. However, if the size of fluctuations is bounded, the
average work that can be extracted during the thermalization
steps is 〈W 〉 < 	F and therefore the efficiency increases.

034135-3



CERISOLA, SAPIENZA, AND RONCAGLIA PHYSICAL REVIEW E 106, 034135 (2022)

FIG. 2. Efficiency, work, and irreversible heat for a single qubit heat engine of the first type. ω1 and ω2 are the gaps of the initial and final
Hamiltonians, respectively, h̄ = 1, kB = 1, and Tcold = 1 in arbitrary units so that all energy quantities are expressed in units of Tcold. (a) The
efficiency of the cycle: as h̄ω2 � kBTcold and h̄ω1 	 kBThot Carnot’s efficiency is approached. (b) Deterministic work drawn from the cycle.
(c) Irreversible heat dissipated during the thermalization steps (either B → C or D → A) as a function of the corresponding gap ω (ω1 or ω2).

Thus, in this case, heat and work are related by Q = 	E −
〈W 〉 and the efficiency can be generically written as

η = 1 − Tcold[SB − SD] + |δQBC |
Thot[SB − SD] − |δQDA| , (8)

where we define |δQDA| ≡ Thot(SA − SD) − |QDA| and
|δQBC | ≡ |QBC | − Tcold(SB − SC ). Then, |δQ| is the difference
between the heat exchange of the stroke (with bounded
fluctuations) and the heat exchange of an ideal stroke when
arbitrary large fluctuations are allowed (see Appendix A).
Thus Carnot’s efficiency is attained as both heat differences
tend to zero, |δQ| → 0.

For instance, using the analytical formula for the average
work 〈W 〉 with bounded fluctuations in the case of two-level
systems [39], we can study the efficiency for a specific cycle.
In Fig. 3 we show the efficiency as a function of the size of
the fluctuations, 	W , for the single qubit heat engine. There
we can see that the efficiency is increased as we allow fluctu-

ations, and for large fluctuations Carnot efficiency is attained.
Furthermore, even when a small amount of fluctuations is
allowed the efficiency is drastically improved.

IV. CYCLES IN TERMS OF NONEQUILIBRIUM STATES

We will now show a cycle that generalizes the previous one
and can be defined in terms of nonequilibrium states with a
fixed Hamiltonian. As we mention before, deterministic work
extraction in a process that occurs at a fixed Hamiltonian
requires an initial non-full-rank state for S . In addition, in
order to close the cycle, the creation of this nonequilibrium
state is also required. Thus, due to the intrinsic irreversibility
of the single-shot transformations, this poses a problem to
our task. However, there is a way to circumvent this issue;
to this end we will first introduce a set of states that we call
reversible.

FIG. 3. Efficiency for single qubit heat engines of the first type when fluctuations are allowed [(a) and (b)] and the efficiency for the
many qubits engine (c). We use the same convention of Fig. 2 for numerics and we fix ω2 = 5. (a) Efficiency in terms of the initial gap ω1

for different fluctuation sizes 	W (by this we mean that the extracted work must lay within 〈Wcycle〉 ± 	W ). By allowing fluctuations the
efficiency is increased, and for large values of 	W we eventually recover Carnot efficiency. (b) Efficiency in terms of 	W ; η∗ is the efficiency
of the single qubit heat engine proposed in [39] that works with a fixed Hamiltonian. For small 	W , the efficiency of our cycle has a nonzero
value, while η∗ vanishes since the cycle is unable to extract deterministic work. (c) Efficiency for the correlated N-qubit engine; as N increases
Carnot’s efficiency is rapidly approached.
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We will say that a state σ is reversible if its work of
formation equals its extractable work,

Wform(σ ) = Wext(σ ). (9)

The following results provide a complete characterization of
this set of states.

Proposition. Consider a block-diagonal state σ with
support

supp(σ ) =
⊕

E

UE , (10)

where UE is a subspace of the energy shell E . Then, σ is a
reversible at a background inverse temperature β if and only
if has a thermal-like distribution over supp(σ ), i.e.,

σ = 1

Z

∑
E

e−βE �UE , (11)

where �UE is the projector over UE and Z is a normalization
constant given by Z = ∑

E dim(UE ) e−βE .

Notice that these states have a uniform distribution over
each UE . Some key properties of reversible states (which are
shown in Appendix B along with the proof of the proposition)
are listed below.

(1) The work of formation and the extractable work of
the reversible states are equal to the standard free energy
difference

Wform(σ ) = Wext(σ ) = F (σ ) − F (τ (β )), (12)

where τ (β ) is the thermal state at inverse temperature of the
bath β.

(2) Any state with the same support of σ can be trans-
formed into σ via a single-shot thermal operation at no
work cost.

(3) For any state ρ which has the same support of σ and
ρ �= σ : Wext(ρ) = Wext(σ ) and Wform(ρ) > Wform(σ ).

Notably, there is a subset of the reversible states that has an
interesting physical interpretation [55] and will be important
in what follows. This subset is composed by the states whose
energy levels are uniformly populated or not populated at all;
that is, dim(UE ) = 0 or dim(UE ) = g(E ), where g(·) is the
degeneracy of the energy shell E . Thus the states of this subset
are fully characterized by the set of energies U that define their
support and they can be written as

τ |U (β ) = 1

ZU

∑
E∈U

e−βE�E . (13)

Now we are ready to introduce the second set of heat
engines, also illustrated in Fig. 1. We will consider the system
S as an arbitrary finite dimensional system (of dimension
greater than 2) with a given Hamiltonian. Without loss of
generality (see Appendix B) we will assume that initially S
is in a nonequilibrium reversible state (i.e., not a thermal
state) at inverse temperature βhot. During the first stroke,
S goes from τ |U (βhot) to τ |V (βhot) in contact with the hot
bath. As we mentioned, these two states are completely
determined by their respective supports (U and V) and tem-
perature. Since the initial and final states are reversible, the
total amount of deterministic work that is drawn in this step
equals the standard free energy difference: WAB = FA − FB =

F (τ |U (βhot)) − F (τ |V (βhot)). The second stroke, B → C, is
such that the system goes from τ |V (βhot) → τ |V (βcold) in
contact with the cold bath. This step generalizes the thermal-
ization stroke of the previous cycle and, like in that case, it
can be achieved at no work cost (see Property 2). The re-
maining strokes are defined in a similar way. During C → D,
the system is in contact with the cold bath and the trans-
formation τ |V (βcold) → τ |U (βcold) is done at a deterministic
work cost equal to the free energy difference WDC = FD − FC .
Finally, the transformation D → A, where the system returns
to its initial state τ |U (βcold) → τ |U (βhot), is done in contact
with the hot bath at no work cost. Therefore, the expressions
for the net extracted work and the efficiency have the same
form as before [Eqs. (4) and (6)] except that in this case the
labels A, B, C, D refers to the nonequilibrium states we define
above. Notice that the previous cycle can also be considered a
particular realization of this more general cycle. Indeed, when
one adds the clock degree of freedom, the complete state of
system plus clock can be considered as particular instances of
the reversible states we defined before.

This more general cycle is particularly useful to analyze
the behavior of the heat engine when the working medium S
is composed by N identical subsystems. In [55], the presence
of correlations in single-shot transformations was studied. In
particular, it was shown that for every single particle state
ρ there exists a correlated N-partite state ρ (N ), such that
the reduced state of each subsystem is ρ and Wform(ρ (N ) ) �
NWform(ρ). Notably, the set of reversible states of Eq. (13)
appears naturally in this context as the set of states that min-
imizes the corresponding work of formation. Interestingly, if
we consider heat engines working between these reversible
states, it is possible to demonstrate that for large N the effi-
ciency converges to Carnot. Furthermore, these states hold an
amount of correlations that scales as O(ln N ). Therefore, if
we consider a working medium composed of N particles, we
recover Carnot efficiency allowing an amount correlations per
particle that it is vanishing small in the large N limit, as can be
observed, for example, in panel (c) of Fig. 3 (see Appendix C
for details). Moreover, one can show that, in the limit N →
∞, W (ρ (N ) )/N → 	F = F (ρ) − F (τ ), so that the extracted
work per particle in this cycle is simply given by the standard
free energy of the reduced state.

V. DISCUSSION

It is worth comparing our results with previous single-shot
proposals that were unable to extract deterministic work. In
[33] a single-shot engine that mimics the Carnot cycle was
introduced; it consisted of two strokes in contact with heat
baths plus two adiabatic transformations. Our results indicate
that, if one replaces the adiabatic strokes with thermalizations
(at no work cost), single-shot deterministic work extraction
can be achieved. Another qubit heat engine with two strokes
was introduced in [39]. There the transformations in contact
with the heat baths were done at fixed Hamiltonian and it was
shown that no deterministic work can be extracted. However,
when fluctuations in work were allowed a nonzero average
work can be extracted at finite efficiency. Here we showed that
deterministic work extraction with fixed Hamiltonian requires
strokes with nonequilibrium states. In Fig. 3(b) we plot the
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efficiency η∗ of the heat engine introduced in [39] along with
the efficiency of our first cycle for a two-level system. Besides
the difference in efficiency, we should also stress that in our
cycle the amount of deterministic work does not change when
fluctuations are allowed; in fact the efficiency is improved
because an additional fluctuating work is extracted during the
thermalization stroke. Finally, in [52,53] it was shown that no
deterministic heat engine exists if the cold bath has finite size.
This is an interesting approach which is different from the
one considered here and in the other proposals. Our scheme
requires infinite hot and cold baths, which is very much in
line with traditional formulations of heat engines.

Here we have introduced thermodynamic cycles that allow
deterministic work extraction in the single-shot regime. It is
worth noting that, while we have focused on an engine that ex-
tracts work, the same idea can be used to design a single-shot
refrigerator that has a deterministic work cost of operation
(although the heat removed from the cold bath will still have
fluctuations). Indeed both strokes, A → B and C → D, are
reversible and therefore can be inverted, while the thermal-
ization steps B → C and D → A are irreversible. Therefore,
to operate as a refrigerator these transformations have to be
changed. However, it is easy to check that swapping the baths
at those steps (so that C → B is done at Thot and A → D at
Tcold) is enough. We have also shown that optimal efficiency
can be approached by allowing fluctuations in the extracted
work or in the limit N → ∞ when the working medium is
composed of many particles. In this last example, the cycle is
such that the work extracted per particle depends only on the
standard nonequilibrium free energy of the reduced system
(which can be chosen arbitrarily), recovering standard results
of heat engines in the macroscopic limit.
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APPENDIX A: BOUND ON THE EFFICIENCY

Here we show a simple lower bound on the difference
between the efficiency of our first cycle Eq. (6) and Carnot’s
efficiency. We showed that

η = 1 − Tcold[SC − SD] + EB − EC

Thot[SB − SA] + EA − ED
, (A1)

= 1 − Tcold[SC − SD] + |QBC |
Thot[SB − SA] + |QDA| , (A2)

where the last equation is written in terms of the heat exchange
over the strokes BC and DA. Notice also that this last expres-
sion is valid even when one allows fluctuations in work. Thus
the efficiency when we allow fluctuations in the work depends
on the value of the heat exchanged over those strokes.

According to the first law Q = 	E − 〈W 〉. Then, if we
do not allow fluctuations, the amount of dissipated heat
in the BC stroke (EC < EB) equals |QBC | = EB − EC , since
one cannot extract any deterministic work. On the other
hand, we showed that if one allows arbitrary large fluc-

tuations in the value of work, the optimal transformation
allows one to extract an amount of work equal to the
free energy difference |W | = (EB − EC ) − Tcold(SB − SC ) and
therefore the heat exchange in this case would be |Qopt

BC | =
Tcold(SB − SC ). In general, |QBC | = |	EBC | − |WBC |; there-
fore, Tcold(SB − SC ) � |QBC | � EB − EC . Now, we can define

|δQBC | ≡ |QBC | − Tcold(SB − SC ) (A3)

as the difference between the heat exchange in BC and
the heat exchange in the optimal stroke. Therefore,
0 � |δQBC | � (EB − EC ) − Tcold(SB − SC ) ≡ 	FBC .
Analogously we can define

|δQDA| ≡ Thot(SA − SD) − |QDA| (A4)

for the stroke AB. Notice that in this case |QDA| =
|	EDA| + |WDA| and (EA − ED) � |QDA| � Thot(SA − SD),
which is the reason why we define the differ-
ence in heat with the minus sign. In this case
0 � |δQDA| � (ED − EA) − Thot(SD − SA) ≡ 	FDA. There-
fore, in general, we can rewrite the efficiency as

η = 1 − Tcold[SB − SD] + |δQBC |
Thot[SB − SD] − |δQDA| . (A5)

The difference with Carnot’s efficiency can be written as

	η ≡ ηC − η = |δQBC | + Tcold
Thot

|δQDA|
Thot[SB − SD] − |δQDA| . (A6)

Thus the efficiency approaches Carnot’s as both δQ tend to
zero. A simple lower bound to this difference can be easily
obtained:

	η � |δQBC |
Thot[SB − SD]

. (A7)

APPENDIX B: PROPERTIES OF REVERSIBLE STATES

Proof. (Proposition in the main text). We will start by
showing that any state having a thermal-like distribution over
a reduced support is reversible. First, notice that all nonzero
eigenvalues λE ,g of the states σ in Eq. (11) satisfy λE ,geβE =
1/Z . Then,

Wform(σ ) = β−1ln max
E ,g

λE ,geβE − F (τ (β ))

= −β−1lnZ − F (τ (β ))

= −β−1ln
∑

E

dim(UE )e−βE − F (τ (β ))

= Wext(σ ), (B1)

which shows that σ is a reversible state.
Let us prove now that all reversible states have the form of

Eq. (11). Consider ρ a reversible state with

supp(ρ) =
⊕

E

Uρ
E , (B2)

where Uρ
E = supp(ρ) ∩ {|ψ〉 : H |ψ〉 = E |ψ〉}. Now let us de-

fine the thermal-like state σ on the support of ρ, that is,

σ = 1

Zσ

∑
E

e−βE�Uρ
E
. (B3)
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Since ρ and σ have the same support, they have also the
same extractable work, Wext(σ ) = Wext(ρ). As both states are
reversible (ρ by hypothesis),

Wform(ρ) = Wext(ρ) = Wext(σ ) = Wform(σ ). (B4)

This proves that both states also have the same work of forma-
tion. Based on the definition of work of formation, this implies

max
E ,g

λ
ρ
E ,geβE = max

E ,g
λσ

E ,geβE = 1

Zσ

, (B5)

where λ
ρ
E ,g, λσ

E ,g are the eigenvalues of ρ and σ with associ-
ated energy E , respectively. This last expression implies that
λ

ρ
E ,g � e−βE/Zσ = λσ

E ,g. If the last inequality is strict for at
least one value of (E , g), then we will have

1 = tr(ρ) =
∑
E ,g

λ
ρ
E ,g <

∑
E ,g

λσ
E ,g = 1, (B6)

which is a contradiction. We conclude λ
ρ
E ,g = λσ

E ,g and there-
fore ρ = σ .

Now we prove properties (1)–(3) of reversible states. No-
tice that, since σ has a Gibbs distribution over the subspace U ,
then clearly the free energy is

F (σ ) = −kBT ln
∑

E

dim(UE )e−βEn . (B7)

Putting all this together means that Wform(σ ) = Wext(σ ) =
F (σ ) − F (τ ). This proves property (1) for this class of re-
versible states.

For property (2), given any state ρ with support supp(σ )
and such that [ρ, H] = 0, we want to show that the transfor-
mation ρ → σ is allowed by thermal operations. Showing this
is equivalent to showing that ρ thermomajorizes σ [33]. Now,
given that both states have the same support, the thermoma-
jorization condition is the same as the one that is obtained for
two full-rank probability vectors with the same distribution
that ρ and σ have over supp(σ ). Within this subspace, σ has a
thermal distribution and therefore it is majorized by any vector
with the same support, in particular ρ.

For property (3), since ρ and σ have the same support, they
have the same extractable work Wext(ρ) = Wext(σ ). Further-
more, we have shown in property (2) that any state ρ with
the same support as σ can be converted into the latter at no
cost. Therefore, the cost of formation of any state ρ must be at
least that of σ , Wform(ρ) � Wform(σ ). Since the only reversible
state with the same support of σ is σ , we have that the last
inequality is strict.

In light of these properties, if we have the system initially
in an arbitrary nonequilibrium state ρ with nonfull support,
we can always transform it to the reversible state, τ |Uρ

, with
same support Uρ . In this way, one can extract the same amount
of work from both states, although the reversible one has a
smaller work of formation. Analogously, we can easily see
that, if the system is initially in a thermal state, we can
transform it to an arbitrary reversible state using an amount
of energy equal to its work of formation (this energy can be
recovered after some finite number of cycles). Thus, without
loss of generality, we will consider that the system is initially
in a nonequilibrium reversible state (i.e., not a thermal state).

APPENDIX C: CORRELATED SUBSYSTEMS

Consider a working medium of N noninteracting identical
qubits. If the Hamiltonian of the qubits has a gap h̄ω, then
the N qubit system will have an energy spectrum {Em =
mh̄ω, m = 0, . . . , N}, each with degeneracy g(m) = (N

m

)
. We

will focus on states ρ (N ) of the N qubits such that the local
density matrix of all qubits is the same. Given that we will
restrict ourselves to states diagonal in the energy eigenbasis,
these local states can be parametrized by the excited state
probability p as ρ = p|1〉〈1| + (1 − p)|0〉〈0|, where {|0〉, |1〉}
is an orthonormal basis such that H = h̄ω|1〉〈1|.

In [55] it was shown that one can reduce the work of
formation of such states if correlations between subsystems
are allowed. That is,

Wform(ρ (N ) ) < Wform(ρ⊗N ) = NWform(ρ), (C1)

where ρ (N ) is a state where each qubit has a local den-
sity matrix equal to ρ. In particular, for certain single qubit
states ρ, the correlated state ρ (N ) that minimizes Wform(ρ (N ) )
is a reversible state. This happens, for example, for local
density matrices ρk = pk|1〉〈1| + (1 − pk )|0〉〈0|, k = 1, . . . ,

N − 1, with

pk =
∑k

m=0 m
(N

m

)
e−mβ h̄ω

N
∑k

m=0

(N
m

)
e−mβ h̄ω

. (C2)

In this case corresponding reversible correlated state ρ (N )

has a Gibbs-like thermal distribution over the support Uk =
{|E = mh̄ω, g〉, g = 1, . . . , g(m); m = 0, . . . , k}. All relevant
thermodynamic quantities of these states are determined by
their effective partition function Zk (β ) given by

Zk (β ) =
k∑

m=0

(
N

m

)
e−mβ h̄ω. (C3)

In the following, we will show results for the large N limit, so
it is useful to rewrite this partition function as

Zk (β ) = [Z (β )]N
k∑

m=0

(
N

m

)
pm

β (1 − pβ )N−m, (C4)

where pβ = e−β h̄ω/(1 + e−β h̄ω ) is the excited state probability
for a single qubit in thermal equilibrium and Z (β ) = 1 +
e−β h̄ω its respective partition function. Notice that the second
factor in (C4) is a tail sum of a binomial distribution charac-
terized by N trials with success probability pβ . We will base
our large N approximation on well known approximations for
binomial tails.

Let {kN ∈ N, N ∈ N0} be a sequence such that kN/N →
q, when N → ∞, for some 0 < q < pβ . We then have
the following bounds on the binomial tail: B(pβ, kN , N ) =∑kN

m=0

(N
m

)
pm

β (1 − pβ )N−m [56], Lemma 4.7.2; there the
bounds are derived for the upper tail of the distribution; that
is, for B(1 − pβ, N − kN , N ), it is easy to check that they also
hold for the lower tail of the distribution B(pβ, kN , N ). Thus

1√
8Nq(1 − q)

e−ND(q‖pβ ) � B(pβ, kN , N ) � e−ND(q‖pβ ),

(C5)
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where D(q‖p) = q ln(q/p) + (1 − q)ln[(1 − q)/(1 − p)] is
the binary relative entropy. Therefore, asymptotically we have
that [56]

lim
N→∞

− 1

N
lnB(pβ, kN , N ) = D(q‖pβ ) (C6)

and the convergence rate is O(log N/N ). Applying these re-
sults to the logarithm of the partition function (C4) of the
reversible state we have the asymptotic behavior

− 1

N
lnZk (β ) ≈ −lnZ (β ) + D(q‖pβ ). (C7)

Therefore, the average energy per qubit is

1

N
〈E〉k = − 1

N

∂

∂β
lnZk (β )

≈ pβ h̄ω + ∂

∂β
D(q‖pβ ) (C8)

= pβ h̄ω + qh̄ω − pβ h̄ω = qh̄ω. (C9)

Notice that the average energy of the system can also be writ-
ten in terms of the local state probability pk as 〈E〉k = N pk h̄ω.
Therefore, this implies that in the large N limit pk → q, so that
the parameter q determines the asymptotic local state of the
qubits. Here all convergence rates are of order O(log N/N ).
Similarly, for the free energy of the reversible state we
have that

Fk (β ) = NF (q, β ) + O(log N ),

(C10)

where F (q, β ) is the standard free energy of the asymptotic
single qubit state ρ(q) = q|1〉〈1| + (1 − q)|0〉〈0|. In [55] it is

further shown that the total correlations per particle in these
reversible states vanish in the large N limit as O(log N/N ).

In our heat engine cycle we need to have reversible states
at two different temperatures, βhot and βcold, and different sup-
ports U and V for each number of subsystems N . If we choose
our sequence of supports UkN and VlN such that kN/N → q and
lN/N → r with 0 < q < r < min(pβhot , pβcold ), we can then
apply the above asymptotic expressions for all four reversible
states. In particular, this means that the work extracted in each
cycle per particle is

Wcycle

N
≈ F (q, βhot ) − F (r, βhot) − F (q, βcold) + F (r, βcold),

(C11)

so that we simply extract the free energy difference of the
local states. Notice that these local states have full support and
therefore it would be impossible to deterministically extract
any energy from them without allowing correlations. Further-
more, notice that in the large N limit we have that the average
energy per particle (C8) does not depend on temperature. This
means that the reversible states at points B and C of the cycle
(or A and D) have, up to O(log N/N ) corrections, the same
energy. This implies that the irreversible heat per particle
vanishes in the large N limit, QBC ≈ 0, QDA ≈ 0. As discussed
in the main text, this implies that we have Carnot efficiency.
Indeed it is simple to check via direct substitution of the above
asymptotic expressions that

lim
N→∞

η = ηCarnot. (C12)
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